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1. Thesis Summary

This paper expands upon Robert Bartle’s exploration of the General

Lebesgue Integral in his text Elements of Integration. Following Bartle’s

example, the paper opens with a discussion of the groundwork on which the

theory of the Lebesgue Integral stands. As a house sits on cement and brick

footings, the Lebesgue Integral is propped on solid mathematical concepts

such as algebras and measures.

After setting the basics, the framework or the skeleton of the Integral is

presented. Mathematicians are fond of handling the simple cases first then

extending the results to more complicated and detailed cases. Obeying this

methodology, the paper initially establishes the Integral for a limited class

of functions, namely those measurable functions with non-negative values.

Then later the Integral is defined for all measurable functions.

Having completed the base and the frame of the Integral, the paper then

focuses on some of the beautiful and elegant theories that adorn the Gen-

eral Lebesgue Integral, like the Monotone Convergence Theorem and the

Lebesgue Dominated Convergence Theorem. Indeed, convergence is an ex-

tremely important idea in mathematics and many times mathematicians are

interested in sequences of functions and the convergence (if it does in fact

converge) of these sequences.. Sometimes these sequences of functions con-

verge or get very close to another function. And other times these sequences

diverge or don’t get very close to another function. In a convergent sequence

of functions, no matter how far you go out in the sequence it still stays very

close to one unchanging function or what mathematicians call the limit of

the sequence. In a divergent sequence, as you move through the sequence

you never get close to one particular function. What mathematicians want

to know is if you take the limit of the sequence and then integrate will you

get the same value as if you integrate each function in the sequence and then

take the limit of the integrals? In other words, with two operations, does
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it matter in which order you perform them? It turns out that with some

precautions, the order may be switched.

Furthermore, the paper explores spaces of functions. In layman’s terms,

through modifications of the Lebesgue Integral mathematicians are able to

categorize functions that share similar properties. Once a definition of these

spaces has been set, then an analysis of the interactions between these cat-

egories can be performed. For example, we can determine what properties

are needed for a function to live in more than one space or what properties

are needed so that a function lives in every space.

Of course, mathematicians combine these concepts of sequences of func-

tions and spaces of functions. More specifically, they want to know if given a

sequence of functions that converge and all of the functions in that sequence

live in a particular space, does the limit live in that same space?

By the way, did I mention that there are a handful of ways that se-

quences of functions can converge? Well, the last section of paper dicusses

these different modes of convergence. Of particular interest is the order of

implication. In simpler terms, if a sequence converges in a given manner,

does it then converge in another manner or manners.
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2. Introduction

The French mathematician Henri Léon Lebesgue developed the Lebesgue

integral as a consequence of the problems associated with the Riemann In-

tegral. In particular, whole classes of important functions could not be

integrated with the Riemann Integral. For example, the function on the in-

terval [0, 1] that maps all the rational numbers to zero and all the irrational

numbers to themselves cannot be integrated using Riemannian Integration.

In fact, Lebesgue provided necessary and sufficient conditions for a function

to be Riemann Integrable.

Lebesgue’s major insight was to leave the x-axis and find the area under

the curve by partitioning the y-axis. To see the differing approaches of

the two mathematicians, imagine that Riemann and Lebesgue were both

merchants. Let’s say that both men sold six items at the following prices:

5,10,15,10,5,3. Riemann would total his sales by adding the numbers as

they appear (5+10+15+10+5+3). Lebesgue, on the other hand, would sum

them like this: 2(5) + 2(10) + 15 + 3. Of course, in the end, the values are

the same.

As expected, it will be seen that the Lebesgue integral of Riemann in-

tegrable functions equals the Riemann Integral. By approaching integra-

tion in this manner Lebesgue generalized the Riemann Integral which pro-

vided mathematicians with a gateway into modern mathematics. Indeed,

the Lebesgue Integral has been instrumental in the theory of trigonometric

series, curve rectification, calculus, and probability.

However, the most immediate consequence of the Lebesgue Integral is

that it relaxes the requirements needed for the interchange of the limit and

the integral in a sequence of functions. In the Riemann Integral, only uni-

form convergence of a sequence of a functions implies that the limit of the

sequence will be Riemann Integrable. With Lebesgue integrable functions

we find that almost everywhere convergence and boundedness are sufficient
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for integrability of the limit. This theorem is the Lebesgue Dominated Con-

vergence Theorem (LCDT).

This paper expands on Robert G. Bartle’s presentation of the Lebesgue

Integral in his book Elements of Integration. Throughout the remainder of

the paper I shall denote Elements of Integration as (EOI).The third section

of this paper deals with measurable functions and measurable spaces. The

fourth section presents the notion of a measure of a set. The fifth section

applies to the General Lebesgue Integral for nonnegative functions and the

Monotone Convergence Theorem. In section six, the General Lebesgue in-

tegral is extended to functions with positive and negative values. Section

seven deals with the Lebesgue Spaces. Lastly section eight encapsulates all

the various modes of convergence.

Finally, when referring to a theorem, lemma, proposition, fact, or def-

inition from another text, I use the following convention: the number of

the theorem, lemma, proposition, fact, or definition and the text’s author

enclosed in brackets. For example, if I use 3.6 Lemma from Elements of

Integration, I would write “ . . . 3.6 Lemma [Bartle] . . . ”. If I refer to a

theorem, lemma, proposition, fact, or definition from this paper, I simply

write its number. Thus, if I refer to 2.3 Lemma, I would write “ . . . 2.3

Lemma . . . ”.
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3. Measurable Functions

In defining the Lebesgue Integral we need to first discuss classes of real-

valued functions on a set X . This set X could be the unit interval, the

natural numbers, or the entire real line.

From X , we take a family X of subsets of X which behave “nicely” in a

technical sense. First, we’ll develop the idea of behaving “nicely” for a finite

number of subsets, then we’ll introduce the case for a countable number of

subsets.

Definition 3.1. A non-empty collection X of subsets of X is called an

algebra of sets or a Boolean algebra if the following hold:

1. (A ∪ B) ∈ X whenever A ∈ X and B ∈ X .

2. (A)c ∈ X whenever A ∈ X . Note: (A)c denotes the complement of A

3. (A ∩ B) ∈ X whenever A , B ∈ X

Proposition 3.2. If in Definition 3.1, a non-empty collection X of subsets

of X satisfies (2) and (3), then it satisfies (1) and thus, is a Boolean

algebra. Similarly, if it satisfies (1) and (2), then it satisfies (3).

Proof. Let A , B ∈ X . Then, (A)c , (B)c ∈ X . By (3), (A)c ∩ (B)c ∈ X .

Applying De Morgan’s laws, (A)c∩(B)c = (A ∪ B)c . Therefore, (A ∪ B)c ∈ X .

Using (2) gives, [(A ∪ B)c]c = (A∪B) ∈ X . In a similar fashion it is seen that

(1) and (2), imply (3).

It is clear from (2) of Definition 3.1 that the ∅ and the whole set X are in

X . Also, by taking unions two at a time, it is evident that if A1, . . . , An

are sets in X , then A1 ∪ A2 ∪ · · · ∪ An is also in X . Several useful theorems

concerning algebras of sets will follow.

Proposition 3.3. Given any collection C of subsets of X , there is a smallest

algebra A which contains C; that is, there is an algebra A containing C such

that if B is any algebra containing C, then B contains A.
1



Proof. Let F be the family of all algebras (of subsets of X ) that contain C.

Let A =
⋂{B : B ∈ F}. Then C is a subcollection of A since each B ∈ F

contains C. Moreover, A is an algebra. For if A and B are in A, then for each

B ∈ F we have A ∈ B and B ∈ B. Since B is an algebra, (A ∩ B) ∈ B. Since

this is true for all B : B ∈ F , we have (A ∩ B) ∈ ⋂{B : B ∈ F}. Likewise,

if A ∈ A, then (A)c ∈ A. From the definition of A, it follows that if B is an

algebra containing C, then B ⊇ A.

The smallest algebra containing C is called the algebra generated by C.

An algebra A of sets is called a σ−algebra or a σ−field, if every union

of a countable collection of sets in A is again in A. From De Morgan’s laws

it follows that the intersection of a countable collection of sets in A is again

in A. Modifying Proposition 3.3 gives the following:

Proposition 3.4. Given any collection C of subsets of X , there is a smallest

σ-algebra A which contains C; that is, there is a σ-algebra A containing C
and such that if B is any σ-algebra containing C, then B contains A.

Proof. Let F be the family of all σ-algebras (of subsets of X ) that contain

C. Let A =
⋂{B : B ∈ F}. Then C is a subcollection of A since each B ∈ F

contains C. Moreover, A is an σ-algebra. For if 〈Ai〉 belongs to A, then for

each B ∈ F we have 〈Ai〉 ∈ B. Since B is an σ-algebra,
∞⋃
i=1

Ai ∈ B.

Since this is true for all B : B ∈ F, we have
∞⋃
i=1

Ai ∈
⋂
{B : B ∈ F}.

From the definition of A, it follows that if B is a σ-algebra containing C,

then B ⊇ A.

As with algebras, the smallest σ-algebra containing C is called the σ-

algebra generated by C and is denoted by σ(C).

