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For a poset P, we consider how large a family F of subsets of
[n] := {1, . . . , n} we may have in the Boolean Lattice Bn : (2[n],⊆)
containing no (weak) subposet P. We are interested in determining

or estimating La(n,P) := max{|F| : F ⊆ 2[n],P 6⊂ F}.

Example

r r
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@
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For the poset P = N , F 6⊃ q qq q
@ means F contains no 4 subsets A,

B, C, D such that A ⊂ B, C ⊂ B, C ⊂ D. Note that A ⊂ C is
allowed: The subposet does not have to be induced.



page.5

For a poset P, we consider how large a family F of subsets of
[n] := {1, . . . , n} we may have in the Boolean Lattice Bn : (2[n],⊆)
containing no (weak) subposet P. We are interested in determining

or estimating La(n,P) := max{|F| : F ⊆ 2[n],P 6⊂ F}.

Example

r r
r r
@
@
@

For the poset P = N , F 6⊃ q qq q
@ means F contains no 4 subsets A,

B, C, D such that A ⊂ B, C ⊂ B, C ⊂ D. Note that A ⊂ C is
allowed: The subposet does not have to be induced.



page.6

The Boolean Lattice B4
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A Family of Subsets F in B4
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F contains the poset N
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A Large N -free Family in B4
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Given a finite poset P, we are interested in determining or

estimating La(n,P) := max{|F| : F ⊆ 2[n],P 6⊂ F}.

For many posets, La(n,P) is
exactly equal to the sum of middle
k binomial coefficients, denoted by
Σ(n, k).

Moreover, the largest families may
be B(n, k), the families of subsets
of middle k sizes.

q∅

q[n]

q q q q q q q q q q qq q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q } k
levels
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Foundational results: Let Pk denote the k-element chain (path
poset).

Theorem (Sperner, 1928)

For all n,

La(n,P2) =

(
n

bn2c

)
,

and the extremal families are B(n, 1).

Theorem (Erdős, 1945)

For general k and n,

La(n,Pk) = Σ(n, k − 1),

and the extremal families are B(n, k − 1).
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Excluded subposet P La(n,P)

P2

r
r

(
n
b n
2
c

)
[Sperner, 1928]

Path Pk , k ≥ 2

rr
rr
... Σ(n, k − 1)

∼ (k − 1)
(

n
b n
2
c

) [P. Erdős, 1945]

r -fork Vr
r︷ ︸︸ ︷
r rrrr ....

�
�

A
A
�
�

S
S

∼
(

n
b n
2
c

) [Katona-Tarján, 1981]

[DeBonis-Katona 2007]
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Excluded subposet P La(n,P)

Butterfly B
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Σ(n, 2)

∼ 2
(

n
b n
2
c

) [DeBonis-Katona-

Swanepoel, 2005]

N

r r
r r
@
@
@ ∼

(
n
b n
2
c

)
[G.-Katona, 2008]

Kr,s(r , s ≥ 2)

r rr r
BB"
""


b
bb
��JJ

...

...

r︷ ︸︸ ︷
s r, s ≥ 2

︸︷︷︸ ∼ 2
(

n
b n
2
c

)
[De Bonis-Katona, 2007]
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Asymptotic behavior of La(n,P)

Definition
π(P):= limn→∞

La(n,P)

( n
b n2 c

)
.

Conjecture (G.-Lu, 2008)

For all P, π(P) exists and is integer.

