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SUMMARY

Continuous nowhere differentiable functions are functions that are continuous at
every point in their domains but do not have a derivative at any point in their domains.
Although continuous functions are usually presented in a way that leads students to
assume that differentiability is the norm and that nowhere differentiable functions
are the exception, one can make the case that most continuous functions are nowhere
differentiable. Two examples of continuous nowhere differentiable functions on [0, 1]
are the Generalized van der Waerden—Takagi function and Kiesswetter’s function. The
Generalized van der Waerden—Takagi function is constructed by taking the infinite
sum over n = 0,1,2,... of specially constructed functions f,, on [0,1]. The number
b is a fixed integer greater than or equal to 2, and the functions f,, have b" peaks.
Since the sum of the functions converges and the peaks do not cancel each other
out in the summation, the resulting function has an “infinite number of peaks”and
is thus nowhere differentiable. Similarly, Kiesswetter’s function is constructed as a
convergent sequence of functions g, on [0,1] for n = 0,1,2,.... For all n greater
than 0, g, has more than 4"~! peaks. Since Kiesswetter’s function is the limit of the
sequence of g,’s as ¢ — oo, Kiesswetter’s function also has an “infinite number of
peaks”and is nowhere differentiable on [0,1]. We begin by defining these functions
in detail and showing that they are in fact continuous and nowhere differentiable on
[0, 1].

Although we cannot fully visualize their graphs, we can determine certain prop-
erties of continuous nowhere differentiable functions. One quantity that we want to

consider is Holder continuity, which relates the difference in the values of a function
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at two points to the distance between the two points. If there exists a positive con-
stant, M, such that |f(z) — f(y)| < M|z — y|* for all z and y in the domain of
the function, then the function f is said to be Holder continuous of exponent a. We
determine the exponents for which the Generalized van der Waerden—Takagi function
and Kiesswetter’s function are Holder continuous.

Since they are nowhere differentiable, we cannot use the existence of integer—
order derivatives to determine the smoothness of continuous nowhere differentiable
functions. However, these functions do have some level of smoothness. To be able to
measure this smoothness and compare it to the smoothness of other functions, we use
fractional derivatives. The existence of fractional derivatives of a particular order can
then be used as our measure of smoothness for a nowhere differentiable function. Since
fractional derivatives can be very difficult to calculate directly, we use the connections
between fractional derivatives and Hoélder continuity to be able to determine the
existence of fractional derivatives of certain orders without direct calculation. Using
these connections, we are able to determine the existence of fractional derivatives for
the Generalized van der Waerden—Takagi function and Kiesswetter’s function.

We also want to be able to measure and compare the sizes of the graphs of contin-
uous nowhere differentiable functions. However, the graphs of these functions all have
infinite length. Thus, we must refine our notion of size. We use the ideas of dimension
from fractal geometry as a different way to measure the size of the graphs as subsets
of the plane. The two ideas of dimension that we use are the Hausdorff dimension
and the box—counting dimension. We apply both of these ideas to the graphs of the
Generalized van der Waerden—Takagi function and Kiesswetter’s function. Using the
connections between Holder continuity and dimension, we are able to obtain bounds,
and in some cases exact values, for the Hausdorff and box—counting dimensions of the

graphs of the two functions.
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Continuous nowhere differentiable functions are a fascinating topic because they
question preconceived notions about continuous functions. Although these functions
are very difficult to visualize, it is possible to learn about their behavior. The prop-
erties of Holder continuity, fractional derivatives, and dimension allow us to obtain a

better understanding of continuous nowhere differentiable functions.



ABSTRACT

In this thesis we investigate two classes of continuous nowhere differentiable func-

: . . . bn
tions on [0, 1] : the Generalized van der Waerden-Takagi function, f(z) = >~ “O(Cn 2)
where ag(z) = dist(z,Z), ¢ > 1, beN, and b > ¢, and Kiesswetter’s function. We
investigate the Holder continuity and fractional differentiability of the functions in

these classes. We also bound, and in some cases fully determine, the Hausdorff and

box—counting dimensions of the graphs of these functions.
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INTRODUCTION

In this thesis, we consider continuous functions on [0, 1] that are nowhere differ-
entiable on [0, 1]. Two classic examples of continuous nowhere differentiable functions
are the van der Waerden-Takagi function and Kiesswetter’s function. The van der
Waerden—Takagi function was introduced in 1903 by Teiji Takagi [10] and reintro-
duced with different parameter values in 1930 by B. L. van der Waerden [11]. Konrad
Knopp proposed the general case of the function, but he only proved the nowhere
differentiability of the function for restricted values of the parameter [6]. We relax
the restrictions on the parameters and show that the resulting function is nowhere
differentiable. Karl Kiesswetter introduced his example of a continuous nowhere dif-
ferentiable function in 1966 [5].

Continuous nowhere differentiable functions are not Lipschitz, i.e. there does not
exist a constant M > 0 so that |f(z) — f(y)| < M|z —y| for all z and y in the domain
of the function. However, there do exist relations between the absolute difference in
the values of the function at two points, |f(z) — f(y)|, and the distance between these
two points, |x — y|, raised to a power less than 1. These relations can be classified
through the concept of Holder continuity. We will study the Holder continuity of
both the Generalized van der Waerden—Takagi function and Kiesswetter’s function.

Although continuous nowhere differentiable functions do not have first-order deriva-
tives, they do have some level of smoothness. The smoothness of a continuous nowhere
differentiable function can be measured by the existence of fractional derivatives.
Since we are only interested in the existence of fractional derivatives of given ex-

ponents and not of the value of the fractional derivative, we will extend a result of



Hardy and Littlewood [3] to relate Holder continuity and fractional differentiability.
We can then apply our results about Holder continuity to determine for which expo-
nents there exist fractional derivatives for the Generalized van der Waerden—Takagi
function and Kiesswetter’s function.

It can be shown that the graphs of all continuous nowhere differentiable functions
have infinite length. Thus to compare the sizes of graphs of continuous nowhere
differentiable functions with the sizes of graphs of other continuous function, we will
use the ideas of dimension from fractal geometry. We will consider the Hausdorff and
box—counting dimensions and will bound, and in some cases fully determine, these
quantities for the graphs of the Generalized van der Waerden-Takagi function and

Kiesswetter’s function.



CHAPTER 1

NOWHERE DIFFERENTIABLE FUNCTIONS

1.1. THE GENERALIZED VAN DER WAERDEN-TAKAGI FUNCTION

An example of a continuous nowhere differentiable function is the following function

defined on [0, 1]. Let ao(z) = dist(z,Z) and define f: [0,1] — R by

where ¢ > 1 and beN such that b > ¢. In consideration of the historical context of
this function, we note that if b = ¢ = 2, then f is the function introduced by Takagi
[10]. If b = ¢ = 10, then f is the example given by van der Waerden [11]. Knopp
considered the generalized form of the the function but only proved that the function
was nowhere differentiable for b > 4c [6]. We relax the restrictions on the values
of the parameters to those given above. We require that b > ¢ in order to obtain
a nowhere differentiable function on [0, 1]. The following fact and proposition show

that if b < ¢, then f is differentiable at points in [0, 1].

FAcT 1.1.1. Weierstrass M-test. Let (M,) be a sequence of positive real numbers
such that |f,(z)| < M, for allz e D and ne NU{0}. If the series Y M, is convergent,

then > fn is uniformly convergent on D.

PROPOSITION 1.1.2. IfbeN and ¢ > 1 such that b < c, then f(z) = 3., 2t"2)

n=0 cn

is Lipschitz on [0,1] and is differentiable at all points x€[0,1) such that x # 5i= for
all k,meN U {0}.



PROOF. Let beN and ¢ > 1 such that b < ¢. We let f,(z) = a"(cb,:lx) on [0,1].
Then f(z) = > oo, fa(z). As we will show in Proposition 2.1.1, |f,(z) — fn(y)] <
(8)" |z — y| for all z,y€[0,1] and neNU{0}. Thus, for all z,ye[0,1],

1@ = FI < 310 = 2 £ X (2) o =al = 5o =

since Y >~ (%)n is a geometric series with b < c. Therefore, f is Lipschitz on [0, 1].

It is well known that Lipschitz functions are differentiable almost everywhere
[8, pages 108-112], but in this case, we can better determine specific points in [0, 1]
at which the function has derivatives. For all neN U {0}, we denote the right-hand
derivative of f, by D7 f,(x) = lim;_,,+ W Let g(z) = Y02 DT fu(z). For all
neNU {0} and z€[0,1), D* fu(z) is either (2)" or — (2)". Thus 302, D* fu(z) =
> o (2)" is uniformly convergent on [0, 1) by the Weierstrass M-Test since b < c.
Since D*f, is continuous at all points in [0,1) except on the set {{55=} : keZ N
[0,20™ — 1]}, DT f, is Riemann integrable on [0,1). Then

/Oxg@)dt:/szn tydt = Z/ D* fo(t)dt — Zf() f@)

=0

since Y ° Dt f,(z) is uniformly convergent on [0,1). Then, by the Fundamental
Theorem of Calculus, f'(z) = > 2, D" f,(z) for all z € [0, 1) such that Y >- D" f, ()
is continuous at x. Therefore, f(x) is differentiable at all points z €[0,1) such that

T # 5 for all k,meNU {0}. O

The preceding proof does not tell us whether or not the function is differentiable

at points in [0, 1] of the form z = for some k,meN U {0}. The differentiability

2bm

of the function at these points is dependent on the specific values of b and ¢. In

fact, for certain values of b and ¢ such that b < ¢, the function f(z) = > 2 a0(b"z)

C’I’L

is everywhere differentiable on its domain. To see this, we consider the following

proposition suggested by [12, pages 33-38].



PROPOSITION 1.1.3. Let f : [0,1] — R be defined by f(z) = Y oo, a0(42:ac) and

g:[0,1] = R be defined by g(x) = 2x — 2z>. Then f = g.