Proposition 3.5. If A is the algebra generated by C, then A and C generate

the same σ-algebra.
2



Proof. Let σ(C) be the smallest σ-algebra generated by C. Let A(C) be

the smallest algebra generated by C. Certainly, A(C) ⊆ σ(C). Therefore,

σ[A(C)] ⊆ σ[σ(C)]. But that means σ[A(C)] ⊆ σ(C). Also, A(C) ⊇ C, since

the smallest algebra generated by C contains C. Thus, σ(C) ⊆ σ[(A(C)].

The next proposition develops the idea of disjunctification. Given a sequence

of sets in a σ-algebra the sets in the sequence can be separated such that no

two sets share a common element.

Proposition 3.6. Let X be a σ-algebra of subsets and {An} a sequence

of sets in X . Then there is a sequence {Bn} of subsets in X such that

Bi ∩ Bj = ∅ for i 6= j and
∞⋃
n=1

Bn =
∞⋃
n=1

An.

Proof. Since the theorem works similarly for {An} finite and infinite, assume

{An} to be an infinite sequence. Let B1 = A1 and for n ∈ N with n ≥ 2, let

Bn = An\(A1 ∪ A2 ∪ · · · ∪ An−1). Thus

Bn = An ∩
(⋃
k<n

Ak
)c

.

Clearly, from the definition of Bn, Bn ⊆ An, for each n ∈ N. Also since

complements and intersections of sets in X are in X , each Bn ∈ X . If

i > j ≥ 1, then

Bi ⊆
(⋃
k<i

Ak
)c

=
⋂
k<i

(Ak)c ⊆ (Aj)c ⊆ (Bj)c .

and so Bi ∩ Bj = ∅. Now,
∞⋃
n=1

Bn ⊂
∞⋃
n=1

An since Bn ⊆ An for each n ∈ N.

Now take an x ∈
∞⋃
n=1

An, then there exist a smallest i ∈ N such that x

belongs to Ai and x /∈
⋃
n<i

An. Therefore,

x ∈ Ai\
⋃
n<i

An = Bi
3



and thus, x ∈
∞⋃
n=1

Bn. This demonstrates,
∞⋃
n=1

Bn ⊇
∞⋃
n=1

An. Therefore,

∞⋃
n=1

Bn =
∞⋃
i=1

An

Proposition 3.7. Let f be a function defined on a set X with values in a

set Y. If E is any subset of Y, let

f−1(E) = {x ∈ X : f(x) ∈ E}.

Show that f−1(∅) = ∅, f−1(Y) = X . If E and F are subsets of Y, then

f−1(E\F) = f−1(E)\f−1(F).

If {Eα} is any non-empty collection of subsets of Y, then

f−1

(⋃
α

Eα
)

=
⋃
α

f−1 (Eα) , f−1

(⋂
α

Eα
)

=
⋂
α

f−1 (Eα) .

In particular, it follows that if Y is a σ-algebra of subsets of Y, then {f−1(E) :

E ∈ Y} is a σ-algebra of subsets of X .

Proof. First, f−1(∅) = {x ∈ X : f(x) ∈ ∅} = ∅. Take x ∈ f−1 (Y) thus

x ∈ X and so f−1 (Y) ⊆ X . Taking x ∈ X and applying f gives the other

containment, therefore f−1 (Y) = X .

Next, show that f−1(E\F) = f−1(E)\f−1(F). By definition x ∈ f−1(E\F)

if and only if f(x) ∈ E\F which is equivalent to f(x) ∈ E and f(x) /∈ F .

Now f(x) ∈ E and f(x) /∈ F if and only if x ∈ f−1(E) and x /∈ f−1(F) or

equivalently x ∈ f−1(E)\f−1(F). Therefore, f−1(E\F) = f−1(E)\f−1(F).

Let {Eα}α∈γ be any collection of subsets of Y. By definition x ∈ f−1

(⋃
α

Eα
)

if and only if f(x) ∈
⋃
α

Eα or equivalently f(x) ∈ Eα for some α. Now

f(x) ∈ Eα for some α if and only if x ∈ f−1(Eα) for some α which is
4



the same as x ∈
⋃
α

f−1(Eα). Thus, f−1

(⋃
α

Eα
)

=
⋃
α

f−1 (Eα). Likewise,

f−1

(⋂
α

Eα
)

=
⋂
α

f−1 (Eα)

Proposition 3.8. Let f be function defined on a set, X , with values in a set

Y. Let X be a σ-algebra of subsets of X and let Y = {E ⊆ Y : f−1(E) ∈ X}.
Show that Y is a σ-algebra.

Proof. We know that the empty set is a subset of Y and from Proposition

3.7, f−1(∅) = ∅ ∈ X . Thus, the empty set is in Y .

Let E ∈ Y . From definition of Y , E is a subset of Y and f−1(E) ∈ X .

Since E is a subset of Y, then (E)c (the complement of E) is a subset of Y.

Furthermore, f−1(E) ∈ X implies that
[
f−1(E)

]c ∈ X From Proposition 3.7,[
f−1(E)

]c = f−1 [(E)c] ∈ X . Thus, (E)c ∈ Y .

To conclude, let {Eα}α∈γ be a countable collection of subsets of Y . For

each α ∈ γ, Eα ∈ Y and f−1 (Eα) ∈ X . Thus
⋃
α∈γ

Eα ⊆ Y. Since X is an

σ-algebra , using Proposition 3.7 gives

f−1

(⋃
α∈γ

Eα
)

=
⋃
α∈γ

f−1 (Eα) ∈ X .

Thus,
⋃
α∈γ

Eα ∈ Y .

Therefore, we have demonstrated that Y satisfies the definition of a σ-

algebra.

Proposition 3.9. Let a, b ∈ R with a < b. Then:

1. [a, b] =
∞⋂
n=1

(a− 1/n, b+ 1/n)

2. (a, b) =
∞⋃
n=1

[a+ 1/n, b− 1/n]

3. [a, b) =
∞⋂
n=1

(a− 1/n, b)

4. (a, b] =
∞⋂
n=1

(a, b+ 1/n)
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5. (a,∞) =
∞⋃
n=1

(a, b+ n).

Proof.

1. By definition, an element x is in [a, b] if and only if a ≤ x ≤ b.

Then we certainly can say a − 1/n < a ≤ x ≤ b < b + 1/n for all

n ∈ N. Therefore, x ∈ (a− 1/n, b+ 1/n) for all n ∈ N. And now we

can conclude x ∈
∞⋂
n=1

(a− 1/n, b+ 1/n). Containment the other way

follows easily.

2. An element x is in (a, b) if and only if a < x < b However, there

exists n ∈ N such that a < a + 1/n ≤ x ≤ b − 1/n < b. There-

fore, x ∈ [a+ 1/n, b− 1/n] for some n ∈ N which implies that x ∈
∞⋃
n=1

[a+ 1/n, b− 1/n]. Containment the other way follows.

3. (3), (4) and (5) follow similarly.

Definition 3.10. The Borel Algebra is the σ-algebra generated by all open

intervals (a, b) in R.

The next corollary shows that in Definition 3.10 the open intervals can

be replaced by any one of the other types of intervals.

Corollary 3.11. The Borel Algebra, B, is also generated by all the closed

intervals [a, b], or by all the half open \ half closed intervals [a, b), (a, b],

or by all the half-rays (a,∞).

Proof. Proposition 3.9 shows that the intervals can be rewritten as the count-

able unions or intersections of open or closed intervals. The Corollary follows

from the fact that σ-algebra s are closed under countable unions and inter-

sections.

In the following propositions the notion of the limit (if it exists) of sets

will be formalized.
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Proposition 3.12. Let {An}n∈N be a sequence of subsets of a set X . If A
consists of all the x ∈ X which belong to infinitely many of the sets An,
then,

A =
∞⋂
m=1

[ ∞⋃
n=m

An
]
.

A is called the lim sup (An).

Proof. By definition of A: x ∈ A if and only if x ∈
∞⋃
n=m

An for each m ∈ N

if and only if x ∈
∞⋂
m=1

[ ∞⋃
n=m

An
]

Proposition 3.13. Let {An}n∈N be a sequence of subsets of a set X . If B
consists of all the x ∈ X which belong to all but a finite number of sets An,
then

B =
∞⋃
m=1

[ ∞⋂
n=m

An
]
.

B is called the lim inf (A).

Proof. By definition of B: x ∈ B if and only if x ∈
⋂

n=m◦

An for some m◦ ∈ N

if and only if x ∈
∞⋃
m=1

[ ∞⋂
n=m

An
]
.

Proposition 3.14. If {En} is sequence of subsets of a set X which is mono-

tone increasing (that is, E1 ⊆ E2 ⊆ E3 ⊆ · · · ), show that

lim sup En =
∞⋃
n=1

En = lim inf En

Proof. Clearly,
∞⋂
m=1

[ ∞⋃
n=m

En
]
⊆

∞⋃
n=1

En. Now,
∞⋂
m=1

[ ∞⋃
n=m

En
]
⊇

∞⋃
n=1

En follows

from the fact if x is in the countable union of En’s, then there exists some

j ∈ N such that x is in Ej . Therefore,

x ∈
∞⋃
n=1

En ∩
∞⋃
n=2

En ∩
∞⋃
n=3

En ∩ · · · ∩
∞⋃
n=j

En.
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But, x an element of Ej implies that x is in Ej ∩ Ej+1 ∩ Ej+2 · · · since {En}
monotone increasing. Therefore, x ∈

∞⋃
n=j+1

En ∩
∞⋃

n=j+2

En ∩ · · · . Whence,

x ∈
∞⋂
m=1

[ ∞⋃
n=m

En
]
.