When Saks and Winkler (2008) observed what π(P) is in known
cases, it led to the stronger

Conjecture (G.-Lu, 2009)

For all P, π(P) = e(P), where

Definition
e(P):= maxm such that for all n, P 6⊂ B(n,m).
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On the Diamond D2

Problem
Despite considerable effort it remains open to determine the value
π(D2) or even to show it exists!

t
tt tS
S

�
�

�
�

S
S

The conjectured value of π(D2) is its lower bound, e(D2) = 2.
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Successive upper bounds on π(D2):

2.5 [G.-Li, 2007]
2.296 [G.-Li-Lu, 2008]
2.283 [Axenovich-Manske-Martin, 2011]
2.273 [G.-Li-Lu, 2011]
2.25 [Kramer-Martin-Young, 2012]
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Three level problem

To make things simpler, what if we restrict attention to D2-free
families in the middle three levels of the Boolean lattice Bn? We
should get better upper bounds on |F|/

( n
b n
2
c
)
:

2.207 [Axenovich-Manske-Martin, 2011]
2.1547 [Manske-Shen, 2012]
2.1512 [Balogh-Hu-Lidický-Liu, 2012]
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Excluding a Family of Posets

Let us now generalize La(n,P).

We consider La(n, {Pi}) := max{|F| : F ⊆ 2[n], ∀iPi 6⊂ F}.

In words, it is the maximum size of a family F ⊆ Bn that contains
no copy of any poset Pi ∈ {Pi}.



page.22

Starting Point

What is La(n, {V,Λ}), where V = V2?

Theorem (Katona, Tarján (1983))

La(n, {V,Λ}) = 2

(
n − 1

bn−12 c

)
∼
( n
b n
2
c
)
.

Although solved, let us think about this question. A family with
neither V nor Λ is constructed from subposets B0 and B1 that are
not only disjoint, but are unrelated. It means that no element of
one is related to an element of another.

Our question becomes: What is the largest size of a family in Bn
constructed from pairwise unrelated copies of B0 and B1?
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Maximum Packings

We consider

Pa(n, {Pi}) := max{|F| : F ⊆ 2[n]},
where each component of F is a copy of some poset in the
collection {Pi}. The collection may be infinite.

This can be viewed as a generalization of the La(n, {Qj}) problem:

La(n, {Qj}) = Pa(n, {Pi}),

where {Pi} consists of all connected posets that do not contain a
copy of any Qj ∈ {Qj}.

We have that La(n, {V,Λ}) = Pa(n, {B0,B1}).
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Old Examples with New Notation

Problem
What is Pa(n,P) for a general poset P?

Note: Katona independently introduced what is equivalent to
Pa(n,P) in 2010.

Theorem (Sperner (1928))

Pa(n,B0) is
( n
b n
2
c
)
.

Theorem (G., Stahl, Trotter (1984))

For the chain (or path) Pk on k ≥ 1 elements,

Pa(n,Pk) = k

(
n − k + 1

bn−k+1
2 c

)
.

The maximum number of unrelated copies of Pk in Bn is

asymptotic to
1

2k−1
( n
b n
2
c
)
.
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Example: Packing many copies of V

bn+1
2 c

A2A1

A
1, 2 /∈ A

B124B123

B12
1, 2, 3, 4 /∈ B

C12346C12345

C1234
1, 2, 3, 4, 5, 6 /∈ C

. . .

Pa(n,V)/|V| ≥

[(
n − 2
n−1
2

)
+

(
n − 4

n−1
2 − 2

)
+

(
n − 6

n−1
2 − 4

)
+ . . .

]

∼

[
1

22

(
n

bn2c

)
+

1

24

(
n

bn2c

)
+

1

26

(
n

bn2c

)
+ . . .

]
=

1

3

(
n

bn2c

)
.
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Example: Packing many copies of V

On the other hand, by counting how many maximal chains in Bn
hit a V, we get the same expression as an asymptotic upper bound,
and deduce

Pa(n,V)/|V| ∼ 1

3

(
n

bn2c

)
.

Discussing this with Richard Anstee, we were led to make the

Conjecture

For every poset P, there is some integer c(P) such that
Pa(n,P)/|P| ∼ 1

c(P)

( n
b n
2
c
)

as n→∞.
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Convex Closure and Main Theorem

For a family F ⊆ Bn, its convex closure is the family

F := {S ∈ Bn|A ⊆ S ⊆ B for some A,B ∈ F}.

Notice that if a family G is unrelated to a family F , then G is also
unrelated to F .

