Math 546 Exam 3 Syllabus
April, 2010

1. Introduction to Groups
 a) Binary operations; closure; associative and commutative properties
 b) Full definition of a group (all four axioms defined)
 c) Uniqueness of the identity and of inverses +pfs
 d) Semigroups
 f) Abelian groups and related examples and exercises
 g) Operation tables, Latin square property for groups
 i) Cancellation laws +pf and solving equations in groups

2. Group Theory Basics
 a) Order of a group \(o(G) = |G| \); order \(o(g) \) of an element \(g \in G \)
 b) Subgroups defn. and Subgroup Theorem +pf
 c) \(\langle g \rangle \); Cyclic groups
 n) Lagrange’s Theorem (+pf) and applications
 o) The intersection of groups
 p) Exercises on groups (homework assignments)

3. Examples of Groups
 a) \(\mathbb{Z}, \mathbb{Z}_n, \mathbb{Q}, \mathbb{R} \) under +
 b) \(a\mathbb{Z} \) under + for integer \(a \)
 c) Symmetric group \(S_n \) of permutations on \(\{1, \ldots, n\} \)
 d) Alternating group \(A_n \) of even permutations in \(S_n \)
 f) Matrices \(M_n(\mathbb{R}) \) under addition
 g) General linear group \(GL_n(F) \) of invertible matrices of order \(n \) over \(F \), where field \(F \) is \(\mathbb{R}, \mathbb{Q}, \) or \(\mathbb{Z}_2 \)
 h) Semigroup of functions under composition
 i) Semigroup of words on an alphabet under concatenation
 j) Groups of order \(\leq 6 \) including Klein group \(V \) \((V_4) \)
 k) Quaternion group of order 8
 n) The group of units \(\mathbb{Z}_n^\times \) under \(\times \)