Now, we can conclude
∞⋃
n=1

En = lim supE.

To demonstrate
∞⋃
n=1

En = lim inf En, we notice that in a monotone increas-

ing function,
∞⋂
n=m

En = Em

It follows then that
∞⋃
m=1

[ ∞⋂
n=m

En
]

=
∞⋃
m=1

Em =
∞⋃
n=1

En.

Therefore, lim inf En =
∞⋃
n=1

En = lim sup En.

Proposition 3.15. If {Fn} is sequence of subsets of a set X which is mono-

tone decreasing (that is, F1 ⊇ F2 ⊇ F3 ⊇ · · · ), show that

lim supFn =
∞⋂
n=1

Fn = lim inf Fn

Proof. In a monotone decreasing sequence,
∞⋃
n=m

Fn = Fm. Consequently,

∞⋂
m=1

[ ∞⋃
n=m

Fn
]

=
∞⋂
m=1

Fm =
∞⋂
n=1

Fn.

Now to show
∞⋃
m=1

[ ∞⋂
n=m

Fn
]

=
∞⋂
n=1

Fn.

Let x ∈
∞⋂
n=1

Fn, then x ∈
∞⋃
m=1

[ ∞⋂
n=m

Fn
]
. Now, take x ∈

∞⋃
m=1

[ ∞⋂
n=m

Fn
]
.

Thus for some j ∈ N, x ∈
∞⋂
n=j

Fn. Since {Fn} is monotone decreasing

8



x ∈ Fj−1 ∩ · · · ∩F1. Consequently, x ∈
∞⋂
n=1

Fn. Therefore, we conclude that

lim supFn =
∞⋂
n=1

Fn = lim inf Fn.

Proposition 3.16. If {An} is a sequence of subsets of X , then

∅ ⊆ lim inf An ⊆ lim supAn ⊆ X .

Proof. Clearly, ∅ ⊆ lim inf An and lim supAn ⊆ X are clear. Now, let x be

in lim inf An. Thus, there exists a j ∈ N such that x ∈ ⋂∞n=j An. Therefore,

we can say that

x ∈
∞⋃
n=1

An ∩ · · · ∩
∞⋃
n=j

An ∩ · · · ∩
∞⋃

n=j+1

An ∩ · · · .

Therefore, x ∈ lim supAn. And thus, ∅ ⊆ lim inf An ⊆ lim supAn ⊆ X .

Example 3.17. Let X = [0, 1). Define {An} a sequence in X as
[
0, 1

n

)
when n is odd and

[
0, 1− 1

n

]
when n is even. Notice that for all even n,

{An} is monotone increasing and {An} is monotone decreasing when n is

odd. Therefore,
∞⋂
m=1

[ ∞⋃
n=m

A2n

]
=

∞⋃
n=1

A2n = [0, 1) = X

by Proposition 3.14. Similarly,
∞⋃
m=1

[ ∞⋂
n=m

A2n−1

]
=

∞⋂
n=1

A2n−1 = ∅

by Proposition 3.15. Since, {A2n} and {A2n−1} are subsequences of {An}
with limits X and ∅, respectively then lim supA = X and lim inf A = ∅.

Example 3.18. Let X = (−1, 1) and let {An} =
(− 1

n , 0
]

when n is even

and {An} =
[
0, 1

n

)
when n is odd. Arguing in a similar fashion as above we

quickly see that lim supAn = {0} = lim inf An. Thus, the limAn = {0}.
9



Proposition 3.19. If a,b,c are real numbers and mid(a,b,c) denotes the

“value in the middle”, then

mid(a, b, c) = inf{sup{a, b}, sup{a, c}, sup{b, c}}.

In addition, if f1, f2, f3 are X −measurable functions on X to R and if g

is defined for x ∈ X by

g(x) = mid (f1(x), f2(x), f3(x)) ,

then g is X −measurable.

Proof. By pairing each number with the other numbers and taking the sup

of the three pairs, the largest number will appear twice and the next largest

number will appear once. Now, taking the inf of these three numbers gives

the second largest number of the trio which is exactly the “value in the

middle”.

To prove the second part, we must show that A = {x ∈ X : g(x) > α} ∈
X , where α ∈ R. To do this we will show that A is obtained from the

intersections and unions of X -measurable sets.

{x ∈ X : g(x) > α} = {x ∈ X : mid (f1(x), f2(x), f3(x)) > α}

= {x ∈ X : f1(x) > α or f2(x) > α}

∩{x ∈ X : f1(x) > α or f3(x) > α}

∩{x ∈ X : f2(x) > α or f3(x) > α}

Now we see that

A = [{x ∈ X : f1 > α} ∪ {x ∈ X : f2 > α}]

∩ [{x ∈ X : f1 > α} ∪ {x ∈ X : f3 > α}]

∩ [{x ∈ X : f2 > α} ∪ {x ∈ X : f3 > α}]

10



Proposition 3.20. If f is a measurable function and A > 0, then the trun-

cation fA defined by

fA(x) =


f(x), if |f(x)| ≤ A

A, if f(x) > A

−A, if f(x) < −A
(3.1)

is measurable. (Show directly without using Proposition 3.19).

Proof. For α ≥ A,

{x ∈ X : fA(x) > α} = ∅ ∈ X .

For α < −A,

{x ∈ X : fA(x) > α} = X ∈ X .

For −A ≤ α < A,

{x ∈ X : fA(x) > α} = {x ∈ X : f(x) > α} ∈ X .

Remark 1. Notice that the above proposition could have been shown by

defining f1, f2, f3 as

f1(x) = A, f2(x) = f(x), f3 = −A

Now, fA = mid (f1, f2, f3) and thus by applying Proposition 3.19, we see

that fA is measurable.

Proposition 3.21. Let f be a nonnegative X -measurable function on X
which is bounded (that is, there exists a constant K such that 0 ≤ f(x) ≤ K

for all x ∈ X ). Then, the sequence {ϕn} defined in Lemma 2.11 [Bartle]

converges uniformly on X to f .

Proof. From Lemma 2.11, ϕn(x) = k
2n for x ∈ Ekn where

Ekn =
{
x ∈ X :

k

2n
≤ f(x) <

k + 1
2n

}
if k = 0, 1, · · · , n2n − 1 and

Ekn = {x ∈ X : f(x) ≥ n} if k = n2n.
11



Since f(x) ≤ K then there exists a smallest n◦ ∈ N where K < n◦ such that

for all x ∈ X ,

x ∈
n◦2n◦⋃
k=0

Ekn◦

Thus, for all x ∈ X and for all n ∈ N where n ≥ n◦, there exists k ∈ N such

that

k

2n
≤ f(x) <

k + 1
2n

which implies that
∣∣f(x)− k

2n

∣∣ < 1
2n . Therefore, given ε > 0 there exists an

n1 ∈ N such that

|f(x)− ϕn(x)| < 1
2n

< ε for all n ≥ n1 ≥ n0 and for all x ∈ X .

Proposition 3.22. Let (X ,X ) be a measurable space and f a function from

X to Y. Let A be a collection of subsets of Y such that f−1(E) ∈ X for every

set E ∈ A, then f−1(F) ∈ X for any set F which belongs to the σ−algebra
generated by A.

Proof. By assumption A = {E ⊆ Y : f−1(E) ∈ X}. From Proposition 3.8,

A is a σ-algebra . Thus, for any F in the σ-algebra generated by A, F is

also in A since the σ-algebra generated by A is A. Therefore, f−1(F) ∈ X
for any set F that belongs to the σ-algebra generated by A.

Proposition 3.23. Let (X ,X ) be a measurable space and f be a real valued

function defined on X . Then, f is measurable if and only if f−1(E) ∈ X
for every Borel set E.

Proof. First, assume f−1(E) ∈ X for every Borel set E . Let Aα = {x ∈ X :

f(x) > α} = f−1 (α,∞) where α ∈ R. Now (α,∞) =
∞⋃
n=1

(α, α + n). But

(α, α + n) is a Borel set and thus by assumption f−1(α, α + n) ∈ X and
12



therefore,

f−1(α,∞) = f−1

[ ∞⋃
n=1

(α, α+ n)

]
=

∞⋃
n=1

f−1(α, α+ n) ∈ X .

Consequently, since α was arbitrary, Aα ∈ X for all α ∈ R.

Now, assume f is measurable. Let A =
{E ⊆ R : f−1(E) ∈ X}. From

Proposition 3.8, A is a σ-algebra . Since f measurable, f−1(α,∞) ∈ X for

all α ∈ R. It is seen that for all open intervals in R, O, f−1(O) ∈ X , thus by

Proposition 3.22, O ∈ A. Let O denote the collection of all open intervals

in R, therefore O ⊆ A. Now, the σ-algebra generated by O, B (the Borel

sets), is a subset of A. Thus, f−1(E) ∈ X for all E ∈ B.