PROOF. For all i, ke NU{0} such that i < 2¥ — 1, the function “0(2 2) is linear on

[, 4] for all neNU {0} such that n < k — 1. Then since 22+ is the midpoint of

2
(3% 5% ]

e

ao (2" (5¢%)) 1( 0 (2" (3¢))

4n 2 4n 4n

for all ne NU {0} such that n < k — 1. Using these facts, we observe that f and g

satisfy the same difference equation for i,k ¢ N U {0} such that i < 2F —1

2 +1 1 ' + 1 Fla (AL
f<ﬁ>_§<f<2ik>+f(l2k )) 2202 )
=0
1 (52 ap (525) + a (&L
_§<§: 0(2 )4n0(2 ))

and

2i+1\ 1 i i+ 1 241 4P+ 4i+1
I\ 91 | "3\ 9\ 3% T9g ok - ok 92k+1

<2z’+1 2i2+22‘+1>

ok 92k
42 +4i+2 42 +4i+1
92k+1 - 92k+1
1 2

92k+1 ~ gk+1°

Thus, f and g agree on the set {% :4,keNU{0},i <2¥ —1}. Since f and g are
continuous on [0,1], {7 :4,keNU{0},7 <2¥—1} is a dense subset of [0,1], and
f(0) = f(1) =0=g(0) = g(1), then f(z) = g(x) for all z€[0,1]. O



Now that we have established why we require that b > ¢, we will show that the

Generalized van der Waerden-Takagi function is continuous on [0, 1].

PROPOSITION 1.1.4. The series Y ., 20®"2) " where ¢ > 1 and beN such that

c’ﬂ/

b > ¢, is uniformly convergent on [0, 1].

PROOF. Since ay(z) < 1 for all z € R, then ag(b"z) < 3 for all z € [0,1],ne NU{0}.

1
2
Let M, = 5= for all neNU {0}. Then solbs)

< M, for all neNU {0}. The series

o0 1 o0 1\ - . . . .
Yoy Mp = 3302 (2)" is a geometric series and is convergent since ¢ > 1. Thus,

n

by the Weierstrass M-test, >, ao(cbnz) is uniformly convergent on [0, 1] . O
PRrOPOSITION 1.1.5. The function ag(zx) is continuous on R.

PROOF. Since ag(z) is linear on {(z,24+3) U (2 + 1,2+ 1) : zeZ}, then ao(z)
is continuous on R\ {Z U {%: zeZ}} . It is obvious that ao(x) is continuous at ¢ for

all te {ZU{%:z€eZ}}. Therefore, ag(z) is continuous on R. O

ao(b"z)

PROPOSITION 1.1.6. For all ne NU{0}, the function f,(x) = “*5*, where ¢ > 1

and beN such that b > ¢, is continuous on [0, 1].

PROOF. Since a continuous function multiplied by a constant is a continuous
function, ™z is continuous on [0,1] for all neN U {0}. Since the composition of
continuous functions is a continuous function and since ao(z) is continuous on R by
Proposition 1.1.5, then aq (b"x) is a continuous function on [0, 1] for all ne N U {0}.

ao(b"x)

Thus, for all neN U {0}, **2-* is continuous on [0, 1] since ¢" is a constant with

cn

respect to x. ]

Fact 1.1.7. Let {f,} be a sequence of continuous functions on a set A C R and
suppose that {f,} converges uniformly on A to a function f : A — R. Then f is

continuous on A.

PROPOSITION 1.1.8. f(z) = > " w is continuous on [0, 1].

n=0



PROOF. By Proposition 1.1.6, we know that wnz) is continuous on [0, 1] for all

neNU{0}. By Proposition 1.1.4, >~ /22 "2) is uniformly convergent on [0, 1]. Thus,

ao(b™z) -
o is

cn

the sequence (an:o M) . is uniformly convergent on [0,1], and > 2,
me
continuous on [0, 1] by Fact 1.1.7. O

To show that the Generalized van der Waerden—Takagi function is nowhere dif-

ferentiable on [0, 1], we need the following lemma.

LEMMA 1.1.9. If f is differentiable at x = ¢, then if (up)nen @S an increasing
sequence and (Vp)nen 1S a decreasing sequence such that u, # v, and u, < ¢ < v, for

all neN and such that lim,_,o v, — un = 0, then lim,_,o % f'(e).

ProOF. Fix € > 0. Since f is differentiable at x = ¢, there exists § > 0 such that
if 0 < |z —¢| < §, then |[2=ME _ p(¢)| < .

Case 1. There exists M e¢ N such that u, = ¢ < v, for all n > M.

Let (un)nen be an increasing sequence and (v, ),y be a decreasing sequence such
that there exists M ¢ N such that u,, = ¢ < v, for all neN such that n > M. Then
since lim,_,o v, — u, = 0, there exists N e¢N such that if neN and n > N, then

|vn, — u,| < 0. Let neN such that n > max{N, M}. Since u,, = ¢, then |v, — ¢| < 4.

Thus
f(vn) - f(un) ! _ f(vn) B f(C) ! €
PO Z10) g = | H) 2D g < 5
Therefore, lim,,_, W = f'(c).

Case 2. There exists M €N such that u, < ¢ = v, for all n > M.

By an argument similar to the one used in Case 1, it can be shown that the value

of the limit lim,,_, % is f'(c).
Case 3. u, < c <w, for all neN.
Let (up)nen and (vy)nen be sequences such that u, < ¢ < v, for all neN. Then

since lim,_,o v, — u, = 0, there exists N eN such that if neN and n > N, then

|vn, — un| < d. Let neN such that n > N. Since |v, — u,| < § and u,, < ¢ < vy,



|vn, — ¢| < § and |u, — ¢| < 6. Then

f(vz) - i(un) _ o] = f(vn) = f(uZ) :ivn — un) f'(c)
o _ [ fn) - f(unj —sz) + f(e) = (va+c—c—uy) f(0)
< |fln) = f(e) = (n = C;;,(C)“n
o N ‘f(un) - f(;i - S:n —)f'(0)
< ‘f(vn) - f(cv) __(:n —o)f'(¢)
n N ‘f(un) - f(z) —_(gn —)f'(0)
_ f(vzi - i‘(C) o)+ ‘f(ugz - f(c; _ (o)
< s+
Therefore, lim,, o, L2)=1n) = f1(c). O

We now return to the Generalized van der Waerden—Takagi function to show that

the function is nowhere differentiable on [0, 1].

PROPOSITION 1.1.10. The function f(z) = S°°°, %% where ¢ > 1 and be N

n=0 cn

such that b > ¢, is nowhere differentiable on [0, 1].

PROOF. Let t€|0,1]. We want to show that f(z) is not differentiable at x = ¢.
Case 1. t = 1.
Let (tm)men and (vy,)men be sequences such that u,, =1 — bim for all meN and
vy = 1 for all meN. Clearly, lim,;, o0 ¥y — U = 0. Then
F(vm) = fum) Soeo ) yhee ao( (1= )e")
— = 4 1n_ cn

Um — Um e




Since b > ¢ > 0, lim,_« (%)n # 0. Thus the sequence (M> , which is
meN

Vm—Um

m—1 b\
ne0 — (E) )meN, does not converge as m — co. By

equivalent to the sequence (Z
Lemma 1.1.9, f(z) is not differentiable at z = 1.

Case 2. te[0,1).

Since t€[0, 1), then for all meN there exists k,, € Z N [0,20™ — 1] such that zkb—’;; <

t < kol Let u, = 22 for all meN and let vy, = %2t for all meN. Then (vy)mew is

a decreasing sequence and (4, )men 1S an increasing sequence such that lim, oo vy, —
U = 0.

Let meN. Since u,,, = ka—% and v, = 5’;)11, then for all n such that 0 <n <m—1

there exists z € Z such that b"v,, and b"u,, are either both contained in [z,z + 3] or

ao(b"z)

are both contained in [z + %, z+ 1}. Thus for all n such that 0 <n <m —1, =3

is linear on [u,, vy, and has a slope of either (2)" or — (2)". Then for all n such that

a0 (0" vm) _ a0(b"Um) n
2Ly,

U — Um, c

0<n<m-1,

For n > m, we must consider 2 subcases.
Subcase 1. b is even.

Let n = m. If kn, is even, then aq (%2=) = 0 and ag (bn(km“)) = 1. Thus,

ag(b™vm)  ao(b™um) 1 B\ "™
cn cn __ 2c™m -
C

Um — Um

By a similar argument, if k,, is odd, then

ag(b"vm)  ao(b"um) <b> m

Um — Um




Now let n > m. Then " ™k,, and b" ™ (k,, + 1) are both even since b is even.

Thus, ay (b2b’$n ) =0 and ayg (M) = 0. Then, for all n e N such that n > m,

2™
a0 (b"vm) _ ao(b"um)
ch ch — 0
Um — Um

Therefore if b is even, then
f(vm - U'm =
= + 1
e fln) 3 (2 )

Since b > ¢ > 0, lim, o0 & (2)" # 0. Thus limy, o0 Yome o £ (2)" does not con-

verge. Then lim,, ., £22)=/®m) qoes not exist. By Lemma 1.1.9, f (z) is not differ-

Vi —Um,

entiable at z = ¢.

Subcase 2. b is odd.

Let n > m. If k,, is even, then ag (b ki ) =0 and qag (bn(km+1)) = % Thus if &, is

2bm 26m
even, then
ao(b"vm)  ao(b™um) 1 m
c” c” _ 20" 0 b_
=S = .
VU — Um o c"

for all n e N such that n > m. If k,, is odd, then by a similar argument

ao(b”vm)  ao(b"um) pm
c" c”

VU — Um, c"

for all n e N such that n > m. Thus,

el () = 2 ()

n=0 n=m

Since ¢ > 1, Y 2 (%)n = - (%)m Therefore if b is odd, then

S (vm) = £ (tm) j‘}(é)"i c (b)m (2)

c c—1

Since b > ¢ > 1, then lim, oo & (4)" # 0 and limy, o0 % (2)™ # 0. Thus
limy, 00 Somy =+ (B)" £ = (Y™ does not converge. Then lim,, o Jom) =/ m) qoeq

c c—1 Um —Um

not exist. By Lemma 1.1.9, f(z) is not differentiable at = = t. O

10



1.2. KIESSWETTER’S FUNCTION

Another example of a continuous nowhere differentiable function is Kiesswetter’s
function. The original construction of the function proposed by Kiesswetter defined
the function using base 4 expansion [5]. The following alternate construction from
[1, pages 201-202] uses Kiesswetter’s curve to define the function. Kiesswetter’s curve

is constructed using the functions

il x _ % 0 T
Y 0 S v
[ ] [+ A1 [ [ 1
k o L * —_1J
Y Vo3l LYl | 2
_ S o
= +
/3 ) .
Y] Yozl Y1 LY
_ SN =
= +
fi - 1
Y] Vo2l LYl Lzl

To construct Kiesswetter’s curve, let Ly be the line segment from (0,0) to (1,1)
in the Cartesian plane. At each stage of the construction, replace L, with L,,; =
filLn] U fo[Ly) U f3[Ly] U fa[Ly,]. The sequence (Ly),  is a convergent sequence of
graphs, and the limit is the graph of Kiesswetter’s function.