A family F ⊆ Bn is called convex if F = F .

We define c(P) to be the smallest size of a convex family of
subsets containing a copy of P.

Theorem (D., G. (2013), and Katona, Nagy (2013))

As n goes to infinity, Pa(n,P) ∼ |P|
c(P)

( n
b n
2
c
)
.
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Proof Sketch: Upper Bound of Pa(n,P)

Theorem (D., G. (2013), and Katona, Nagy (2013))

As n goes to infinity, Pa(n,P) ∼ |P|
c(P)

( n
b n
2
c
)
.

No full (maximum) chain in Bn meets more than one closure of a
copy of P.

If each closure of a copy of P meets at least x full

chains, then
Pa(n,P)

|P|
x ≤ n!;

Pa(n,P) ≤ |P|n!

x
.

We need to show the closure of a copy of P meets at least
c(P)bn/2c!dn/2e! full chains asymptotically.
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Upper Bound of Pa(n,P)

Let a(n,m) denote the largest integer such that any family
F ⊆ Bn, |F| = m, meets at least a(n,m) full chains.

Lemma
As n goes to infinity, a(n,m) ∼ mbn/2c!dn/2e!.
Proof of Lemma: Inclusion/Exclusion: Let F ⊆ Bn be a family of
size m that meets a(n,m) full chains. Let b({A1, . . . ,Ak}) be the
number of full chains in Bn that meet all of the sets in
{A1, . . . ,Ak}.

a(n,m) ≥
∑
A∈F

b({A})−
∑

A1,A2∈F
b({A1,A2}).
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Upper Bound of Pa(n,P)

Proof continued:

a(n,m) ≥
∑
A∈F

b({A})−
∑

A1,A2∈F
b({A1,A2})

≥
∑
A∈F

(
b({A})−

∑
A1∈F

| n2−|A||≥| n2−|A1||

b({A,A1})

)

=
∑
A∈F

b({A})

(
1−

∑
A1∈F

| n2−|A||≥| n2−|A1||

b({A,A1})
b({A})

)

≥
∑
A∈F

b({A})

(
1− 2m

n

)
∼
∑
A∈F

b({A}) ≥ mb(n/2)c!d(n/2)e!.
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Upper Bound of Pa(n,P)

Proof continued:
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Lower Bound of Pa(n,P)

By an elaborate extension of what we saw for P = V, we construct
an Fn ⊆ Bn, of unrelated copies of P, where as n→∞,

|Fn| ∼ |P|
∞∑
j=0

(
(2k − c(P))j

(2k)j+1

)(
n

bn2c

)

= |P| 1

2k

[
1

1− 2k−c(P)
2k

](
n

bn2c

)
=
|P|
c(P)

(
n

bn2c

)
,

which gives the Theorem.
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Packing Induced Copies of P

Denote by Pa∗(n, {Pi}) the maximum size of a family F ⊆ Bn,
where each connected component is an induced copy of a poset
from the collection {Pi}.

Let c∗(P) be the smallest size of a convex family containing an
induced copy of P.

Theorem (D., G. (2013) and Katona, Nagy (2013))

As n→∞, Pa∗(n,P) ∼ |P|
c∗(P)

( n
b n
2
c
)
.
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Other Results

For a finite collection of posets:

Theorem (D., G. (2013))

As n goes to infinity,

Pa(n, {P1,P2, . . . ,Pk}) ∼ max1≤i≤k

(
|Pi |
c(Pi )

)( n
b n
2
c
)
.

Theorem (D., G. (2013))

As n goes to infinity,

Pa∗(n, {P1,P2, . . . ,Pk}) ∼ max1≤i≤k

(
|Pi |

c∗(Pi )

)( n
b n
2
c
)
.
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Future Work

I Finding La(n, {Pi}), even asymptotically.

I Finding Pa(n, {Pi}) asymptotically for an infinite collection of
posets.

I Finding exact values of Pa(n,P).

I Designing an algorithm that quickly finds c(P), or even the
complexity of such an algorithm.
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