The following fact will be useful for the next proposition.

Fact 3.24. A continuous function from R to R guarantees that for each open

interval in its range there is a corresponding open interval in its domain. To

see this apply the definition of continuity. For each p ∈ R and for ε > 0,

there exists a δ > 0 such that f(x) ∈ (f(p) − ε, f(p) + ε) for each x ∈
(p−δ, p+δ). Now since each Borel set can be written as the countable union

of open intervals then for each Borel set in the range of a continuous function

the inverse mapping of that set is a countable union of open intervals and

thus a Borel set.

Proposition 3.25. If (X ,X ) is a measurable space, f is a X−measurable
function on X to R and ϕ is a continuous function on R to R, then the

composition (ϕ ◦ f) defined by (ϕ ◦ f)(x) = ϕ[f(x)], is X -measurable.

Proof. By assumption ϕ is continuous, thus ϕ−1(E) ∈ B for each E ∈ B by

Fact 3.24. Now f is measurable therefore Proposition 3.23 gives f−1[E ] ∈
X for all Borel sets E . Since ϕ−1(E) is a Borel set for all Borel sets E ,

f−1[ϕ−1(x)] ∈ X for each Borel set, E . Thus, by Proposition 3.23 (ϕ◦f)(x)

is X -measurable .

13



Lemma 3.26. If f is a X −measurable and ψ is a Borel measurable func-

tion, then (ψ ◦ f) is X −measurable.

Proof. From assumption, ψ Borel measurable therefore ψ−1(E) ∈ B for each

E ∈ B. By Proposition 3.23, f measurable implies that f−1[ψ−1(E)] ∈ X
and therefore (ψ ◦ f) is X -measurable since f−1[ψ−1(E)] ∈ X for every

Borel set E .

Proposition 3.27. A function f on X to R is X − measurable if and

only if the set Aα in Lemma 2.4(a) [Bartle] belongs to X for each rational

number α.

Proof. If f is X -measurable then from the definition of an X -measurable

function, Aα = {x ∈ X : f(x) > α} belongs to X for all α ∈ R.

If Aα ∈ X for all α ∈ Q, then for each α̃ ∈ R\Q there exists a {αn} ∈ Q

such that

Aα̃ = {x ∈ X : f(x) > α̃} =
∞⋃
n=1

{x ∈ X : f(x) > αn} .

Definition 3.28. A nonempty collection M of subsets of a set X is called

a monotone class if, for each monotone increasing sequence {En} in M and

each monotone decreasing sequence {Fn} in M, the sets
∞⋃
n=1

En,
∞⋂
n=1

Fn

belong to M.

Proposition 3.29. A σ-algebra is a monotone class.

Proof. Let X be a σ-algebra of X and let {En} be an increasing sequence

of sets in X . By definition of X ,
⋃∞
n=1 En ∈ X for all n ∈ N. Now let

{Fn} be a decreasing sequence of sets in X , thus (Fn)c ∈ X for each n ∈ N.
14



Therefore,
∞⋃
n=1

(Fn)c ∈ X , by definition of X .

Whence [ ∞⋃
n=1

(Fn)c
]c
∈ X , by definition of X .

Applying DeMorgan’s Laws,
∞⋂
n=1

Fn =
∞⋂
n=1

[(Fn)c]c =

[ ∞⋃
n=1

(Fn)c
]c
∈ X .

Therefore, X is a monotone class.

Proposition 3.30. If A is a nonempty collection of subsets of X , then there

is a smallest monotone class containing A.

Proof. Let F be the family of all monotone classes of X that contain A. Let

M =
⋂ {B : B ∈ F}. By definition of M, M ⊇ A. Now let {En} be an

increasing sequence of sets in M. Therefore, {En} ∈ B for each B ∈ F.

For all B ∈ F,
⋃∞
n=1 En ∈ B since for B ∈ F, B is a monotone class. Thus⋃∞

n=1 En ∈ M. Similarly
⋂∞
n=1Fn ∈ M for {Fn} a decreasing sequence

in M. As a result, M is a monotone class and if B is a monotone class

containing A then B ⊇ M.

15



4. Measures

Definition 4.1. A measure is an extended real-valued function µ defined

on a σ-algebra X of subsets of X such that

(i) µ(∅) = 0

(ii) µ(E) ≥ 0 for all E ∈ X
(iii) µ is countably additive in the sense that if {En} is any disjoint sequence

of sets in X , then

µ

( ∞⋃
n=1

En
)

=
∞∑
n=1

µ (En) . (4.1)

Proposition 4.2. If µ is a measure on X and A is a fixed set in X , then

the function λ, defined for E ∈ X by λ(E) = µ(A ∩ E) is a measure on X .

Proof. First, (A ∩ ∅) = ∅. Therefore Condition (i) of Definition 4.1 is satis-

fied since,

λ(∅) = µ(A ∩ ∅) = µ(∅) = 0.

Next, for all E ∈ X , (A ∩ E) ∈ X since X is a σ-algebra . Thus, condition

(ii) of Definition 4.1 is satisfied since

λ(E) = µ (A ∩ E) ≥ 0 for all E ∈ X .

Lastly, let {En} be a disjoint sequence in X . Then (Ei ∩ A) ∩ (Ej ∩ A) = ∅
for all i 6= j. Also, (

A ∩
∞⋃
n=1

En
)

=
∞⋃
n=1

(A ∩ En) .

Therefore we can say,

λ

( ∞⋃
n=1

En
)

= µ

( ∞⋃
n=1

[A ∩ En]
)

=
∞∑
n=1

µ (A ∩ En) =
∞∑
n=1

λ (En) .

Thus λ satisfies Conditions (i), (ii) and (iii) of Definition 4.1.

The following fact, from elementary Calculus, will be useful in the proof

of the next two propositions.
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Fact 4.3. If
∞∑
n=1

an and
∞∑
n=1

bn are convergent series of real numbers, then

∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn.

Thus, if
∞∑
n=1

ajn are a convergent series of real numbers for 1 ≤ j ≤ N , then

∞∑
n=1

N∑
j=1

ajn =
N∑
j=1

∞∑
n=1

ajn.

Proposition 4.4. If µ1, · · · , µn are measures on X and a1, · · · , an are non-

negative real numbers, then the function λ, defined for E ∈ X by

λ (E) =
n∑
j=1

ajµj (E) (4.2)

is a measure on X .

Proof. Conditions (i) and (ii) follow from the fact that µ1, · · · , µn are mea-

sures on X and that a1, · · · , an are nonnegative real numbers. By plugging
∞⋃
m=1

Em into (4.2) where {Em} are disjoint and by Fact 4.3 we get

λ

( ∞⋃
m=1

Em
)

=
n∑
j=1

aj

∞∑
m=1

µj(Em) =
n∑
j=1

∞∑
m=1

ajµj(Em) =
∞∑
m=1

n∑
j=1

ajµj (Em) .

Therefore, λ is a measure.

Proposition 4.5. If {µn} is a sequence of measures on X with µn (X ) = 1

and if λ is defined by

λ (E) =
∞∑
n=1

2−nµn (E) , E ∈ X . (4.3)

then λ is a measure on X and λ (X ) = 1.

Proof. Clearly (i) and (ii) hold for Definition 4.1. To show

λ

 ∞⋃
j=1

En
 =

∞∑
j=1

λ (Ej)

17



where {Ej} are disjoint, we will show that the left hand side is greater than

the right hand side then we will show that the right hand side is greater

than the left hand side which implies equality.

Let {Ej} be a disjoint sequence from X . Fix N ∈ N. Then by Fact 4.3
N∑
j=1

λ (Ej) =
N∑
j=1

∞∑
n=1

µn (Ej)
2n

=
∞∑
n=1

N∑
j=1

µn (Ej)
2n

.

Now for each n, µn is a measure, therefore,

∞∑
n=1

N∑
j=1

µn (Ej)
2n

=
∞∑
n=1

µn

(⋃N
j=1 Ej

)
2n

≤
∞∑
n=1

µn

(⋃∞
j=1 Ej

)
2n

= λ

 ∞⋃
j=1

Ej
 .

Letting N go to infinity we see that

∞∑
j=1

λ (Ej) ≤ λ

 ∞⋃
j=1

Ej
 .

Now fix ε > 0. Since µn is a measure for each n and µn(X ) = 1 for all n

there exists a N(ε) ∈ N such that

λ

 ∞⋃
j=1

Ej
− ε =

∞∑
n=1

µn

(⋃∞
j=1 Ej

)
2n

− ε ≤
N(ε)∑
n=1

µn

(⋃∞
j=1 Ej

)
2n

.

By Proposition 4.4,

N(ε)∑
n=1

µn

(⋃∞
j=1 Ej

)
2n

=
∞∑
j=1

N(ε)∑
n=1

µn (Ej)
2n

≤
∞∑
j=1

∞∑
n=1

µn (Ej)
2n

=
∞∑
j=1

λ (Ej) .

