Packing Posets in the Boolean Lattice

Andrew P. Dove Jerrold R. Griggs

University of South Carolina Columbia, SC USA

SIAM-DM14 Conference Minneapolis

Andrew Dove

Andrew Dove

Jerry Griggs

▲□▶ ▲圖▶ ▲国▶ ▲国▶

For a poset P, we consider how large a family \mathcal{F} of subsets of $[n] := \{1, \ldots, n\}$ we may have in the Boolean Lattice $\mathcal{B}_n : (2^{[n]}, \subseteq)$ containing no (weak) subposet P. We are interested in determining

or estimating $\operatorname{La}(n, P) := \max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]}, P \not\subset \mathcal{F}\}.$

(日)

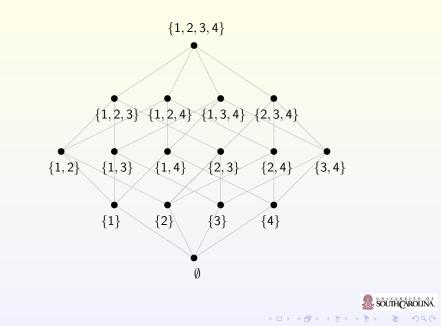
For a poset *P*, we consider how large a family \mathcal{F} of subsets of $[n] := \{1, \ldots, n\}$ we may have in the Boolean Lattice $\mathcal{B}_n : (2^{[n]}, \subseteq)$ containing no (weak) subposet *P*. We are interested in determining or estimating $La(n, P) := max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]}, P \not\subset \mathcal{F}\}.$

Example

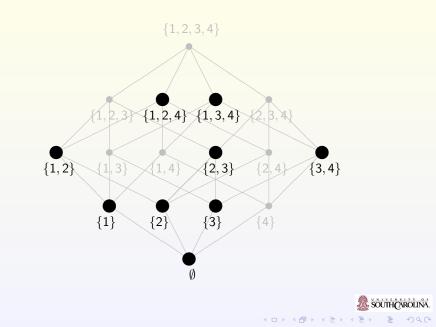
For the poset $P = \mathcal{N}$, $\mathcal{F} \not\supseteq \mathbb{N}$ means \mathcal{F} contains no 4 subsets A, B, C, D such that $A \subset B$, $C \subset B$, $C \subset D$. Note that $A \subset C$ is allowed: The subposet does not have to be induced.

イロト 不同ト イヨト イヨト

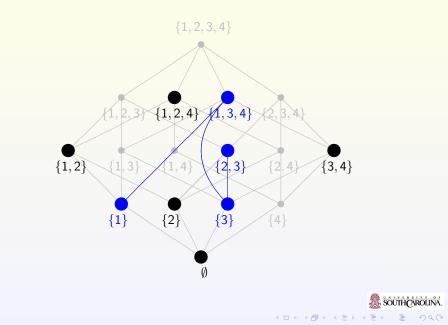
The Boolean Lattice \mathcal{B}_4



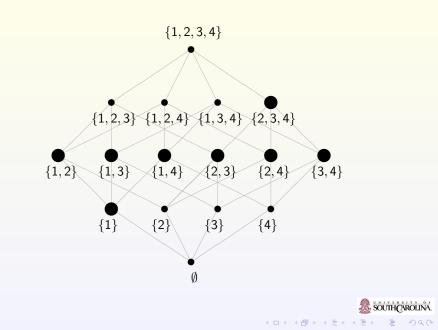
A Family of Subsets \mathcal{F} in \mathcal{B}_4



 ${\mathcal F}$ contains the poset ${\mathcal N}$



A Large \mathcal{N} -free Family in \mathcal{B}_4

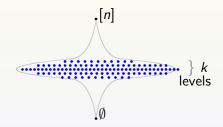


Given a finite poset *P*, we are interested in determining or estimating $\boxed{\operatorname{La}(n, P) := \max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]}, P \not\subset \mathcal{F}\}}.$

Given a finite poset *P*, we are interested in determining or estimating $La(n, P) := max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]}, P \not\subset \mathcal{F}\}.$

For many posets, La(n, P) is exactly equal to the sum of middle k binomial coefficients, denoted by $\Sigma(n, k)$.

Moreover, the largest families may be $\mathcal{B}(n, k)$, the families of subsets of middle k sizes.



・ロト ・ 理 ・ ・ ヨ ・ ・

Foundational results: Let \mathcal{P}_k denote the *k*-element chain (path poset).