Let g, : [0,1] — R be the function whose graph is L,. Then for all te]0, 1],
the point (¢, g,(t)) € L,. We note that, from the definition of Kiesswetter’s curve, the
function go : [0,1] — R is defined by go(t) = t. To define g,(t) for neN, we develop

the following recurrence relation.

11



PROPOSITION 1.2.1. For all te[0,1] and all neN,

7

_Tlgn—l(4t)a
%9n71(4t —1)— %,
%gn—1(4t - 2)7
59n-1(4t — 3) + 3,

o
IN
~
IN

N AN A
~+~ ~+
IN A
— Bl N B

~
IN

W NI= =

\

PRrOOF. Let te[0,1] and neN. Then (¢, gn—1(t)) € Ly—1.

By the definition of the Kiesswetter’s curve,

t 10 t 1t
fi = ! = 4 €L,.
gnfl(t) 0 %1 gn—l(t) %gnfl(t)
Thus if 0 < ¢ < 1, then (, Stga—1(4t)) € Ly.
Similarly, since
t 190 t 1 1p41
f2 — 4 + 4 — 4 4 €Ln,
gn—l(t) 0 % gn—l(t) _71 %gn—l(t) - %

then, for ; <t < 3, (t,29n-1(4t — 1) — 3) €L,.

Applying f3, we show that

M E
Lo 1] [0 1] [g0 )]

Thus if § <t < 3, then (t, s 0n—1 (4t — 2)) €L,.

Similarly, since the definition of Kiesswetter’s curve states that

t
fa =
gn-1 (t)

e}

t t+3
_ 4 4 € Ly,

%gn—l (t) + %

_|_
gn-1(t)

S =
N—= W

N[

then, for % <t<l1, (t, %gn_l(élt —-3)+ %) eL,.

12



Thus,

_71971—1(475)’
%9n71(4t -1)— %;
%gn—1(4t - 2),
%gnfl(4t -3)+ %,

)
IN
~
IN

~
IN

AN AN A

~ ~

ININ

[ TSR U [N T

INSTCR T[S T

g

We now prove some properties of the functions, g, for ne N U {0} that will be
used to show that the function whose graph is Kiesswetter’s curve is continuous and

nowhere differentiable.

PROPOSITION 1.2.2. Let go(t) =t on [0,1] and let g,(t) be defined on [0,1] by (3)
for all neN. Then, for all ne NU {0}, g,(0) = 0.

PROOF. Since go(t) = t for all t€[0,1], go(0) = 0. Let ke NU {0} and assume
gx(0) = 0. Then
s 0) = Sranta0) = (5 ) @ =o.
Therefore, g,,(0) = 0 for all neNU {0}. O

PROPOSITION 1.2.3. Let go(t) =t on [0,1] and let g,(t) be defined on [0,1] by (3)
for all neN. Then, for allneNU {0}, g,(1) = 1.

PROOF. Since go(t) = ¢t for all te[0,1], go(1) = 1. Let ke N U {0} and assume
gx(1) = 1. Then

gr+1(1) = %gk(él(l) -3)+ % = %gk(l) + 1_

Thus, ¢,(1) =1 for all ne NU {0}. d

PROPOSITION 1.2.4. Let go(t) = t on [0,1] and let g,(t) be defined on [0,1] by
(3) for all neN. If j,keN U {0} such that j > k, then g; (%) = gi (%) for all

4k 4k
meZ N[0, 4.

13



PROOF. Let k¥ = 0. Then m = 0 or m = 1. By Proposition 1.2.2, g; (4%) =

g0 (35) = 0 for all j e NU{0} such that j > 0. Similarly by Proposition 1.2.3, g; (5) =

'S

9o (%) = 1 for all j eNU{0} such that j > 0. Thus, for all m e Z such that 0 < m < 4°,

'S

I3

g5 (%) = go (1) for all j €N U {0} such that j > 0.

Now let k€N such that k& > 0 and assume that for all meZ N [0,4%], g; (%) =
9k (4%) for all j e N such that 7 > k.

We now consider k + 1. Fix m e Z such that 0 < m < 4**! and let j e N such that

> k+1.

Using (3), we show that

m -1 4dm -1 m
() = 5o () = 5 o0 ()

Since 0 < g7 < %, then 0 < m < 4*. Also since 7 > k + 1, then j — 1 > k. Thus, by

the inductive hypothesis, g;_1 (4%) = gk (4%) So

mo\ -1 my m
9i (4k+1) R (47) = Gkt (4k+1) ‘

< zxr <

, then 0 < m — 4% < 4% Using (3) and the inductive hypothesis

as in case 1, we show that

m 1 m — 4% 1 1 m — 4k 1 m
5 (gm) =39 (") 5o () —a o ()

Case 3. %< o <

>~

>

3

Since 3 < 2y < 3, then 0 < m — 2(4*) < 4*. Then by (3) and the inductive

hypothesis,

m 1 m — 2(4%) 1 m — 2(4%) m
o (g) =0 (T ) =g (T ) = oen ()

Case 4.

0o

< g < L

14



Since 3 < ;#; < 1, then 0 < m — 3(4%) < 4*. Thus using (3) and the inductive

hypothesis, we show that

my 1 m — 3(4%) 1 1 (m—3(4F) 1 m
o (ge) = 50 (T ) =g (T ) e ()

Thus, for all meZ N [0,4%], g; (78) = grr1 (7%

) for all jeN such that 7 >
k + 1. Therefore for all j,keN U {0} such that j > k, g; (%) = g (%) for all
meZ N [0,4%). 0

PROPOSITION 1.2.5. Let go(t) =t on [0,1] and let g,(t) be defined on [0,1] by (3)
for allneN. If ke NU{0}, then, for all n,meZ such thatn >k and 0 < m < 4% —1,

)] = 5

PROOF. By Proposition 1.2.4, if k,ne N U {0} such that n > k, then g, (%) =
Ok (ﬂk) for all meZ N [0,4*]. Thus, we need only show that if ke N U {0}, then

|9k (5%) — g (1) | = o for all meZ such that 0 < m < 4F — 1.

First let £ = 0. Let me[0,4° — 1]. Thus, m = 0. Then

0 1 1
9o 10 — 90 10 =|0—1|=?.

Now let & = j e N and assume |gj (B) — g5 ()| = & for allm e ZN[0,47 - 1]. Let

seZ such that 0 < s < 47! — 1. We want to show that ‘g]—H (551) — g (585)] =

1
2j+1-

1

Case 1. 0 < 3 -

r <

-~
|

< i— 7, then 0 <5 < 47 —1. Thus, by the inductive hypothesis,

19; () — 9 (%1)‘ = -. Then using (3), we show that
S s+ 1 . -1 S —1 s+ 1
i1 (47—) O\ g )| T |2 (47) AN
s s+1
5 () -9 (%

15



1 1 s 1 1
Case 2 Z - 4j+1 < 4_7+1 S 5 - 4j+1‘
: 1 1 s 1 1 1 s 1 1
Since 1~ o < yYES! < 5 — and SGZ, then 1 < GF1 < 5 — G- Thus

4.
0 < s—47 <49 — 1. Then by the inductive hypothesis and (3),

5 s+1 |1 S _ 4 1 1 s+1 1 1
s () =0 (G )| = e (-1 —5-a9 (T +1) +5

The other two cases are similar and are left to the reader. O

Now that we have established some of the properties of the functions whose limit
is Kiesswetter’s function, we will now show that Kiesswetter’s function is continuous
on [0,1]. We first show that the sequence of functions (gn), .y 15 @ sequence of

continuous functions on [0, 1] and that the sequence converges uniformly on [0, 1].

PROPOSITION 1.2.6. Let go(t) =t on [0,1] and let g,(t) be defined on [0,1] by (3)

for all neN. Then the function g,(t) is continuous on [0,1] for all ne N U {0}.

PROOF. By the definition of Kiesswetter’s curve, go(t) is continuous on [0, 1]. Let
keNU {0} and assume that gx(¢) is continuous on [0,1]. Then, by (3), gry1(t) is
continuous on [0, 1)U (1,2)U(3,2)U(2,1]. Thus to show that gs1(¢) is continuous
on [0, 1], we need only show that g;.1(¢) is continuous at t = 1, ¢ =
will show that gj1(¢) is continuous at ¢ = ;. The other proofs are similar and are
left to the reader.

Since gi(t) is continuous on [0,1] and gy41(t) = 3g(4t) for 0 < ¢t < 1, thus
limt_)i— Gi+1(t) = gr+1(5)- So we only need to show that the limit limt_)i— i1 (t) =

lim 11 Gkt (t). Since

. . -1 -1 1
lim gey1(t) = lim —-gx(4t) = lim —gx(t) = —
- 2 t—1— 2

1 1— 2

16



and

1 1 1 1
I = lim (4t — 1 l O ——
Jim, g (f) = lim Gox(d=1) =5 = lij g0t) =5 = =5

then limH{ ki1 (t) = lirnt_){r i1 (t). Therefore, gy1(t) is continuous at ¢t = ;. O

PROPOSITION 1.2.7. Let go(t) =t on [0,1] and let g, (t) be defined on [0,1] by (3)

for all neN. Then the sequence {gn}nenugoy converges uniformly on [0, 1].