Since ε was arbitrary

λ

 ∞⋃
j=1

Ej
 ≤

∞∑
j=1

λ (Ej) .

This concludes the proof.

Proposition 4.6. Let X = N and let X be the σ-algebra of all subsets of N.

If {αn} is a sequence of nonnegative real numbers and if we define µ : X → R̄

by

µ(∅) = 0; µ(E) =
∑
n∈E

αn, E 6= ∅,

then µ is a measure.
18



Proof. Conditions (i) and (ii) are obvious. Let {Em} be a disjoint sequence

in X . If µ

( ∞⋃
m=1

Em
)

= ∞ then done. If this is not the case, then

∑
n∈⋃∞m=1 Em

αn

is unconditionally convergent since αn is nonnegative for each n. (In other

words, we can rearrange the order of the series). Therefore,

µ

( ∞⋃
m=1

Em
)

=
∑

n∈⋃∞m=1 Em

αn =
∑

n∈E1∪E2∪···
αn

=
∑
n∈E1

αn +
∑
n∈E2

αn + · · · =
∞∑
m=1

µ (Em) .

Thus Condition (iii) is satisfied.

Proposition 4.7. If X is an uncountable set and if X is the family of all

subsets of X , then µ on E in X defined by

µ(E) = 0 if E is countable

µ(E) = ∞ if E is uncountable.

is a measure on X .

Proof. Condition (i) holds since the ∅ is countable, therefore µ(∅) = 0. Con-

dition (ii) follows directly from the definition of µ. For Condition (iii), let

{En} be a disjoint sequence in X . If for all n ∈ N, En countable, then⋃∞
n=1 En is countable and

µ

( ∞⋃
n=1

En
)

= 0 =
∞∑
n=1

µ (En) .

If for any n ∈ N, En is uncountable, then
⋃∞
n=1 En is uncountable and thus

µ

( ∞⋃
n=1

En
)

= ∞ =
∞∑
n=1

µ (En) .
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Proposition 4.8. Let X = N and let X be the family of all subsets of N.

If E is finite, let µ(E) = 0: if E is infinite, let µ(E) = ∞. Then, µ is not a

measure on X .

Proof. Let {En} be a disjoint sequence in X where for all n ∈ N, En is

finite. This means that
⋃∞
n=1 En is infinite and therefore µ (

⋃∞
n=1 En) = ∞.

However µ (En) = 0 for all n ∈ N and thus
∑∞

n=1 µ (En) = 0.

Proposition 4.9. Let (X ,X , µ) be a measurable space and let {En} be a

sequence in X . Then

µ (lim inf En) ≤ lim inf µ (En) . (4.4)

Proof. Let {En} be a sequence in X . It is clear that

{ ∞⋂
n=m

En
}∞
m=1

is an

increasing sequence. Therefore by Lemma 3.4(a) [Bartle],

µ

( ∞⋃
m=1

[ ∞⋂
n=m

En
])

= lim
m→∞µ

( ∞⋂
n=m

En
)
. (4.5)

Moreover, for all n,m ∈ N such that n ≥ m, En ⊇
⋂∞
n=m En. Thus by

Lemma (3.3) [Bartle] µ (
⋂∞
n=m En) ≤ µ (En) for all n ≥ m which implies that

lim
m→∞µ

( ∞⋂
n=m

En
)
≤ lim inf µ (En) . (4.6)

Combining (4.5) and (4.6) gives (4.4).

Proposition 4.10. If µ
(⋃ En) <∞, then

lim supµ (En) ≤ µ (lim sup En) . (4.7)

Proof. Let {En} be a sequence such that
⋃∞
n=1 En <∞. Notice that

{⋃∞n=m En}∞m=1 is a decreasing sequence. Thus, by Lemma 3.4(b) EOI,

µ

( ∞⋂
m=1

[ ∞⋃
n=m

En
])

= lim
m→∞µ

( ∞⋃
n=m

En
)
. (4.8)

Moreover, for all n,m ∈ N with n ≥ m, En ⊆
⋃∞
n=m En which implies that

lim supµ (En) ≤ lim
m→∞µ

( ∞⋃
n=m

En
)
. (4.9)

Combining (4.8) and (4.9) gives (4.7).
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Proposition 4.11. If (X ,X , µ) a measure space and {En} is a sequence in

X , then

µ

( ∞⋃
n=1

En
)
≤

∞∑
n=1

µ (En) (4.10)

Proof. Let Fn = En\
⋃n−1
j=1 Ej when n > 1 and E1 = F1 (the disjunctification

of {En}). From Proposition 3.6, we know that
⋃∞
n=1 En =

⋃∞
n=1Fn therefore

µ

( ∞⋃
n=1

En
)

=
∞∑
n=1

µ (Fn) ≤
∞∑
n=1

µ (En) ,

since Fn ⊆ En for each n.

Proposition 4.12. Let (X ,X , µ) be a measure space and let

Z = {E ∈ X : µ(E) = 0} .

Then Z is not a σ-algebra .

Proof. Let E be in Z, thus X\E ∈ X . If µ(X ) = 0, then (E)c ∈ Z. However,

in general (E)c /∈ Z since µ(X\E) = µ(X )− µ(E).

Though Z is not a σ-algebra Proposition 4.13 will show that it does have

some important properties that will be useful in the completion of X .

Proposition 4.13.

(i) Let E ∈ X and let F ∈ Z, then E ∩ F ∈ Z
(ii) Let En be in Z for n ∈ N, then (

⋃∞
n=1 En) ∈ Z.

Proof. To see (i) let E ∈ X and let F ∈ Z, then E ∩ F ∈ X . Moreover,

µ (E ∩ F) ≤ µ (E) = 0. Therefore, E ∩ F ∈ Z.

To see (ii) let En be in Z for n ∈ N then µ(En) = 0 for each n ∈ N. Thus∑∞
n=1 µ (En) = 0. But by Proposition 4.11,

µ

( ∞⋃
n=1

En
)
≤

∞∑
n=1

µ (En) = 0.

Consequently, (
⋃∞
n=1 En) ∈ Z.
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Proposition 4.14. Let X ,X , µ, and Z be as in Proposition 4.12. Let X ′

be the family of all subsets of X of the form

(E ∪ Z1) \Z2, E ∈ X (4.11)

where Z1 and Z2 are arbitrary subsets of sets belonging to Z. A set is in

X ′ if and only if it has the form Ẽ ∪ Z̃ where Ẽ ∈ X and Z̃ is a subset of

a set in Z.

Proof. Let F be set in X ‘. Therefore, F has the form of (4.11). Let A be

the set in Z such that Z1 ⊆ A and let B be the set in Z such that Z2 ⊆ B.

Thus,

F = (E ∪ Z1) \Z2 = E\Z2 ∪ Z1\Z2.

where Z1 ⊆ A ∈ X and Z2 ⊆ B ∈ X . Now E\Z2 = (E\B) ∪ (E ∩ B\Z2).

Therefore

E\Z2 ∪ Z1\Z2 = E\B ∪ [E ∩ B\Z2] ∪ [Z1\Z2] .

Notice that E\B ∈ X , therefore let E\B = Ẽ . Observing that (E ∩ B\Z2) ⊆
B ∈ Z and (Z1\Z2) ⊆ A ∈ Z, we let Z̃ = [E ∩ B\Z2] ∪ [Z1\Z2]. Therefore,

F = (E ∪ Z1) \Z2 = Ẽ ∪ Z̃, where Ẽ ∈ X and Z̃ is a subset of a set in Z.

To conclude, Ẽ ∪ Z̃ =
(
Ẽ ∪ Z̃

)
\∅, which shows the other implication.

Corollary 4.15. As defined in Proposition 4.14, X ′ is a σ-algebra .

Proof. Obviously, ∅ is in X ′. Let F be in X ′. Therefore, F = (E ∪ Z1) \Z2

where E ∈ X , Z1 ⊆ A ∈ Z and Z2 ⊆ B ∈ Z. Now,

(F)c = [(E ∪ Z1) \Z2]
c = [(E)c ∩ (Z1)

c] ∪ Z2

Notice that

(E)c ∩ (Z1)
c = (E)c ∩ (A)c ∪ [A\Z1 ∩ (E)c] .

Therefore,

(F)c = [(E)c ∩ (A)c] ∪ [A\Z1 ∩ (E)c] ∪ Z2.
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We see that (E)c ∩ (A)c ∈ X and [A\Z1 ∩ (E)c] ∪ Z2 ⊆ A ∪ B ∈ Z.

Therefore, by Proposition 4.14, (F)c ∈ X ‘. Finally, let {Fn} be a sequence

in X ‘, therefore Fn = En ∪ Zn where En ∈ X and Zn ⊆ An ∈ Z. Now
∞⋃
n=1

(En ∪ Zn) =
∞⋃
n=1

(En) ∪
∞⋃
n=1

(Zn) .

It is clear that
⋃∞
n=1 (En) ∈ Xand

⋃∞
n=1 (Zn) ⊆

⋃∞
n=1 (An) ∈ Z. Thus, X ‘

is a σ-algebra .