Theorem (Sperner, 1928) For all n,

$$\operatorname{La}(n,\mathcal{P}_2) = \binom{n}{\lfloor \frac{n}{2} \rfloor},$$

and the extremal families are $\mathcal{B}(n, 1)$.

Foundational results: Let \mathcal{P}_k denote the *k*-element chain (path poset).

Theorem (Sperner, 1928) For all n,

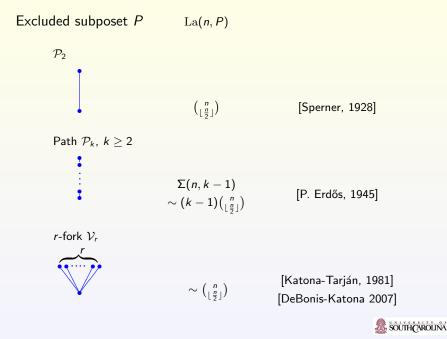
$$\operatorname{La}(n,\mathcal{P}_2) = \binom{n}{\lfloor \frac{n}{2} \rfloor},$$

and the extremal families are $\mathcal{B}(n,1)$.

Theorem (Erdős, 1945) For general k and n,

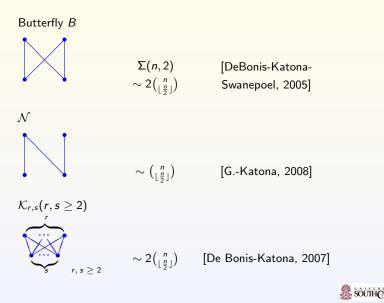
$$\operatorname{La}(n,\mathcal{P}_k)=\Sigma(n,k-1),$$

and the extremal families are $\mathcal{B}(n, k-1)$.



▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Excluded subposet P La(n, P)



・ロト ・雪ト ・ヨト ・ヨー うへで

Asymptotic behavior of La(n, P)

Definition

$$\pi(P) := \lim_{n \to \infty} \frac{\operatorname{La}(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}.$$

Asymptotic behavior of La(n, P)

Definition

$$\pi(P) := \lim_{n \to \infty} \frac{\operatorname{La}(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}.$$

Conjecture (G.-Lu, 2008) For all P, $\pi(P)$ exists and is integer.

When Saks and Winkler (2008) observed what $\pi(P)$ is in known cases, it led to the stronger

Conjecture (G.-Lu, 2009) For all P, $\pi(P) = e(P)$, where

Definition $e(P):= \max m \text{ such that for all } n, P \not\subset \mathcal{B}(n, m).$

On the Diamond \mathcal{D}_2

Problem

Despite considerable effort it remains open to determine the value $\pi(D_2)$ or even to show it exists!

The conjectured value of $\pi(\mathcal{D}_2)$ is its lower bound, $e(\mathcal{D}_2) = 2$.

Successive upper bounds on $\pi(\mathcal{D}_2)$:

2.5 [G.-Li, 2007]
2.296 [G.-Li-Lu, 2008]
2.283 [Axenovich-Manske-Martin, 2011]
2.273 [G.-Li-Lu, 2011]
2.25 [Kramer-Martin-Young, 2012]

To make things simpler, what if we restrict attention to D_2 -free families in the middle three levels of the Boolean lattice B_n ? We should get better upper bounds on $|\mathcal{F}|/{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$:

- 2.207 [Axenovich-Manske-Martin, 2011]
- 2.1547 [Manske-Shen, 2012]
- 2.1512 [Balogh-Hu-Lidický-Liu, 2012]

Excluding a Family of Posets

Let us now generalize La(n, P).

We consider $|\operatorname{La}(n, \{P_i\}) := \max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]}, \forall i P_i \notin \mathcal{F}\}.$

In words, it is the maximum size of a family $\mathcal{F} \subseteq \mathcal{B}_n$ that contains no copy of any poset $P_i \in \{P_i\}$.

What is $La(n, \{\mathcal{V}, \Lambda\})$, where $\mathcal{V} = \mathcal{V}_2$?

What is La(n, { \mathcal{V} , Λ }), where $\mathcal{V} = \mathcal{V}_2$? Theorem (Katona, Tarján (1983)) La(n, { \mathcal{V} , Λ }) = 2 $\binom{n-1}{\lfloor \frac{n-1}{2} \rfloor} \sim \binom{n}{\lfloor \frac{n}{2} \rfloor}$.