PROOF. Fix e > 0. Pick N eN such that 2V+! > 1. Let j,neN such that j > n >
N. Then if z€[0,1], there exists meZ N [0,4" — 1] such that 2 < z < Z£L Since

Jj > n, then g; (4%) = gn ( n) by Proposition 1.2.4. Then

m
19;(2) = gnl@)] = 95 (3:) + 90 () — 90|
m
9n() = gn <4n)‘
47" m m
= gj(w)—gj< pE >‘+ (@) = gn (47)‘-
Since 2+ <z < ™ and g, is linear on [, ™*], then, by Proposition 1.2.5,

gn(x)—gn( )‘ < |9n (4mn) — On (m;l)‘g%n.

4j;;m <z < %, then there exists seZ N [0,47 ™ — 1] so that

+

Since

41~ "mts H-mmis+l Qs _ AR E : 47"mts " "mts41
e <z < 1=, Since g;(z) is linear on the interval [=—"*, v

and g e [£omts £ "mis) then by Proposition 1.2.5,

43 47
497"m + s 4" m+s+1 < 1
G\ )9 47 = 9

9i(%) = g; (4];:7”) ‘ =
19;(2) = gn(@)] < 1g;(2) — g <4j;m> ‘ "
11 1

< — —
S 5 T o e

Thus,

9n(T) — gn (%)‘

<E.

17



We recall that for all ne N U {0} the function g,(¢) is the function whose graph
is L. Since the graph of Kiesswetter’s curve is the limit of the sequence (Ly),, .y, (0}’
we can define Kiesswetter’s function, ¢ : [0,1] — R, by ¢(¢t) = lim,_, gn(t) since
the sequence {g, }ncnugoy converges. Now we can show that Kiesswetter’s function is

continuous and nowhere differentiable on [0, 1].

PROPOSITION 1.2.8. The function g(t) = lim,_,o gn(t), where go(t) =t and g,(t)
is defined by (3) for all neN, is continuous on [0, 1].

PROOF. By Proposition 1.2.6, g,(z) is continuous on [0,1] for all ne NN {0}.
Then by Proposition 1.2.7, the sequence {g, }»cnufo} converges uniformly on [0, 1] to

g. Thus, g(z) is continuous on [0, 1] by Fact 1.1.7. O

PROPOSITION 1.2.9. The function g(t) = lim, s gn(t), where go(t) =t and g,(t)
is defined by (3) for all neN, is nowhere differentiable on [0, 1].

PROOF. Let ce[0,1]. We want to show that g(z) is not differentiable at c.

Case 1. ¢ = 1.

Let (tm),, .y and (vm),, .y be sequences such that u, = = for all meN and
Uy = j—z = 1 for all meN. Clearly, lim,;, o vy — u, = 0. Then by Propositions 1.2.4
and 1.2.5,

9(vm) = g(um) | _ |limnso0 gn (3) = limneo gn (777)
Um — Um 4Lm
4qm 4m —1

= 4™ m\| ] — 9m
oo (i) ~on ()|
1

= 4" =™
2m

Then W‘ — 00 as m — oo so the sequence (W) does not

converge. Thus, by Lemma 1.1.9, ¢g(z) is not differentiable at z = c.

Case 2. ce[0,1).

18



Since ce [0, 1), then for all m €N there exists kn, e ZN[0,4™—1] such that £z < ¢ <

km+1
4qm

. Let u,, = %2 for all meN and let v, = 52t for all meN. Then (uy,),, . is an

increasing sequence and (vy,),, .\ is a decreasing sequence. Clearly, lim,, oo Um — U, =
lim L =9
m—00 4m .

Then by Propositions 1.2.4 and 1.2.5,

‘g(vm) — g(um) _ limp ;00 gn (ki‘f) — limp 00 gn (Z_x) ‘
Um — U, =
- o () -on (57)
4m 4m
= 4m2im =2".

w‘ = lim,,_00 2™ = 00, the sequence (

Since lim,_,o0 9(vm)—9(um) )
meN

Um —Um Um —Um

does not converge. Therefore, g(z) is not differentiable at = ¢ by Lemma 1.1.9. O
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CHAPTER 2

HOLDER CONTINUITY

A function f : [0,1] — R is said to be a Hélder continuous function of exponent

a if, for some constant M,

|f(z) = f(y)] < M|z —y|*

for all z,y¢€[0,1]. We note that if f is Holder continuous of exponent 1, then f is
Lipschitz. The maximal value of a such that f is a Hoélder continuous function
of exponent « is related to the existence of the derivative of f on [0,1]. We will
investigate the Holder continuity of the examples given in Chapter 1. Since the
Generalized van der Waerden-Takagi function and Kiesswetter’s function are nowhere
differentiable on [0, 1], we know that the two functions are not Holder continuous
of exponent « for o > 1. Lipschitz functions are differentiable almost everywhere
[8, pages 108-112|, and functions that are Holder continuous of exponent a > 1
have zero as a derivative everywhere. Thus to fully determine the exponents, «, for
which the Generalized van der Waerden—Takagi function and Kiesswetter’s function

are Holder continuous, we need only consider o < 1.

2.1. THE GENERALIZED VAN DER WAERDEN—-TAKAGI FUNCTION

We first consider the Generalized van der Waerden—Takagi function. In order to

be able to consider ‘ZZ‘;O ao(b?z) _ gm0 taolb) | for 4,y €[0, 1], we need to obtain a

cn n=0 ¢
ao(b"x) ao(b™y)
c" - c"

bound for for x,y€[0,1] and neN U {0}.
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PROPOSITION 2.1.1. For all z,y€0,1] and ne N U {0},

ao (b"z)  ao (b"y) ‘ < (g)n z — ).

c" c" o

PROOF. Let ne NU{0} and z,y €0, 1]. Let k € Z such that £ is the closest integer
to b™y. Then

ap (b"z) < |b"x — k| < |b"x — b"y| + [b"y — k| = [b"x — b"y| + ao (b"y) .
Thus,
ap (b"z) — ap (D"y) < |[b"x — b"y| .
By a similar argument, it can be shown that
ap (b"y) —ap (b"z) < "y — b"x| .

Thus,
|ao (b"x) — ao (b™y)| < V" |z —y].

Therefore,

c" c"

a ("7)  ao (b”y)‘ . <g>"|x_y|.
0

We first consider the Holder continuity of the Generalized van der Waerden—Takagi
function with b = ¢. The following proof is along the lines of the proof given by Shidfar
and Sabetfakhri in [9].

THEOREM 2.1.2. If ceN such that ¢ > 2, then f(z) = 3%, %9 45 Helder

n=0 cn

continuous of exponent a on [0,1] if and only if o < 1.

PROOF. Let o < 1. Let = and y€[0,1] such that x # y. Thus 0 < |z — y| < 1.
Then there exists k € Z such that k¥ > 0 and 4 < |z —y| < .

Then by Proposition 2.1.1,

-1

e
=

-1

ap(c"z)  ao(c™y c\" L *
o(c"z)  ao( )‘s (2) o=yl =kle —yl <korgle -l @)

c" c"

3
Il
=]
S
Il
o
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Since 0 < a"( c't) < - for all ne NU {0} and t€0, 1], then

ap(c"z) ao(c”y)‘ < 1

cm c" - c"
for all ne NU {0}. Thus
o0 n (o] 1
3 |clee) y‘ Yr< oy <l <ll—ylt ()
n=k n=~k

since 7 < |z —y| < 1.

Then combining (4) and (5), we obtain

>

n=0

cn

ap(c"z)  ap(c"y) 1 N N k N
- <homgle =yt + Sl —yl* = (F 4 gy | lr -yl

1 (1-a)
Since ck(lL_a) = ("’(17)> for all keNU {0} and ¢ > 1, limg_,0o C,C(IL_Q) = 0.

k

Thus, limg e ¢* + =y = ¢*. Then the sequence (¢ + oy is bounded,

)keNU{O}
and there exists M, > 0 such that ‘62 + C,C(IL_Q)‘ < M, for all ke NU {0}.
Then

ag(c™z)  ao(c"y)
-

00
Z < Malx_y|a'

n=0

Thus, f is Holder continuous of exponent « for all & < 1. To prove the other direction
of the theorem, we recall that f is nowhere differentiable on [0,1] by Proposition

1.1.10. Therefore, f is not Holder continuous of order « for all o > 1. ]

We now consider the Holder continuity of the Generalized van der Waerden-Takagi

function with b > c.

PROPOSITION 2.1.3. If ¢ > 1 and beN such that b > ¢, then f(z) =Y o, ao(b"2)

C'Vl

is Hélder continuous of exponent o on [0, 1] for all a < %.

PROOF. Let a < }ggz < 1. Let x and y € [0, 1] such that 7é y. Thus 0 < |[z—y| < 1.

Then there exists k € Z such that £ > 0 and 557 < | — y| < 7. Thus by Proposition
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Since 0 < 20 < L for all neNU {0} and t€[0,1], then

ap(b"z) ao(b”y)‘ <L

cn cn cn

for all ne NU {0}. Thus, by the same argument as in (5) in Proposition 2.1.2,

Z

=k

aop(b"z)  ao(b"y) c b\ * 1 9
o o | lbme\\¢) Twoma ) T

Smwb>1lmmﬂmméaz0fﬂmsﬂmeNMmHWfE«ﬁy bmaJ+m

Cc

ap(b"z)  ap(b"y)

- ‘th—m*

Then

>

n=0

jz —y|*.

= limg 00 3% ( ) + ¢? exists if and only if limy_, oo (%)k exists. Since a < iggg, then

b% < 1. Thus limg_, (1’7&) is finite. The sequence (bcc ((b%')k _ —bk(ll_—a)> + C2)keNU{0}

b\ K 1 2
par: ((?) - bk(l—a>) +c ‘ < M,

for all ke NU{0}.
Then

Cn

S |ara) _n) g,
cn - ’
n=0

g

PROPOSITION 2.1.4. If ¢ > 1 and beN such that b > ¢, then f(z) = 3=, 2t"2)

n=0 cn

log ¢

is not Holder continuous of exponent o on [0,1] for a > Togb"
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PROOF. Since b is an integer, ¢ > 1, and b > ¢, f is a continuous nowhere differ-
entiable function by Propositions 1.1.8 and 1.1.10. Thus, f is not Holder continuous
of exponent greater than or equal to 1.