Proposition 4.16. Let µ‘ be defined on X ‘ by

µ‘ (E ∪ Z) = µ (E) , (4.12)

where E ∈ X and Z is a subset of a set with µ-measure zero. Then µ‘ is

well-defined and a measure on X ‘ which agrees with µ on X . This measure

µ‘ is called the completion of µ.

Proof. First, we claim that if (E ∪ Z1) = (F ∪ Z2) where E ,F ∈ X and

Zi ⊆ Ai with µ(Ai) = 0 for i = 1, 2, then µ (E) = µ (F). To see this

let (E ∪ Z1) = (F ∪ Z2). Therefore E ⊆ (F ∪A2) and thus by Lemma 3.3

[Bartle] and Proposition 4.14, µ (E) ≤ µ (F) + µ (A2) = µ (F) . Similarly,

we see that, µ (F) ≤ µ (E). Therefore, µ (E) = µ (F) and our claim is

demonstrated. Thus, µ‘ is well-defined.

Now, we demonstrate that µ‘(E ∪ Z) = µ (E) is a measure by showing that

it satisfies the three conditions of Definition 4.1. Condition (i) follows from

the fact that µ‘(∅ ∪ Z) = µ (∅) = 0. Condition (ii) holds since µ‘(E ∪ Z) =

µ (E) ≥ 0 for all (E ∪ Z) ∈ X ‘. And finally, let {En ∪ Zn} be a sequence in

X ‘.

µ‘

[ ∞⋃
n=1

(En ∪ Zn)
]

= µ‘

[ ∞⋃
n=1

En ∪
∞⋃
n=1

Zn

]

=
∞∑
n=1

µ (En) =
∞∑
n=1

µ‘ (En ∪ Zn) .
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Proposition 4.17. Let (X ,X , µ) be a measure space and let (X ,X ‘, µ‘) be

its completion in the sense of Proposition 4.16. Suppose that f is an X ‘-

measurable function on X to the extended real line. Then, there exists a

X -measurable function g on X to the extended real line which is µ-almost

everywhere equal to f .

Proof. For each rational number r, let Ar = {x ∈ X : f(x) > r}. Since f

is X ‘-measurable, Ar ∈ X ‘ for each rational number. Now we may write

Ar = Er ∪ Zr where Er ∈ X and Zr a subset of a set in Z. Let Z be in Z
such that

⋃
Zr is a subset of Z. Furthermore, we define g(x) = f(x) for all

x /∈ Z and g(x) = 0 for all x ∈ Z. Therefore, g(x) is µ-almost equal to f(x).

To see that g(x) is X -measurable, we show that {x ∈ X : g(x) > r} ∈ X
for all r ∈ Q and then use Proposition 3.27.

If r ≥ 0, then

{x ∈ X : g(x) > r} = {x ∈ X : f(x) > r} \Z
= (Er ∪ Zr) \Z = (Er\Z ∪ ∅) ∈ X .

If r < 0, then

{x ∈ X : g(x) > r} = {x ∈ X : g(x) > r} ∪ Z
= (Er ∪ Zr) ∪ Z = (Er ∪ Z) ∈ X .

This completes the proof.

Proposition 4.18. If µ is a charge on X , then Lemma 3.4 [Bartle] holds.

Proof. Lemma 3.4 does not depend on the fact that µ (En) ≥ 0 for all En ∈
X , therefore it holds for a charge.

Proposition 4.19. If µ is a charge on X and π is defined for E ∈ X as

π (E) = sup {µ (A) : A ⊆ E , A ∈ X} , (4.13)

π is a measure on X .
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Proof. Clearly, (i) and (ii) from Definition 4.1 hold. To show (iii) we will

argue like Proposition 4.5. Let {En} be a pairwise disjoint sequence from

X . Fix A ⊆ ⋃∞n=1 En with A ∈ X . Therefore,

µ(A) = µ

( ∞⋃
n=1

En ∩ A
)

=
∞∑
n=1

µ(A ∩ En) ≤
∞∑
n=1

π (En) .

So

µ(A) ≤
∞∑
n=1

π (En) . (4.14)

In (4.14), taking the sup over all such A’s gives

π

( ∞⋃
n=1

En
)
≤

∞∑
n=1

π (En) . (4.15)

From (4.15), if π

( ∞⋃
n=1

En
)

= ∞ then the proof is done. So, assume

π

( ∞⋃
n=1

En
)
<∞ and fix ε > 0. For each j ∈ N,

π(Ej) ≤ π

( ∞⋃
n=1

En
)
<∞.

Therefore, there exists Aj ∈ X with Aj ⊆ Ej and

π(Ej)− ε

2j
≤ µ(Aj).

Thus,

π

( ∞⋃
n=1

En
)
≥ µ

( ∞⋃
n=1

An
)

=
∞∑
n=1

µ (An) ≥
∞∑
n=1

[
π(En)− ε

2n
]

=
∞∑
n=1

[π(En)]−
[ ∞∑
n=1

ε

2n

]
=

∞∑
n=1

[π(En)]− ε.

Since ε > 0 was arbitrary:

π

( ∞⋃
n=1

En
)
≥

∞∑
n=1

π(En).

This finishes the proof.

Proposition 4.20. Let λ denote the Lebesgue measure defined on the Borel

algebra, B of R.
25



(i) If E consists of a single point, then E ∈ B and λ(E) = 0.

(ii) If E is countable, then E ∈ B and λ(E) = 0.

(iii) The open interval (a, b), the half-open intervals (a, b], [a, b), and [a, b]

all have Lebesgue measure b− a.

Proof. Let E = {x} where x ∈ R. Let An = (x− 1
n , x+ 1

n) for each n ∈ N.

Clearly, An ∈ B for each n ∈ N, thus E =
∞⋂
n=1

(x − 1
n
, x +

1
n

) ∈ B. Now,

{An} is decreasing therefore from Lemma 3.4(b) [Bartle]

λ(E) = λ

( ∞⋂
n=1

An
)

= lim
n→∞λ(An) = lim

n→∞
2
n

= 0.

This shows (i).

Now, to show (ii) let E = {xn}n∈N and xn 6= xm for n 6= m. So by (i)

and countable additivity of a measure we get (ii). For each xn ∈ E define

Anm = (xn − 1
m , xn + 1

m). Thus,
∞⋂
m=1

Anm = xn ∈ B and therefore E =
∞⋃
n=1

( ∞⋂
m=1

Anm

)
∈ B.

Now, we see that since
⋂∞
m=1Aim ∩⋂∞m=1Ajm = ∅ when i 6= j,

λ(E) = λ

[ ∞⋃
n=1

( ∞⋂
m=1

Anm

)]
=

∞∑
n=1

λ

( ∞⋂
m=1

Anm

)
= 0.

This demonstrates (ii).

Lastly, by definition of λ, λ(a, b) = b−a. From Proposition 3.9, (a, b] =⋂∞
n=1(a, b+ 1

n) ∈ B. Therefore,

λ (a, b] = λ

[ ∞⋂
n=1

(a, b+
1
n

)

]
= lim

n→∞λ(a, b+
1
n

)

= lim
n→∞(b+

1
n
− a) = b− a.

Likewise, for [a, b) and [a, b]. This shows (iii).

Proposition 4.21. If λ denotes the Lebesgue measure and E 6= ∅ is an

open subset of R, then λ(E) > 0. Also if K is compact subset of R, then

λ(K) <∞.
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Proof. From Theorem 3.1.13 [Stoll] there exits a finite or countable collection

{In} of pairwise disjoint open intervals such that E =
⋃
n In for E an open

subset of R . Therefore, for E open E ∈ B. Also since E open for every point

p in E we can find an ε > 0 such that, (p− ε
2 , p+ ε

2) ⊂ E . Applying Lemma

3.3 [Bartle], we get,

0 < λ
(
p− ε

2
, p+

ε

2

)
≤ λ(E).

Therefore, λ(E) > 0.

Let K be compact. Therefore, by Heine-Borel Theorem, K is bounded,

i.e. there exists a positive constant M such that K ⊂ [−M, M ]. Thus

λ(K) ≤ λ([−M, M ] = 2M <∞.

This finishes the proof.

In the following example, we vary the Cantor set such that we obtain a

set of positive Lebesgue measure that contains no non-void open interval.

Example 4.22. The Fat Cantor Set, P̃ , is constructed like the Cantor set

except the open intervals removed at the nth step have length α3−n, 0 <

α < 1. Thus, P̃ =
⋂∞
n=1R

c
n where Rn is the part removed on the nth step.

Note that
⋂N
n=1R

c
n is the disjoint union of 2N closed intervals, each of length

less than 1
2N . Therefore, if E (a non-void open interval) is in P̃ , then it sits

in one of these intervals with length less than 1
2n for all n ∈ N. This implies

that λ(E) = 0 which is a contradiction of Proposition 4.21. Finally, it is

clear that

λ((P̃ )c) =
1
3
α

∞∑
n=0

(
2
3

)n
= α.

Therefore, λ(P̃ ) = 1− α > 0.