What is La(
$$n$$
, { \mathcal{V} , Λ }), where $\mathcal{V} = \mathcal{V}_2$?
Theorem (Katona, Tarján (1983))
La(n , { \mathcal{V} , Λ }) = 2 $\binom{n-1}{\lfloor \frac{n-1}{2} \rfloor} \sim \binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Although solved, let us think about this question. A family with neither \mathcal{V} nor Λ is constructed from subposets \mathcal{B}_0 and \mathcal{B}_1 that are not only disjoint, but are unrelated. It means that no element of one is related to an element of another.

What is La(
$$n$$
, { \mathcal{V} , Λ }), where $\mathcal{V} = \mathcal{V}_2$?
Theorem (Katona, Tarján (1983))
La(n , { \mathcal{V} , Λ }) = 2 $\binom{n-1}{\lfloor \frac{n-1}{2} \rfloor} \sim \binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Although solved, let us think about this question. A family with neither \mathcal{V} nor Λ is constructed from subposets \mathcal{B}_0 and \mathcal{B}_1 that are not only disjoint, but are unrelated. It means that no element of one is related to an element of another.

Our question becomes: What is the largest size of a family in \mathcal{B}_n constructed from pairwise unrelated copies of \mathcal{B}_0 and \mathcal{B}_1 ?

Maximum Packings

We consider

 $Pa(n, \{P_i\}) := max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]}\},\$ where each component of \mathcal{F} is a copy of some poset in the collection $\{P_i\}$. The collection may be infinite.

Maximum Packings

We consider

 $Pa(n, \{P_i\}) := max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]}\},\$ where each component of \mathcal{F} is a copy of some poset in the collection $\{P_i\}$. The collection may be infinite.

This can be viewed as a generalization of the $La(n, \{Q_j\})$ problem:

$\operatorname{La}(n, \{Q_j\}) = \operatorname{Pa}(n, \{P_i\}),$

where $\{P_i\}$ consists of all connected posets that do not contain a copy of any $Q_j \in \{Q_j\}$.

Maximum Packings

We consider

 $Pa(n, \{P_i\}) := max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]}\},\$ where each component of \mathcal{F} is a copy of some poset in the collection $\{P_i\}$. The collection may be infinite.

This can be viewed as a generalization of the $La(n, \{Q_j\})$ problem:

$\operatorname{La}(n, \{Q_j\}) = \operatorname{Pa}(n, \{P_i\}),$

where $\{P_i\}$ consists of all connected posets that do not contain a copy of any $Q_j \in \{Q_j\}$.

We have that $\operatorname{La}(n, \{\mathcal{V}, \Lambda\}) = \operatorname{Pa}(n, \{\mathcal{B}_0, \mathcal{B}_1\}).$

Old Examples with New Notation

Problem What is Pa(n, P) for a general poset P?

Old Examples with New Notation

Problem What is Pa(n, P) for a general poset P?

Note: Katona independently introduced what is equivalent to Pa(n, P) in 2010.

Theorem (Sperner (1928)) Pa (n, \mathcal{B}_0) is $\binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Old Examples with New Notation

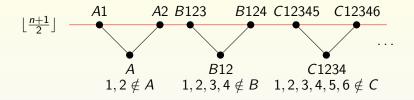
Problem What is Pa(n, P) for a general poset P?

Note: Katona independently introduced what is equivalent to Pa(n, P) in 2010.

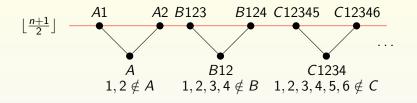
Theorem (Sperner (1928)) Pa (n, \mathcal{B}_0) is $\binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Theorem (G., Stahl, Trotter (1984)) For the chain (or path) \mathcal{P}_k on $k \ge 1$ elements, $\operatorname{Pa}(n, \mathcal{P}_k) = k \binom{n-k+1}{\lfloor \frac{n-k+1}{2} \rfloor}.$

The maximum number of unrelated copies of \mathcal{P}_k in \mathcal{B}_n is asymptotic to $\frac{1}{2^{k-1}} {n \choose \lfloor \frac{n}{2} \rfloor}.$