To determine the Holder continuity of f of exponent « for oo < 1, let % <a<l.
Let keN. Since b > 2, 7= < 3 for all ne N U {0} such that n < k. Thus,

‘f(bik)—fm)\:f(bik) _sml)

n=0
_ ’“i(%)"
n=0 bk
_ @1l
o pk(1—a) b_k_
(O 1)y p
T ) (b—c) bk
R e\ 1 L
T b—c\\c¢/) b0 ||pk

Thus, limy 0 3% ((%)k — bkﬂ%a)) must exist in order for f to be Holder continu-

log ¢

ous of exponent «. However, since o > Tog 5’

b® > ¢ and (%)’c — o0 as k — oo. Thus,

k . . .
s ((%) — bkﬂ%a)) is unbounded as k — 0o since im0 zri=sy = 0. Therefore, f

is not Hélder continuous of exponent « on [0, 1]. O

THEOREM 2.1.5. Let ¢ > 1 and beN such that b > c. Then f(z) = 3., 2l2)

n=0 cn
is Holder continuous of exponent v on [0, 1] if and only if o < i%g—lf.

PROOF. This theorem is the immediate result of Propositions 2.1.3 and 2.1.4. [

COROLLARY 2.1.6. For all meN such that m > 2, the function,

with ¢ > 1 such that ¢™ €N, is Hélder continuous on [0, 1] if and only if a <

1
pt
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PrOOF. Fix meN\ {1}. Let ¢ > 1 such that ¢™eN. Since m > 2, ¢™ > ¢. Thus,

f satisfies the hypotheses for Theorem 2.1.5. Therefore, f is Holder continuous of

exponent « on [0,1] for o < klfé% = %, and f is not Holder continuous of exponent
« on [0,1] for a > lé(;;gcf" =1 O

2.2. KIESSWETTER’S FUNCTION

We now consider Kiesswetter’s function.

PROPOSITION 2.2.1. The function g(t) = lim, s gn(t), where go(t) =t and g, (t)
is defined by (3) for all neN, is Holder continuous of exponent o on [0,1] for all

1
a< 3.

PROOF. Let o < 3. Let z,y€[0,1] so that © # y. Then there exists ke N U {0}
such that 7 < |z —y| < 5.

Then by Proposition 1.2.7,

95(2) — 06()| < o + o
for all j e N such that j > k. Thus,
. 11
l9(2) = gr(@)| = lim |g;(2) — gr(@) < lim o + o5 = o7
Similarly
l9(y) — gr(y)] < 2ik
Then
l9(x) —gW)| = lg(z) — gk() + gk(x) — g (y) + g (y) — 9(v)]

< |g(@) — ge(x)| + gk (z) — gk (y)| + |9x(y) — 9(y)]
1 1

< oF + k() — gr(y)| + ok
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In order to bound |gx(z) — gr(y)|, we assume, without loss of generality, that

y > x. Then there exists meZ N [0, 4k — 1} such that 7 <z < "ﬂ;l.

Case 1. z < y < 4L

Then by Proposition 1.2.5,

gk () — gr(y)| <

m m—+1 1
%<E)_% Ak )| T ok

Case 2. ™ <y < =f2,

Then by Proposition 1.2.5,
m+1
91(T) — g 1 +
m m+1
()0 ()]
1
- 2(x)

So in both cases |gi(z) — gx(y)| < 2 (57) - Thus

lgx(2) — gr(y)| <

%(m;1>—%@ﬂ

m+1 m+ 2
I\~ ) 9\ T

1 1 1 o
Iﬂﬂ—gwﬂé4<ﬁ>=8<ﬁg)<8M—yP§&I—m-

PROPOSITION 2.2.2. The function g(t) = lim, s gn(t), where go(t) =t and g, (t)
is defined by (3) for all neN, is not Holder continuous of exponent o on [0, 1] for all

1
a> 1.

PROOF. Let a > 3. Let 7, = % and y, = ™+ where ke NU {0} and meZ N

[0,4% —1]. Then x4, yx €[0,1] and |z — yx| = 7%. By Propositions 1.2.4 and 1.2.5,

o) — 9un)] = low(22) — gu(w)| = o = 10 Dy — il

However 4k("‘7%) is not bounded, so there does not exist a constant AN such that

19(zx) — 9(yx)| < M|zg — yx|* for all keNU {0}.
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THEOREM 2.2.3. The function g(t) = lim, . gn(t), where go(t) =t and g,(t) is
defined by (3) for all neN, is a Hélder continuous function of exponent o on [0, 1] if

. 1
and only if a < 3.

PROOF. This theorem is an immediate consequence of Propositions 2.2.1 and

2.2.2. (]
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CHAPTER 3

FRACTIONAL DERIVATIVES

Although continuous nowhere differentiable functions do not have first-order deriva-
tives at any point in their domains, they do have some level of smoothness. We need
a way to be able to measure this smoothness and to compare the smoothness of dif-
ferent examples of continuous nowhere differentiable functions. Fractional derivatives
will provide us with such a measure of smoothness for these functions. We begin by
defining fractional integrals and fractional derivatives.

If we denote the n-fold integral of a function f as D™ f, then

) = /0 F(€)de. ©)

ProOPOSITION 3.0.1. For all neN,

D) = g [ - e )

(n—

PrOOF. Let n = 1. Then by (6),

/fdéf/ €)1 F(€)de.

Thus, (7) holds for n = 1. Now let n = k € N and assume (7) holds. Then let n = k+1

and consider

t
DG p(p) = / D+ f(z)dx
0

- /0 t ﬁ /0 (o - 8 () ded
- ﬁ /0 ) /5 (o — & dade
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= TACIE

1 t
— 4 | o -9ote
+Jo
So (7) holds for n = k + 1. Thus, by induction, (7) holds for all neN. O

The definition of the n-fold integral can then be generalized to define fractional

integrals of order v > 0 by

Dvf(t) = ﬁ /0 (t— € F(e)de,

where I'(v) is the Gamma function. The fractional derivative of f(t) of order u > 0,

for ¢ such that it exists, can be defined as
D f(t) = D™ [D™" ) f(1)]

where m e N such that m > [u], where [z] is the smallest integer greater than or equal
to . To show that the value of D* f(t) does not depend on the choice of m, provided

m > [u], we need the following facts from [4, pages 220-221] and [7, page 16].

FAcT 3.0.2. Let a(t) and b(t) be defined and have continuous derivatives for t; <

t < ty. Let f(x,t) be continuous and have a continuous derivative % in a domain of

the © —t plane which includes {(z,t) : te[ty, o],z ela(t),b(t)]}. Then fort, <t <t

b(t) ”
% / o f(z, t)dz = f(b(t), )V (t) — fla(t), t)d () + /

0
» {af(x,t)] dx.

Fact 3.0.3. Let I'(z) be the Gamma function. Then I'(x + 1) = zI'(z) for all

x eR such that x is not a negative integer.
PROPOSITION 3.0.4. Let > 0. Then for all meN such that m > [u],

D™ [D_(m_“)f(t)] — DIxl [D_(W_“)f(t)] ) (8)
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PROOF. Let m = [u]. Clearly, (8) holds for m = [u]. Now let keN such that
k > [p]. Let m = k and assume (8) holds. Then let m = k 4+ 1 and consider

Dk+1 [D_(]H_l_“)f(t)} )

By the inductive hypothesis and Facts 3.0.2 and 3.0.3,

Dk+1 [D_(k+1_“)f(t)] — Dkt+1 {ﬁ/{) (t—f)k_“f(f)dg]
k_ 1 d [' k—p
= 0o [ - 9]

k [ 1 ! k—p—1
= 0 - 0 €]

:—F(kl_ s (- §)’“‘“‘1f(£)d£]

= DF[D ® 1))

= D

= pl#l [D_(M_“)f(tﬂ

since k > [u]. So (8) holds for m = k + 1. Thus, (8) holds for all meN such that
m > ] O

To illustrate that fractional derivatives are indeed different from classical deriva-

tives, we now calculate the fractional derivative of order 5 of f(t) = ¢, where ¢ is a

constant.

Since [3] = 1, we write the fractional derivative as
Dic=D'|D% |

and show that

Foe L oo eas = 2V
D c—F(%)/O(t ) Fadg = 202,

Then the fractional derivative of f of order % fort #0is

Dic=D' (%ﬁ) = = (9)

30



which is not equal to zero provided ¢ # 0. This indicates the difference between
fractional derivatives and classical derivatives since all integer order derivatives of the

constant function are 0.
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CHAPTER 4

HOLDER CONTINUITY AND FRACTIONAL DERIVATIVES

Although fractional derivatives are very useful in determining the smoothness of
functions that are not first—order differentiable, they can be very difficult to calculate
directly. However, since we are only using fractional derivatives as a measure of
smoothness, we are only concerned with the existence of fractional derivatives of a
specific order and not of the value of the quantity. Thus, we only need a way to
determine if a fractional derivative of a particular order exists for a function. To do
this, we use the connections between Holder continuity and fractional derivatives. We
want to show that a function, f*(x), that is Holder continuous of exponent £ < 1 on
[0,1] has fractional derivatives of order 3, where 0 < § < k, at all points in [0, 1].
However, this fact is not true without a normalization of the function. The constant
function, g(t) = ¢, is Holder continuous of exponent & for all £ > 0, but, as we showed
in (9), g does not have a fractional derivative of order £ at ¢ = 0 unless ¢ = 0. Thus,
we must normalize f* so that f*(0) = 0. In order to obtain the uniform convergence
necessary to complete the proof, we must also extend the function f* on [0, 1] to the

function f on (—o0, 1], where f(z) = f*(x) on (0,1] and f(z) = f*(0) on (—o0, 0].
PROPOSITION 4.0.1. Let o > 0. If f* is a Holder function for the exponent o on
[0, 1], then the extension of f* to (—oo,1] defined by

ff(z), 0<z<1
f7(0), =<0

fz) =

is Hélder continuous for o on (—oo, 1].
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PROOF. Since f* is Holder continuous for a, there exists M > 0 such that for all

z, yel0,1]
|f*(z) — f(y)] < M|z —y|*

Let z, ye (—o0,1].
Case 1. z,y€e(—00,0].
Then [f(z) = f(y)| = [f7(0) = f*(0)] = 0 < M|z —y|*.
Case 2. z,y¢€(0,1].
Then |(z) - £(5)] = |f*(2) — £*()] < Mz — "
Case 3. z¢€(0,1], ye (—o0,0].
Then |f(z) = f(y)| = [f*(z) = f*(0)| < M|z - 0]* < Mz — y|*.
Case 4. z € (—00,0], ye (0, 1].
If we substitute y = z and = y in Case 3, we find that |f(z) — f(y)| < M|z —y|°.
Thus, |f(z) = f(y)| < M|z — y|* for all z,y€(—o0,1]. O

Using Proposition 4.0.1 and the ideas of Hardy and Littlewood [3], we are now able
to establish the connection between Hélder continuity and fractional derivatives that
will allow us to consider the smoothness of the Generalized van der Waerden—Takagi

function and Kiesswetter’s function without directly calculating fractional derivatives.