In the following example the almost everywhere limit of a sequence of

measurable functions is not measurable.
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Example 4.23. Let E be a subset of a set N ∈ X with µ(N ) = 0, but

E /∈ X . Let fn = 0 for all n ∈ N. Thus, lim
n→∞ fn = XE (the characteristic

equation of E) almost everywhere. Therefore, the almost everywhere limit

of fn equals a non-measurable function.
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5. The Integral

Definition 5.1. If f belongs to M+(X ,X ), we define the integral of f with

respect to µ to be the extended real number∫
f dµ = sup

∫
φdµ,

where the supremum is extended over all simple functions φ in M+(X ,X )

satisfying 0 ≤ φ(x) ≤ f(x) for all x ∈ X . If f belongs to M+(X ,X ) and E
belongs to X , then f1E belongs to M+(X ,X ) and we define the integral of

f over E with respect to µ to be the extended real number∫
E
f dµ =

∫
f1E dµ.

Proposition 5.2. If the simple function φ in M+(X ,X ) has the (not nec-

essarily standard representation)

φ =
m∑
k=1

bkXFk
, (5.1)

where bk ∈ R and Fk, then∫
φ dµ =

m∑
k=1

bk µ (Fk) . (5.2)

Proof. If φ has standard representation then done. Otherwise by rewriting

(5.1), we get

φ = b1XF1 + · · ·+ bmXFm .

Therefore,∫
φ dµ =

∫
(b1XF1 + · · ·+ bmXFm) dµ

=
∫
b1XF1dµ+ · · ·+

∫
bmXFmdµ (by Lemma 4.3(a) ([Bartle])

= b1µ (F1) + · · ·+ bmµ (Fm) (since bkXFk
is a simple function.)

=
m∑
k=1

bk µ (Fk)
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Proposition 5.3. If φ1 and φ2 are simple functions in M+(X ,X ), then

ψ = sup {φ1, φ2} , ω = inf {φ1, φ2}

are also simple functions in M+(X ,X ).

Proof. Let ψ = sup {φ1, φ2}. Therefore,

ψ = φ11{x∈X :φ1≥φ2} + φ21{x∈X :φ2>φ1}

Thus ψ is a simple function since it is the sum of two simple functions.

Likewise for ω.

The following is a different proof of Corollary 4.7(a) from [Bartle]. We will

attain the same result without using the Monotone Convergence Theorem.

Proposition 5.4. If f ∈M+(X ,X ) and c > 0, then∫
cf dµ = c

∫
f dµ. (5.3)

Proof. Let φ ∈ M+(X ,X ) be a simple function such that φ ≤ f and let

ψ ∈M+(X ,X ) be a simple function such that φ ≤ cf . The map φ→ ψ = cφ

is clearly a one to one function since cφ1 = cφ2 implies that φ1 = φ2 .

Therefore,

sup
ψ≤cf

∫
ψ dµ = sup

cφ≤cf

∫
cφ dµ = c sup

φ≤f

∫
φ dµ.

This gives (5.3).

In problems, 4.E and 4.F from Elements of Integration, Bartle attempts

to show another proof for 4.7 Corollary [Bartle] without using the Monotone

Convergence Theorem. However, as stated Problem 4.E is false and therefore

Problem 4.F cannot be completed. I will state 4.E, show that it is false by

counterexample, then I will show 4.F assuming (incorrectly) that 4.E is true.

Proposition 5.5. Let f, g belong to M+(X ,X ), let φ be a simple function

in M+(X ,X ) with φ ≤ f , and let ω be a simple function in M+(X ,X ) with

ω ≤ f + g. Let θ1 = inf {ω, φ} and let θ2 = sup {ω − φ, 0}. Then
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(i) ω = θ1 + θ2

(ii) θ1 ≤ f

(iii) θ2 ≤ g.

Proof. First, conditions (i) and (ii) always hold.

(i) If θ1 = inf {ω, φ} = ω, then θ2 = sup {ω − φ, 0} = 0. Therefore,

θ1 + θ2 = ω. If θ1 = inf {ω, φ} = φ, then θ2 = sup {ω − φ, 0} = ω − φ.

Therefore, θ1 + θ2 = φ+ ω − φ = ω.

(ii) If θ1 = φ, then θ1 ≤ f . If θ1 = ω, then ω ≤ φ ≤ f .

Now, condition (iii) holds if inf {φ, ω} = ω since inf {φ, ω} = ω implies that

sup {ω − φ, 0} = 0 and 0 ≤ g. However if inf {φ, ω} = φ the conclusion need

not be true. Let φ = 11[0, 1], f = 21[0, 1], ω = 41[0, 1] and f+g = 4.0011[0, 1].

Therefore, φ ≤ f and ω ≤ f + g. But

θ2 = ω − φ = 3χ[0, 1] ≥ 2.0011[0, 1] = g.

Assuming Proposition 5.5 is true, I’ll show the following proposition.

Proposition 5.6. Using Proposition 5.5, if f, g belong to M+(X ,X ), then

(i) f + g ∈M+(X ,X )

(ii)
∫

(f + g) dµ =
∫
f dµ+

∫
g dµ.

Proof. From 2.6 Lemma [Bartle] f + g ∈ M+(X ,X ) Furthermore, by the

definition of the integral with respect to µ,

sup
ω

∫
ω dµ =

∫
(f + g) dµ where the simple function ω ≤ f + g.

Moreover, from Proposition 5.5, 4.5 Lemma [Bartle] and 4.3 Lemma [Bartle],∫
f dµ+

∫
g dµ ≥

∫
θ1 dµ+

∫
θ2 dµ =

∫
(θ1 + θ2) dµ =

∫
ω dµ.

Therefore, from the definition of the integral and by taking the supremum

over all simple functions ω ≤ f + g.∫
f + g dµ =

∫
f dµ+

∫
g dµ.
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Proposition 5.7. Let X = N, let X be all subsets of N, and let µ be the

counting measure on X . If f is a nonnegative function on N, then f ∈
M+(X ,X ) and ∫

f dµ =
∞∑
n=1

f(n).

Proof. Let fN =
N∑
n=1

f(n)1[n,n+1). Clearly, fN monotone increasing to f a

function on N. Applying the MCT we get,∫
f dµ = lim

N→∞

∫ ∞∑
n=1

f(n)1[n,n+1) = lim
N→∞

N∑
n=1

f(n) =
∞∑
n=1

f(n).

Example 5.8. Let X = R, X = B, and let λ be the Lebesgue measure on

X . Let fn = 1[0, n]. Clearly, fn converges to f = 1[0, ∞]. Therefore, by

Monotone Convergence we have,
∫
fdλ =

∫
fndλ = ∞. Note the MCT can

be applied here since fn ∈M+(X ,X ) which means that
∫
fndλ will always

have a limit in the extended real line.

Example 5.9. Let X = R, X = B, and let λ be the Lebesgue measure on

X . Let fn = 1
n1[n, ∞]. Obviously fn is monotone decreasing to f = 0. In

fact, fn converges uniformly to f = 0 since given ε > 0 there exists a n0 ∈ N

such that,

|fn(x)− f(x)| ≤
∣∣∣∣ 1n
∣∣∣∣ = 1

n
< ε

for all n ≥ n0 and for all x ∈ X . However,∫
fdλ = 0 6= ∞ = lim

n→∞

∫
fn dλ

This example does not contradict the MCT because fn is a decreasing se-

quence.
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Example 5.10. Let X = R, X = B, and let λ be the measure on X . Let

fn = 1
n1[0, n]. Like Example 5.9, fn converges uniformly to f = 0 and∫

fdλ = 0 6= 1 = lim
n→∞

∫
fn dλ.

Again, this example does not contradict the MCT since fn is not monotone

increasing. But we can apply Fatou’s Theorem which gives∫
(lim inf fn) dλ = 0 ≤ 1 = lim inf

∫
fn dλ.

Example 5.11. Let gn = n1[ 1
n
, 2

n
] and let g = 0. Now, lim gn(x) = 0 for

each x ∈ X . Therefore, gn converges everywhere to g but not uniformly.

However, MTC does not apply since gn is not monotone increasing. Fatou’s

Theorem though does apply since gn ∈M+(X ,X ).

Proposition 5.12. If (X ,X , µ) is a finite measure space, and if {fn} is a

sequence of real-valued functions in M+(X ,X ) which converges uniformly

to a function f , then f belongs to M+(X ,X ) and∫
f dµ = lim

n→∞

∫
fn dµ. (5.4)

Proof. By Corollary 2.10 from [Bartle], f ∈ M+(X ,X ) since fn converges

uniformly to f . Also, fn converges uniformly to f and (X ,X , µ) finite

implies that given ε > 0 there exists an no such that

f(x)− ε

µ(X )
< fn(x) < f(x) +

ε

µ(X )
.

for all n ≥ no and for all x ∈ X . Thus, by 4.5 Lemma [Bartle] and 4.7

Corollary [Bartle],∫
f(x) dµ−

∫
ε

µ(X )
dµ <

∫
fn(x) dµ <

∫
f(x) dµ+

∫
ε

µ(X )
dµ.

Whence, ∣∣∣∣∫ fn(x) dµ−
∫
f(x) dµ

∣∣∣∣ < εµ(X )
µ(X )

= ε.

This gives (5.4).
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Proposition 5.13. Let X be a closed interval [a, b] in R, let λ be the

Lebesgue measure on X . If f is a nonnegative continuous function on X ,

then ∫
f dλ =

∫ b

a
f(x) dx, (5.5)

where the right side denotes the Riemann integral of f .