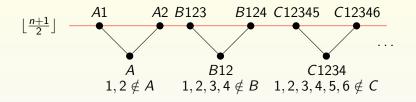


・ロト ・ 聞 ト ・ 注 ト ・ 注 ト



$$\operatorname{Pa}(n, \mathcal{V})/|\mathcal{V}| \geq \left[\binom{n-2}{\frac{n-1}{2}} + \binom{n-4}{\frac{n-1}{2}-2} + \binom{n-6}{\frac{n-1}{2}-4} + \dots \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで



$$\operatorname{Pa}(n,\mathcal{V})/|\mathcal{V}| \ge \left[\binom{n-2}{\frac{n-1}{2}} + \binom{n-4}{\frac{n-1}{2}-2} + \binom{n-6}{\frac{n-1}{2}-4} + \dots \right]$$
$$\sim \left[\frac{1}{2^2} \binom{n}{\lfloor \frac{n}{2} \rfloor} + \frac{1}{2^4} \binom{n}{\lfloor \frac{n}{2} \rfloor} + \frac{1}{2^6} \binom{n}{\lfloor \frac{n}{2} \rfloor} + \dots \right] = \frac{1}{3} \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

SOUTH CAROLINA

・ロト ・ 四ト ・ モト ・ モト

On the other hand, by counting how many maximal chains in \mathcal{B}_n hit a \mathcal{V} , we get the same expression as an asymptotic upper bound, and deduce

$$\operatorname{Pa}(n, \mathcal{V})/|\mathcal{V}| \sim \frac{1}{3} \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

On the other hand, by counting how many maximal chains in \mathcal{B}_n hit a \mathcal{V} , we get the same expression as an asymptotic upper bound, and deduce

$$\operatorname{Pa}(n,\mathcal{V})/|\mathcal{V}|\sim rac{1}{3}\binom{n}{\lfloor rac{n}{2} \rfloor}.$$

Discussing this with Richard Anstee, we were led to make the

Conjecture For every poset P, there is some integer c(P) such that $\operatorname{Pa}(n, P)/|P| \sim \frac{1}{c(P)} {n \choose \lfloor \frac{n}{2} \rfloor}$ as $n \to \infty$.

For a family $\mathcal{F} \subseteq \mathcal{B}_n$, its *convex closure* is the family

$$\overline{\mathcal{F}} := \{S \in \mathcal{B}_n | A \subseteq S \subseteq B \text{ for some } A, B \in \mathcal{F}\}.$$

Notice that if a family G is unrelated to a family F, then G is also unrelated to $\overline{\mathcal{F}}$.

For a family $\mathcal{F} \subseteq \mathcal{B}_n$, its *convex closure* is the family

$$\overline{\mathcal{F}} := \{S \in \mathcal{B}_n | A \subseteq S \subseteq B \text{ for some } A, B \in \mathcal{F}\}.$$

Notice that if a family G is unrelated to a family F, then G is also unrelated to $\overline{\mathcal{F}}$. A family $\mathcal{F} \subseteq \mathcal{B}_n$ is called *convex* if $\overline{\mathcal{F}} = \mathcal{F}$.

For a family $\mathcal{F} \subseteq \mathcal{B}_n$, its *convex closure* is the family

 $\overline{\mathcal{F}} := \{ S \in \mathcal{B}_n | A \subseteq S \subseteq B \text{ for some } A, B \in \mathcal{F} \}.$

Notice that if a family G is unrelated to a family F, then G is also unrelated to $\overline{\mathcal{F}}$. A family $\mathcal{F} \subseteq \mathcal{B}_n$ is called *convex* if $\overline{\mathcal{F}} = \mathcal{F}$.

We define c(P) to be the smallest size of a convex family of subsets containing a copy of P.

For a family $\mathcal{F} \subseteq \mathcal{B}_n$, its *convex closure* is the family

 $\overline{\mathcal{F}} := \{ S \in \mathcal{B}_n | A \subseteq S \subseteq B \text{ for some } A, B \in \mathcal{F} \}.$

Notice that if a family G is unrelated to a family F, then G is also unrelated to $\overline{\mathcal{F}}$. A family $\mathcal{F} \subseteq \mathcal{B}_n$ is called *convex* if $\overline{\mathcal{F}} = \mathcal{F}$.

We define c(P) to be the smallest size of a convex family of subsets containing a copy of P.

Theorem (D., G. (2013), and Katona, Nagy (2013)) As *n* goes to infinity, $Pa(n, P) \sim \frac{|P|}{c(P)} {n \choose |\frac{n}{2}|}$.

Proof Sketch: Upper Bound of Pa(n, P)

Theorem (D., G. (2013), and Katona, Nagy (2013)) As *n* goes to infinity, $Pa(n, P) \sim \frac{|P|}{c(P)} {n \choose \frac{n}{2}}$.

No full (maximum) chain in \mathcal{B}_n meets more than one closure of a copy of P.