PROPOSITION 4.0.2. Let 0 < 8 < k < 1. Let f* be a Héolder continuous function
of exponent k on [0,1] such that f*(0) =0. If f : (—o0, 1] — R is the extension of f*
defined by
f*(z), 0<z<1
flz) = ;
F(0)=0, 2<0

then DP f(x) exists for all z €0, 1].

PROOF. For € > 0 and z €[0, 1], we define

fispe(x) = ﬁ /Oz_sf(t) (x —t)7Pdt.
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CrAM 4.0.3. For z€[0,1], the limit lim._o+ [ f(t)(z — t)7Pdt emists.

ProOOF. Fix A > 0. Since f is continuous on (—oo, 1] and constant on (—oo, 0],
f is bounded. Thus, there exists R > 0 such that |f(¢)| < R for all te(—oc,1]. Let
(€n)nen be a sequence of positive numbers that converges to 0. Then there exists N e N
such that if neN so that n > N, then ¢, < (M;_}f))ﬁ )

Let n, meN such that n > m > N and let x€[0,1]. Then since 5 —1< 0

LS t)—ﬂdt\ < |[ s~ t)*?dt\
< / " R(z — t)ﬂdt‘
| R(@ =)
6 - 1 t=x—¢,
_ | R(em)" R(en)™!
B B—1 B8—-1
—B+1 —B+1
< R(gm) n R(gn)
= T1-3 1-8
XA

Thus, ( Jo T f)(x - t)_ﬁdt) . is a Cauchy sequence and is uniformly conver-

gent. Therefore, the uniform limit lim, o+ [;° f(2)(z — t)~Pdt exists for z €[0, 1] and
is denoted [ f(t)(z —t)~Pdt. O

Thus, fi—s can be defined on [0,1] as the limit of 775 [y~ f(¢)(z — 1) 7dt as
e — 07 which can be denoted as f; s(z) = ﬁ Jy f@)(z — t)~Pdt. We note that,
by the definition of the fractional derivative of order 3, f] 5 = DPf.

Then for ¢ > 0
L(1 = B)fipe(z) = flz —e)e” = 6/0 _ f®)(z—t) P tdt
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for 2 €[0,1] by Fact 3.0.2. If z € (0, 1], then

C(1=B)fl_y.(2) = B / () (@ —1) 0 dt— e (f(2) — f(x—e)) + f ()"

Since f is a Hoélder continuous function of exponent k on (—oo, 1], there exists
M > 0 so that
() = f()] < M|z —t]*

for all z,te (—o0,1].
CLAIM 4.0.4. Ase — 0%, e P(f(x) — f(z —¢€)) converges uniformly to 0 on [0,1].

PROOF. Fix A > 0. Let § < (%) . Let z€[0,1]. If 0 < € < 6, then

f@) - fa—e) | o Ml
B

< = Me*=8 < M&FP = ).
eh €

g

CrAIM 4.0.5. The limit lim. o+ [ (f(z) — f())(z —t) P ~1dt eists for x €[0,1],

and the convergence is uniform.

PROOF. Fix A > 0. Let (£,)nen be a sequence of positive numbers that converges

1
to 0. Then there exists N € N such that if ne N so that n > N, then ¢, < (/\(fﬂ}ﬂ)) e

Let n,meN such that n > m > N. Let z€[0,1]. Then

/:_sm(f(x) = f)(z - t)—ﬁ—ldt‘ < /:_Em f(2) — f(O)||z — t|—ﬂ—1dt‘

—€n —€n

T—Em
/ M|z — t|’“51dt‘
T

—En

IN

(IEm)* 2]+ |en)*7])

. M (A(k—ﬁ) +>\(/;A—4ﬂ)> )

2M
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So ( T (f(z) = () (= - t)"B’ldt) is a Cauchy sequence and is uniformly

neN

convergent. Thus, the uniform limit lim. o+ [ (f(z) — f(¢))(z — )77~ 1d¢ exists
and is denoted [ (f(x) — f(t))(xz — )P 1dt. O

Thus, for z € (0, 1], we define

=5 [ @) - 1) = e+ fla)a?

and note that g is the uniform limit of I'(1 — 8)f]_4. on (0, 1]. Since for € > 0,

D(1 = )fi_s.(0) = N1—m( “-s [ s BWQ

= r(1—5)(0—5/0 Odt) =0,

we define g(0) = 0. Since I'(1 — 3)f]_4. converges uniformly to g(z) on (0,1] as
e — 0" and I'(1 = B) f]_5.(0) = g(0) for all € > 0, then f] 5 _(x) converges uniformly

to ﬁg(z) on [0, 1].
CrAam 4.0.6. g is continuous on [0, 1].

PROOF. Since f is continuous on [0, 1], ¢ is continuous on (0, 1] by definition. To
show that ¢ is continuous at = 0, we show that limm_,0+ g(z) = ¢(0) =0.
Fix A > 0. Then there exists 0 < 6 < < (b ﬁ)) .If z €[0, 1] such that |[z—0| < 6,

then

|ﬂ@—0|=‘6 [ @) #00e —a + s

IN

5 [ 1) = sOlle — e+ |1(e) - FO)e

IN

B/ M(z —t)* P 1dt + Ma* P
0

IN

— 7\16 k5:| t=x b
r—1 + Mz
|:k_ﬁ( ) t—=0
M/B k_/B k_B
= 2 M

k—ﬁx + Mx
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_ [ ME ks
B (k—/i>xk
ME kg _
(75)7 =

Thus, g is continuous at x = 0 and is therefore continuous on [0, 1]. O

Then for z €0, 1],
fi—p(x) = f1-5(0) = 1im L (f1-p.e(2) = fi-p£(0))

= lim
e—0t / fl B, 6

So

foale) = s || 90t = 1500

Then by the Fundamental Theorem of Calculus,

(@) = Fr=gete)

for 0 < z < 1. Thus, f{_,(z) = DPf(z) exists for all z¢(0,1). However, we want
to show the existence of the J-order fractional derivative of f on [0,1], so we must
consider the points x = 0 and x = 1.

To show that fi_g has a right-hand derivative at x = 0, we consider the conver-

(z)—f1-5(0)

gence of 12 asz — 0.

fi—g(®)=f1-5(0) __ 9(0) = (.

Cramm 4.0.7. lim, o+ — =i p =

PROOF. Fix A > 0. Since ¢ is continuous at x = 0, there exists 6 > 0 such that

if z€[0,1] and |z — 0] < 6, then |g(z) — g(0)] < ['(1 — B)A. Let z€[0,1] such that
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|z — 0] < 4, then

fiosle) = il®) _ r(?%‘ i [ s
- i [ @) 9Ol
_ (ﬁ) (D(1 - B)Az)
= )\

g

Similarly to show that fi_s has a left-hand derivative at x = 1, we consider the
f fi-g(1)=f1-p(=)

-z

convergence o ast — 17,

f-g()=fip=) _  g(1)

Cramm 4.0.8. lim, ;- — = Fi-p)

PROOF. Fix A > 0. Since ¢ is continuous at x = 1, there exists 6 > 0 such that
if z€[0,1] and |z — 1| < 6, then |g(z) — g(1)] < T'(1 — B)\. Let z€[0,1] such that
|z — 1| < ¢, then

fw(li:fﬂ(x)_r(?(i)ﬁ) - /;g(x)dx_gu)‘
B AR
< om0 - sl
= / Pl = A)de
- & x)Il’(l 5T - /A1~ 2)
= A\
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Thus, f] 4(z) exists for all z€[0,1]. Furthermore, f] 5(z) = ﬁg(m) for all
z €[0, 1]. Therefore, D f(z) exists on [0, 1]. O

We now apply Proposition 4.0.2 to the extensions of the examples we defined in

Chapter 1.

4.1. THE GENERALIZED VAN DER WAERDEN—TAKAGI FUNCTION

PROPOSITION 4.1.1. Let f(z) = 3, 20 where ¢ > 1 and beN such that

n=0 cn
flz), 0<z<1 | .
b>c. Let f*(z) = . Then for all 0 < 8 < %, DP f*(z) exists
f0), z<0
for z€[0,1].
PRrROOF. If b = ¢, then f is Holder continuous of exponent k forall0 < k£ < 1 = %

by Theorem 2.1.2. If b > ¢, then f is a Holder continuous function of exponent igﬁ by
Theorem 2.1.5. In both cases, f(0) = 0 so f satisfies the hypotheses of Proposition
402 forall 0 < 8 < %. Thus, for all 0 < 8 < igﬁ, DP f*(z) exists for z€[0,1]. O

4.2. KIESSWETTER’S FUNCTION

PROPOSITION 4.2.1. Let g(t) = limy, 00 gn(t), where go(t) =t and g,(t) is defined

gt), 0<t<1
by (3) for allneN. Let g*(t) = . Then for all0 < B < %, DPg*(t)

g(0), t<0
exists for te0,1].