Proof Sketch: Upper Bound of Pa(n, P)

Theorem (D., G. (2013), and Katona, Nagy (2013)) As *n* goes to infinity, $Pa(n, P) \sim \frac{|P|}{c(P)} {n \choose \frac{n}{2}}$.

No full (maximum) chain in \mathcal{B}_n meets more than one closure of a copy of P. If each closure of a copy of P meets at least x full

chains, then

$$\frac{\operatorname{Pa}(n, P)}{|P|} x \le n!;$$

$$\operatorname{Pa}(n, P) \le |P| \frac{n!}{x}.$$

(日)、

Proof Sketch: Upper Bound of Pa(n, P)

Theorem (D., G. (2013), and Katona, Nagy (2013)) As *n* goes to infinity, $Pa(n, P) \sim \frac{|P|}{c(P)} {n \choose \frac{n}{2}}$.

No full (maximum) chain in \mathcal{B}_n meets more than one closure of a copy of P. If each closure of a copy of P meets at least x full

chains, then

$$\frac{\operatorname{Pa}(n, P)}{|P|} x \le n!;$$

$$\operatorname{Pa}(n, P) \le |P| \frac{n!}{x}.$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

We need to show the closure of a copy of P meets at least $c(P)\lfloor n/2 \rfloor! \lceil n/2 \rceil!$ full chains asymptotically.

Let a(n, m) denote the largest integer such that any family $\mathcal{F} \subseteq \mathcal{B}_n$, $|\mathcal{F}| = m$, meets at least a(n, m) full chains.

Let a(n, m) denote the largest integer such that any family $\mathcal{F} \subseteq \mathcal{B}_n$, $|\mathcal{F}| = m$, meets at least a(n, m) full chains.

Lemma

As n goes to infinity, $a(n,m) \sim m\lfloor n/2 \rfloor ! \lceil n/2 \rceil !$.

Let a(n, m) denote the largest integer such that any family $\mathcal{F} \subseteq \mathcal{B}_n$, $|\mathcal{F}| = m$, meets at least a(n, m) full chains.

Lemma

As n goes to infinity, $a(n,m) \sim m\lfloor n/2 \rfloor ! \lceil n/2 \rceil !$.

Proof of Lemma: Inclusion/Exclusion: Let $\mathcal{F} \subseteq \mathcal{B}_n$ be a family of size *m* that meets a(n,m) full chains. Let $b(\{A_1,\ldots,A_k\})$ be the number of full chains in \mathcal{B}_n that meet all of the sets in $\{A_1,\ldots,A_k\}$.

$$\mathsf{a}(n,m) \geq \sum_{A \in \mathcal{F}} \mathsf{b}(\{A\}) - \sum_{A_1,A_2 \in \mathcal{F}} \mathsf{b}(\{A_1,A_2\}).$$

Proof continued:

$$a(n,m) \geq \sum_{A \in \mathcal{F}} b(\{A\}) - \sum_{A_1,A_2 \in \mathcal{F}} b(\{A_1,A_2\})$$

Proof continued:

$$egin{aligned} \mathsf{a}(n,m) &\geq \sum_{A\in\mathcal{F}} b(\{A\}) - \sum_{A_1,A_2\in\mathcal{F}} b(\{A_1,A_2\}) \ &\geq \sum_{A\in\mathcal{F}} \left(b(\{A\}) - \sum_{A_1\in\mathcal{F}} b(\{A,A_1\})
ight) \ &\left| rac{a}{2} - |A| |\geq |rac{a}{2} - |A_1|
ight| \end{aligned}$$

Proof continued:

$$\begin{aligned} \mathsf{a}(n,m) &\geq \sum_{A \in \mathcal{F}} b(\{A\}) - \sum_{A_1, A_2 \in \mathcal{F}} b(\{A_1, A_2\}) \\ &\geq \sum_{A \in \mathcal{F}} \left(b(\{A\}) - \sum_{A_1 \in \mathcal{F}} b(\{A, A_1\}) \right) \\ &|\frac{n}{2} - |A|| \geq |\frac{n}{2} - |A_1|| \\ &= \sum_{A \in \mathcal{F}} b(\{A\}) \left(1 - \sum_{A_1 \in \mathcal{F}} \frac{b(\{A, A_1\})}{b(\{A\})} \right) \\ &|\frac{n}{2} - |A|| \geq |\frac{n}{2} - |A_1|| \end{aligned}$$