PROOF. Since g is a Holder continuous function of exponent % by Theorem 2.2.3
and ¢(0) = 0, g satisfies the hypotheses of Proposition 4.0.2 for all 0 < 5 < % Thus,
for all 0 < 8 < £, DPg*(t) exists for all ¢€ |0, 1]. O
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CHAPTER 5

DIMENSIONS OF GRAPHS OF NOWHERE
DIFFERENTIABLE FUNCTIONS

We have examined continuous nowhere differentiable functions in terms of Holder
continuity and fractional differentiability. Another way to study nowhere differen-
tiable functions is to consider their graphs as subsets of the plane. We want to be
able to compare the size of the graph of a continuous nowhere differentiable function
to the sizes of the graphs of other continuous nowhere differentiable functions and to
the sizes of the graphs of everywhere differentiable functions.

An obvious measure of size to consider is the length of a graph. However, the
graphs of continuous nowhere differentiable functions have infinite length. To see this,
we let f be a real-valued function on [a,b] and let P:a =20 <z <...<x, =0 be

a partition of [a, b]. Then we denote

n

L(P) = Z ((z; — zi1)? + (f(z:) — f(2i-1))?)

7

D=

and define the length of the graph of f to be supp L(P). The function f is of bounded
variation on [a, b], denoted f e BVa,b], if and only if supp L(P) < oo. If fe BV|a,b],
then, by Jordan’s Theorem [8, page 103, theorem 5], f can be written as f = g — h,
where g and h are monotone functions. Since Lebesgue’s Theorem states that a
monotone function on (a, b) is differentiable almost everywhere on (a, b) [8, page 100,

theorem 3], f'(z) exists almost everywhere on (a,b) if feBV]|a,b]. Since nowhere
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differentiable functions are not differentiable at any point in their domains, they can-
not be of bounded variation. Thus, the graph of a continuous nowhere differentiable
function must have infinite length.

Since we cannot compare the relative sizes of graphs of infinite length, we need
to refine our notion of size. When we considered the smoothness of functions, we
used fractional derivatives to refine our notion of smoothness into a concept that
can distinguish differences in smoothness between examples of continuous nowhere
differentiable functions. Similarly, we will use the ideas of dimension from fractal

geometry to be able to compare the sizes of graphs that have infinite length.

5.1. DEFINITIONS AND FACTS

One important dimension is the Hausdorff dimension. Let F' C R™. The diameter of
a set V is defined to be |V| = sup{|z — y| : x,yeV}. Then a countable collection,
{V;i}, of sets of diameter less than or equal to ¢ that covers F is a d-cover of F. Now

for all 6 > 0, the quantity #;(F) is defined as

H3(F) = inf {Z [Vi]* : {V;i} is a d-cover of F} .

i=1

The s-dimensional Hausdorff measure of F, H*(F), is defined to be

The Hausdorff dimension of F' is then defined as
dimy F =inf {s: H*(F) =0} =sup{s: H’(F) = oo}

so that
o0, §<dimgyF
H(F) = :
0, s > dimg F
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Another commonly used notion of dimension is the box—counting dimension. We

again let F' C R". For 0 > 0, the collection of cubes
{[M16, (M; 4+ 1)8] X ... x [Mpé,(M, +1)0] : My,..., M, eZ}

is called the —mesh of R™. Let N;(F') be the number of —mesh cubes that intersect

F. The lower box—counting dimension of F' is defined as

log Nj(F
dim ,F = lim inf 28 V()

. 10
=0+t —logd (10)

The upper box—counting dimension of F' is defined by

S log Ns(F
dimgF = lim sup Lﬁ().
d—0+ - log 0

(11)
If the limits in (10) and (11) are equal, we call the value of the limit the box—counting
dimension of F' and denote it dimp F. It is sufficient to consider the limits in (10)
and (11) as § — 0% through any decreasing sequence &), such that d; = c* for some
constant 0 < ¢ < 1.

Before we consider the Hausdorff and box—counting dimensions of the graphs of

specific functions, we note the following two facts from [2, pages 42, 146] relating

these two concepts of dimension.
FACT 5.1.1. For all F C R*, dimy F < dimzF < dimpF.

Fact 5.1.2. If f : [0,1] = R has a continuous derivative and F is the graph of f,
then dimg F' = dimg F' = 1.

To bound the Hausdorff and upper box—counting dimensions of the graph of the
Generalized van der Waerden—Takagi function and the graph of Kiesswetter’s func-

tion, we use the following facts from |2, pages 147, 30].

FAcT 5.1.3. Let f : [0,1] — R be a continuous function and let F be the graph of
f. If f is Hélder continuous for the exponent 2 — s on [0,1], where 1 < s < 2, then

H!(F) < o0 and dimg F < dimgF < s.
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FAcT 5.1.4. Let F C R". Let g: F — R™. If |g(x) — g(y)| < M|z — y| for all
z,y€F, then dimg g(F) < dimg F.

There are two corollaries of Fact 5.1.4 that are important for obtaining a lower

bound for the Hausdorff dimension for the graph of a function.

COROLLARY 5.1.5. Let F' be the graph of a function, f : R — R. Let T be the

projection of F onto the x—axis. Then dimyg T < dimpg F.

PROOF. Let the function g : R*> — R be defined by g(z,y) = x for all z,y e R. Let
(z1,11), (x2,y2) € F. Then

|g(x1,y1) - 9(552,yz)| = |$1 - $2|
< (@1 — 22 + ( — 92)?)?
= |(z1,91) — (T2, ¥2)]

Thus, by Fact 5.1.4, dimg g(F) < dimg F. Since T = g(F), dimy T < dimy F. O
COROLLARY 5.1.6. Let f : [0,1] — R. Let F be the graph of f. Then dimy F > 1.

PROOF. By Corollary 5.1.5, dimg([0,1]) < dimg F. To determine dimg([0,1]),
we consider H'([0, 1]).

We first determine a lower bound for H!([0,1]). Let § > 0. Let {V;};cn be a 6—
cover of [0,1]. Since [0,1] C Us2, Vi, Yooy [Vi] > 1. Thus, #;([0,1]) > 1 for all 6 > 0.
Then

'([0,1]) = lim Hg([0,1]) > 1.
H(0,1)) = Jim HY([0,1)) >

Now we determine an upper bound for H'([0,1]). Let 6 > 0. Let m = [$]. Then
[0,1] can be covered by m sets of diameter §. Thus,

H;([0,1]) = inf {Z |Vi| : {V;} is a d-cover of [0,1]}
i=1

< m5§<1+§>5=6+L
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IhUS,

So #'([0,1]) = 1. Since 0 < H'([0,1]) < oo, dim[0, 1] = 1. Therefore, dimy F >
1. ]

5.2. THE GENERALIZED VAN DER WAERDEN—-TAKAGI FUNCTION

We now apply the above general statements regarding the Hausdorff and box—counting
dimensions to the specific example of the graph of the Generalized van der Waerden—

Takagi function with b = c.

PROPOSITION 5.2.1. Let F' be the graph of the function f :[0,1] = R defined by
flx) =320 w, where ceN and ¢ > 2. Then dimy F < dimgF < 1.

ProOOF. By Theorem 2.1.2, f is a Holder continuous function of exponent « for
all @ < 1. So f satisfies the hypothesis of Fact 5.1.3 for 1 < s < 2. Then, for all
se (1,2],

dimg F < dimgF < s.
Thus,

g

THEOREM 5.2.2. Let F be the graph of the function f : [0,1] — R defined by

flz) =322, %) “yhere ceN and ¢ > 2. Then dimy F = 1.

PRrOOF. By Proposition 5.2.1, dimyg F < 1. Since f : [0,1] = R, dimyg F > 1 by

Corollary 5.1.6. Therefore, dimy F' = 1. O

THEOREM 5.2.3. Let F be the graph of the function f : [0,1] — R defined by

flz) =320, 20(€2) " yhere ceN and ¢ > 2. Then dimp F ezists and equals 1.

cn
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PROOF. By Fact 5.1.1 and Propositions 5.2.1 and 5.2.2,
1 =dimy F < dimzF < dimpF < 1.
Thus, dim,F = dimgF = 1. Therefore, dimp F = 1. O

We now consider the more general version of the Generalized van der Waerden-

Takagi function with b > c.

PROPOSITION 5.2.4. Let F' be the graph of the function f :[0,1] — R defined by
fla) =32, @) here ¢ > 1 and beN such that b > c. Then dimg F < dimpF <

n=0 cn

PrROOF. By Theorem 2.1.5, f is a Holder continuous function of exponent « for

all a < %. So f satisfies the hypothesis of Fact 5.1.3 for 2 — % < s < 2. Thus,

- 1
dimg F < imgF < 2 — 8¢
log b

O

Using Fact 5.1.1 and Corollary 5.1.6, we can obtain 1 as a lower bound for the
Hausdorff and lower box—counting dimensions of the graph of the Generalized van der
Waerden—Takagi function with ¢ > 1 and beN such that b > ¢. Although obtaining
a tighter bound for the Hausdorff dimension is beyond the scope of this work, we do
want to obtain a tighter bound for the lower box—counting dimension of the graph.

The following fact from [2, pages 146-147] will be important for obtaining this bound.

FACT 5.2.5. Let f : [0,1] = R be continuous. Let 0 < § < 1 and let m = []. If Nj
is the number of squares of the 6—mesh that intersect the graph of f and Ry[id, (i+1)d]

is the mazimum range of f over the interval [id, (i + 1)d], then

m—1 m—1
0" Ryfid, (i +1)0] < Ny < 2m+ 61> Rylid, (i + 1)6].
=0 =0
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By using Fact 5.2.5, the only difficulty in determining a lower bound for the box—
counting dimension is the calculation of a lower bound for the range of the function

over an interval of a given length 6. However, if we use §; = then the horizontal

Qbk )

i+l

5pe Where

endpoints of each square in the J;,-—mesh are points of the form 2i and

2bF
i€Z N [0,2bF — 1]. The value of f (%) — f (2bk) has already been calculated in the

proof of Proposition 1.1.10. If b is even, then (1) implies that

1 . k n
() = ()= =) |l ™
If b is odd, then (2) implies that
i+1 ¢ (b\¥|1
()Gl () e (Ol o

Using Fact 5.2.5, we can now obtain a bound for the lower box—counting dimension
of the graph of the Generalized van der Waerden-Takagi function for all values of b

and ¢ such that we can obtain a positive lower bound for the quantities given in (12)

and (13).

PROPOSITION 5.2.6. Let F' be the graph of the function f :[0,1] — R defined by
flz) =302, w00") where ¢ > 1 and beN such that b is even and b > 2¢. Then

c’VL

_ loge -
logb = dimgF.

PROOF. For all keN, let 6, = 5 and let my = 5~ = 2b*. Then for all keN and
1€ZN [O,mk — 1],

Ry[ide, (i + 1)6] > f<i+1)

/(%)

2bk
k n
b 1
= Zi() 5
k _ n
OIS0
— k

2b
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(O [(5) -2 +1
2 () = 1)

pk—1

— (b — 2¢)
SCER S
- 2bk 20
by (12) since b > 2c.
Then by Fact 5.2.5,
mk—l
Ns, > 6.0 Ry[idg, (i + 1))
i=0
% bk: (b — 2¢)
> 2b” <~
2b2k—1
= (b—2c).
Then
) . log Ns(F)
dimgF = 11611_1>(1)£1f Tg5
log 25— (b — 2
> liminf o8~ T )
k—o0 —log 55F
.. dog(b—2c)+1log2+ (2k — 1)logb — klogc
= liminf
k—o00 log2 + klogb
. log c
B logh’

O

PROPOSITION 5.2.7. Let F' be the graph of the function f :[0,1] — R defined by
fl@) =3, ") where ¢ > 1 and beN such that b is odd and b > 2¢ — 1. Then

Cn

2 — %2 < dimyF.

PrOOF. For all keN, let §, = # and let my = i = 2b*. Then for all keN and

ieZN[0, my — 1],

reti 05 > | () <7 (5]
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1
20%

S ()5 ()
i (5020

1 (9" () +1
2 () -1
Bl (b—2c+1)
= 20k =0

v

by (13) since b > 2¢ — 1.
Then by Fact 5.2.5,

mk—l

it Y Rylide, (i + 1)6]

1=0

v

k

208 —1 pk—1
=0 2bk
262k 1

= -2 1
: (b—2c+1).

v

Then
log Ns(F
dimyF = liminf 280
5—0+t —logd

2k—1
o log 2b (b—2c+1)
k—00 —log -

v

20F

.. dog(b—2c+1)+1log2+ (2k —1)logb — klogc
= liminf

k—500 log2 + klogb

_ log ¢
logb

O

We know summarize the above discussion and propositions in the following theo-

rerm.
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THEOREM 5.2.8. Let F be the graph of the function f : [0,1] — R defined by
fl@) = 3,20 where ¢ > 1 and beN such that b > ¢. Then 1 < dimy F <

cn

dimgF < dimpF < 2 — %. Moreover, if b is even and b > 2¢ or b is odd and

b > 2c— 1, then dimpg F' exists and equals 2 — %.

5.3. KIESSWETTER’S FUNCTION

We now consider the Hausdorff and box—counting dimensions of the graph of Kiess-
wetter’s function. The calculations are similar to those made for the graph of the

Generalized van der Waerden—Takagi function.

PROPOSITION 5.3.1. Let g : [0,1] — R be defined by g(t) = lim, 0 gn(t), where
go(t) =t and g,(t) is defined by (3) for all neN. Let G be the graph of g. Then

ProOF. By Theorem 2.2.3, g is a Holder continuous function of exponent « for

all a < % So g satisfies the hypothesis of Fact 5.1.3 for % < s < 2. Thus,

dimy G < dimpG <

N W

g

PROPOSITION 5.3.2. Let g : [0,1] — R be defined by g(t) = lim,_ o gn(t), where
go(t) = t and g,(t) is defined by (3) for all neN. Let G be the graph of g. Then

3 < dimgG.

PROOF. For all keN, let 6, = 4% and let my, = i = 4. By Proposition 1.2.5,
19 (57%) —9(4%)| = 2 for all keN and ieZ N [0,my, — 1]. Thus, for all keN and
1€ZN [O,mk - 1],

o 1
Rylidy, (i +1)8] > o = 67
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Then by Fact 5.2.5,

mg—1
NulG) 2 613 Ryfidu, (i +1)5]
i=0
mg—1 L
=D
i=0
1 =3
= 0,10, 102 =6,%.
Then
dimyG = liminf 282
s—o+t  —logd
L -9
> liminf g(4k)12
k—00 —]og4—k
—3og L
= liminf —2 °8 fk
k—00 —log4—,c

g

THEOREM 5.3.3. Let g : [0,1] — R be defined by g(t) = lim, o gn(t), where
go(t) =t and g,(t) is defined by (3) for all neN. Let G be the graph of g. Then

dimp G exists and equals %

ProoF. By Fact 5.1.1 and Propositions 5.3.1 and 5.3.2,

3 _ 3
3 < dimgG < dimpG < 3

Thus, dimpG = dimgG = % Therefore, dimp G = % O
Although we are not able to obtain an exact value for the Hausdorff dimension of
the graph of Kiesswetter’s function, the preceding propositions and corollaries provide

bounds for the value. These bounds are stated explicitly in the following proposition

for completeness.
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PROPOSITION 5.3.4. Let g : [0,1] — R be defined by g(t) = lim, o gn(t), where
g0(t) = t and g¢,(t) is defined by (3) for all neN. Let G be the graph of g. Then

1 <dimpg G < 3.

PROOF. Since ¢ : [0,1] — R, dimg G > 1 by Corollary 5.1.6. By Fact 5.1.1 and

Proposition 5.3.3, dimy G < dimg G < % Therefore, 1 < dimy G < % U
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CONCLUSION

In this thesis we investigated two special classes of continuous nowhere differ-
entiable functions. One class consisted of the Generalized van der Waerden—Takagi
function. Our methods allowed us to remove the restriction that b > 4¢ imposed
by Knopp and to show that the Generalized van der Waerden—Takagi function is
nowhere differentiable on [0, 1] for ¢ > 1 and be N such that b > c¢. The other class we
considered was Kiesswetter’s function, which we showed was nowhere differentiable
on [0, 1].

Although these functions do not have first—order derivatives, they do share some
smoothness properties. In order to study these properties, we had to refine our
methods to reveal the finer structure that differentiability cannot see. One way we
measured smoothness was by using Holder continuity. We found that all of the
functions in both classes were Holder continuous of exponent a on [0,1] for some
a > 0. In fact, the Generalized van der Waerden—Takagi function with b = ¢ is Holder
continuous of exponent « on [0,1] for all & < 1.

Another way of measuring the smoothness of the continuous nowhere differentiable
functions was the existence of fractional derivatives. We used Hoélder continuity to
determine that the functions in both classes have fractional derivatives of order (3 for
some 3 > 0. We found that the Generalized van der Waerden—Takagi function with
b = ¢ has fractional derivatives of order 5 for all 0 < g < 1.

Our final approach for measuring the smoothness of continuous nowhere differen-
tiable functions utilized the ideas of dimension from fractal geometry to measure the

size of the graphs of the functions as subsets of the plane. The potential range for the
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Hausdorff and box—counting dimensions of the graphs of the functions is [1, 2] since
they are continuous functions on [0, 1], but for all the functions in the two classes,
we were able to show that these values are less than 2. For the graph of the General-
ized van der Waerden—Takagi function with b = ¢, we found that the Hausdorff and
box—counting dimensions equal 1.

Our measures of smoothness allow us to compare these classes of functions to
continuous everywhere differentiable functions. The fact that the Generalized van
der Waerden—Takagi function with b = ¢ is Holder continuous of exponent « for all
a < 1, has fractional derivatives everywhere of order § for all 0 < 8 < 1, and has
a graph of dimension 1 reveals the strong similarities between this special case of
the Generalized van der Waerden—Takagi function and continuous everywhere differ-
entiable functions. With respect to these three measures, the Generalized van der
Waerden—Takagi function with b = ¢ is as close to being everywhere differentiable as
a nowhere differentiable function can be. The Holder continuity of the other func-
tions we studied and the dimensions of their graphs indicate that these functions
differ much more from everywhere differentiable functions than the Generalized van

der Waerden—Takagi function with b = ¢ does.

23



REFERENCES

[1] Gerald Edgar, Measure, Topology, and Fractal Geometry, Springer—Verlag, New York, 1990.
[2] Kenneth Falconer, Fractal geometry, John Wiley & Sons Ltd., Chichester, 1990.
[3] G. H. Hardy and J. E. Littlewood, Some Properties of Fractional Integrals I, Math. Z. 27
(1928), 565—606.
[4] Wilfred Kaplan, Advanced calculus, Addison-Wesley Press, Inc., Cambridge, Mass., 1952.
[56] Karl Kiesswetter, Ein einfaches Beispiel fir eine Funktion, welche iberall stetig und nicht dif-
ferenzierbar ist, Math.-Phys. Semesterber. 13 (1966), 216-221. (German)
[6] Konrad Knopp, Ein einfaches Verfahren zur Bildung stetiger nirgends differenzierbarer Funk-
tionen, Math. Z. 2 (1918), 1-26. (German)
[7] Keith B. Oldham and Jerome Spanier, The Fractional Calculus, Academic Press, New York,
1974.
[8] H. L. Royden, Real analysis, 3rd ed., Macmillan Publishing Company, New York, 1988.
[9] Abdullah Shidfar and Kazem Sabetfakhri, On the Continuity of Van Der Waerden’s Function
in the Holder Sense, Amer. Math. Monthly 93 (1986), 375-376.
[10] T. Takagi, A simple example of the continuous function without derivative, Proc. Phys.-Math.
Soc. Tokyo Ser. IT 1 (1903), 176-177.
[11] B. L. van der Waerden, Ein einfaches Beispiel einer nichtdifferenzierbaren stetigen Funktion,
Math. Z. 32 (1930), 474-475. (German)
[12] Masaya Yamaguti, Masayoshi Hata, and Jun Kigami, Mathematics of Fractals, Translations of

Mathematical Monographs, vol. 167, American Mathematical Society, Providence, RI, 1997.

o4