Proof continued:

$$\begin{aligned} a(n,m) &\geq \sum_{A \in \mathcal{F}} b(\{A\}) - \sum_{A_1, A_2 \in \mathcal{F}} b(\{A_1, A_2\}) \\ &\geq \sum_{A \in \mathcal{F}} \left(b(\{A\}) - \sum_{A_1 \in \mathcal{F}} b(\{A, A_1\}) \right) \\ &|\frac{n}{2} - |A|| \geq |\frac{n}{2} - |A_1|| \\ &= \sum_{A \in \mathcal{F}} b(\{A\}) \left(1 - \sum_{A_1 \in \mathcal{F}} \frac{b(\{A, A_1\})}{b(\{A\})} \right) \\ &|\frac{n}{2} - |A|| \geq |\frac{n}{2} - |A_1|| \\ &\geq \sum_{A \in \mathcal{F}} b(\{A\}) \left(1 - \frac{2m}{n} \right) \sim \sum_{A \in \mathcal{F}} b(\{A\}) \geq m \lfloor (n/2) \rfloor! \lceil (n/2) \rceil!. \end{aligned}$$

ヘロト ヘロト ヘヨト ヘヨト 三日

Lower Bound of Pa(n, P)

By an elaborate extension of what we saw for $P = \mathcal{V}$, we construct an $\mathcal{F}_n \subseteq \mathcal{B}_n$, of unrelated copies of P, where as $n \to \infty$,

$$\begin{split} \mathcal{F}_n| &\sim |P| \sum_{j=0}^{\infty} \left(\frac{(2^k - c(P))^j}{(2^k)^{j+1}} \right) \binom{n}{\lfloor \frac{n}{2} \rfloor} \\ &= |P| \frac{1}{2^k} \left[\frac{1}{1 - \frac{2^k - c(P)}{2^k}} \right] \binom{n}{\lfloor \frac{n}{2} \rfloor} = \frac{|P|}{c(P)} \binom{n}{\lfloor \frac{n}{2} \rfloor}, \end{split}$$

which gives the Theorem.

Packing Induced Copies of P

Denote by $\operatorname{Pa}^*(n, \{P_i\})$ the maximum size of a family $\mathcal{F} \subseteq \mathcal{B}_n$, where each connected component is an *induced* copy of a poset from the collection $\{P_i\}$.

Packing Induced Copies of P

Denote by $\operatorname{Pa}^*(n, \{P_i\})$ the maximum size of a family $\mathcal{F} \subseteq \mathcal{B}_n$, where each connected component is an *induced* copy of a poset from the collection $\{P_i\}$.

Let $c^*(P)$ be the smallest size of a convex family containing an *induced* copy of P.

Packing Induced Copies of P

Denote by $\operatorname{Pa}^*(n, \{P_i\})$ the maximum size of a family $\mathcal{F} \subseteq \mathcal{B}_n$, where each connected component is an *induced* copy of a poset from the collection $\{P_i\}$.

Let $c^*(P)$ be the smallest size of a convex family containing an *induced* copy of P.

Theorem (D., G. (2013) and Katona, Nagy (2013)) As $n \to \infty$, $\operatorname{Pa}^*(n, P) \sim \frac{|P|}{c^*(P)} {n \choose \lfloor \frac{n}{2} \rfloor}.$

Other Results

For a finite collection of posets: Theorem (D., G. (2013)) As n goes to infinity, $Pa(n, \{P_1, P_2, ..., P_k\}) \sim max_{1 \le i \le k} \left(\frac{|P_i|}{c(P_i)}\right) {n \choose \lfloor \frac{n}{2} \rfloor}.$ Theorem (D., G. (2013)) As n goes to infinity, $Pa^*(n, \{P_1, P_2, ..., P_k\}) \sim max_{1 \le i \le k} \left(\frac{|P_i|}{c^*(P_i)}\right) {n \choose \lfloor \frac{n}{2} \rfloor}.$

(日)

• Finding $La(n, \{P_i\})$, even asymptotically.

- Finding $La(n, \{P_i\})$, even asymptotically.
- ► Finding Pa(n, {P_i}) asymptotically for an infinite collection of posets.

- Finding $La(n, \{P_i\})$, even asymptotically.
- ► Finding Pa(n, {P_i}) asymptotically for an infinite collection of posets.
- Finding exact values of Pa(n, P).

- Finding $La(n, \{P_i\})$, even asymptotically.
- ► Finding Pa(n, {P_i}) asymptotically for an infinite collection of posets.
- Finding exact values of Pa(n, P).
- Designing an algorithm that quickly finds c(P), or even the complexity of such an algorithm.

- 日本 - 1 日本 - 日本 - 日本 - 日本