Proof. Let φ be a nonnegative step function on [a, b]. Therefore, there

exists, P, a partition of [a, b] where a = x0 < x1 < · · · < xn = b such that

for i ∈ Nn φ takes on one value in the interval [xi−1, xi). Let ai ≥ 0 denote

this value. Thus,

φ(x) = a11[x0, x1) + a21[x1, x2) + · · ·+ an1[xn−1, xn)

is a simple function. Therefore,∫
φ(x) dλ = a1λ([x0, x1) + · · ·+ anλ([xn−1, xn)

=
n∑
i=1

ai(xi − xi−1) =
∫ b

a
φ(x) dx.

Thus, we have shown the proposition for nonnegative step functions.

Now let f be continuous and nonnegative. Thus,∫ b

a
f(x) dx = sup

P
{L(P, f) : P a partition of [a, b]} .

By definition,

L(P, f) =
n∑
i=1

mi∆xi,

where mi = inf {f(t) : f(xi−1) ≤ f(t) ≤ f(xi)} and P a partition of [a, b].

Therefore,

L(P, f) =
∫
φ dλ

where φ(x) ≤ f(x) and φ(x) a simple function. Thus∫ b

a
f(x) dx = sup

φ

∫
φ dλ =

∫
f dλ.
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Proposition 5.14. Let X = [0, ∞), let X be the Borel subsets and let λ

be the Lebesgue measure on X . If f is a nonnegative continuous function

on X , show that ∫
X
f dλ = lim

b→∞

∫ b

0
f(x) dx.

Proof. By Proposition 5.13,∫
[0, b]

f dλ =
∫ b

0
f(x) dx.

Therefore,

lim
b→∞

∫ b

0
f(x) dx = lim

b→∞

∫
[0, b]

f dλ.

We conclude the proof by showing,

lim
b→∞

∫
[0, b]

f dλ =
∫
X
f dλ.

The above is true however by the MCT since f1[0,b] is monotone increasing

to f .

Proposition 5.15. If f ∈M+(X ,X ) and∫
f dµ <∞,

then µ {x ∈ X : f(x) = ∞} = 0.

Proof. Let En = {x ∈ X : f(x) ≥ n}. Therefore, µ {x ∈ X : f(x) = ∞} =⋂∞
n=1 En. Clearly, {En} is decreasing. Thus, by 3.4(b) Lemma [Bartle],

µ {x ∈ X : f(x) = ∞} = µ

( ∞⋂
n=1

En
)

= lim
n→∞µ(En)

provided µ(E1) <∞. For each n ∈ N, n1En ≤ f . By 4.5(a) Lemma [Bartle]∫
n1En ≤

∫
f dµ < ∞ for each n ∈ N. Now nµ(En) < ∞ for each n. Thus,

µ(E1) < ∞. To finish the proof, it will be shown that limµ(En) = 0. It

has already been established that nµ(En) ≤
∫
f dµ for all n. Therefore,

µ(En) ≤ 1
n

∫
f dµ for all n. This implies that

limµ(En) ≤
(∫

f dµ

)
lim
n→∞

1
n

= 0.
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Therefore, µ

( ∞⋂
n=1

En
)

= 0.

Proposition 5.16. If f ∈M+(X ,X ) and∫
f dµ <∞,

then the set N = {x ∈ X : f(x) > 0} is σ-finite (that is, there exists a se-

quence, {Fn}n∈N
∈ X , such that N ⊆ ⋃Fn and µ(Fn) <∞).

Proof. Let Fn =
{
x ∈ X : f(x) > 1

n

}
. For each n, Fn ∈ X , since f ∈

M+(X ,X ). Therefore,
⋃∞
n=1{Fn} ∈ X . Now, if x ∈ N , then f(x) > 0.

But, there exists a n such that f(x) > 1
n . Thus, x ∈ ⋃∞n=1Fn. Therefore,

N ⊆ ⋃∞n=1Fn. By construction, 1
n1Fn < f for each n. Thus,∫

1
n
1Fn dµ <

∫
f dµ <∞.

Clearly, 1
nµ(Fn) <∞ and therefore µ(Fn) <∞.

Proposition 5.17. If f ∈M+(X ,X ) and∫
f dµ <∞,

then for any ε > 0 there exists a set E ∈ X such that µ(E) <∞ and∫
f dµ ≤

∫
E
f dµ+ ε.

Proof. Let {En} be a disjoint sequence in X . Therefore∫
⋃∞

n=1 En

f dµ =
∞∑
n=1

∫
En

f dµ = lim
m→∞

m∑
n=1

∫
En

f dµ ≤
∫
f dµ.

The series
∑∞

n=1

∫
En
f dµ is increasing. Therefore given an ε > 0 there exist

a n0 such that ∫
f dµ− ε ≤

n0∑
n=1

∫
En

f dµ =
∫
⋃n0

n=1 En

f dµ.

for all n ≥ no. By letting E =
⋃n0
n=1 En the proposition is proved.
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Proposition 5.18. If {fn} ⊂ M+(X ,X ), {fn} converges to f almost ev-

erywhere, and ∫
f dµ = lim

∫
fn dµ <∞,

then ∫
E
f dµ = lim

∫
E
fn dµ

for each E ∈ X .

Proof. Since fn converges to f , fn1E converges to f1E . By Fatou’s Theorem,∫
E

(lim inf fn) dµ =
∫
E
f dµ ≤ lim inf

∫
E
fn dµ. (5.6)

By applying Fatou’s Theorem to fn − fn1E it is seen that,∫ (
lim inf (fn − fn1E)

)
dµ ≤ lim inf

∫
(fn − fn1E) dµ.

Since lim fn and lim
∫
fn exist, the limits can be “pushed through the paren-

thesis” to give,∫
(f − f1E) dµ ≤

∫
f dµ+ lim inf

(
−
∫
fn1E dµ

)
.

By subtracting
∫
f dµ and applying a property of lim inf,

−
∫
f1E dµ ≤ − lim sup

(∫
fn1E dµ

)
.

Therefore, ∫
f1E dµ ≥ lim sup

(∫
fn1E dµ

)
. (5.7)

By combining (5.6) and (5.7), the proof is concluded.
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6. Integrable Functions

In Chapter 5 from [Bartle], the General Lebesgue Integral is established

for functions with negative values. More specifically, L (X ,X , µ) is defined

as the collection of all X -measurable real valued functions such that both

the positive and negative parts have finite integrals.

Proposition 6.1.

(a) If f ∈ L (X ,X , µ) and a > 0, then the set {x ∈ X : |f(x)| ≥ a} has

finite measure.

(b) If f ∈ L (X ,X , µ) and a > 0, then the set {x ∈ X : f(x) 6= 0} has

σ-finite measure (that is, the union of measurable sets with finite mea-

sure).

Proof. Let Pa = {x ∈ X : f+(x) ≥ a} and let Na = {x ∈ X : f−(x) ≥ a}.
Therefore, {x ∈ X : |f(x)| ≥ a} = Pa ∪ Na. Now a1Pa ≤ f+. Thus by

Lemma 4.5 (a) and since f ∈ L (X ,X , µ),

aµ(Pa) ≤
∫
f+ dµ <∞.

Likewise µ(Na) <∞. Therefore, for a > 0

µ ({x ∈ X : |f(x)| ≥ a}) = µ (Pa ∪Na) <∞.

For (b), notice that

{x ∈ X : f(x) 6= 0} =
{
x ∈ X : f+(x) > 0

} ∪ {x ∈ X : f−(x) > 0
}
.

Since f ∈ L (X ,X , µ), then (b) follows from Proposition 5.16

Proposition 6.2. If f is X -measurable function and if f(x) = 0 for µ-

almost all x ∈ X , then f ∈ L (X ,X , µ) and∫
f dµ = 0. (6.1)

Proof. Since f = 0 µ-almost everywhere, then f+ = 0, f− = 0 µ-almost

everywhere. From Corollary 4.19 [Bartle],
∫
f+ dµ = 0,

∫
f− dµ = 0. There-

fore, f ∈ L (X ,X , µ) and (6.1) holds.
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Proposition 6.3. If f ∈ L (X ,X , µ) and g is an X -measurable real val-

ued function such that f(x) = g(x) almost everywhere on X , then g ∈
L (X ,X , µ) and ∫

f dµ =
∫
g dµ.

Proof. Let N = {x ∈ X : f(x) 6= g(x)}. Therefore, by assumption

µ(N ) = 0. Thus∫
|g| dµ =

∫
X\N

|g| dµ+
∫
N
|g| dµ

=
∫
X\N

|f | dµ+
∫
N
|g| dµ =

∫
X\N

|f | dµ <∞.

Thus, by 5.3 Theorem [Bartle] g ∈ L (X ,X , µ). Finally, arguing as above,∫
X
g dµ =

∫
X\N

g dµ+
∫
N
g dµ =

∫
X\N

f dµ+
∫
N
g dµ

=
∫
X
f dµ−

∫
N
f dµ+

∫
N
g dµ =

∫
X
f dµ.

This completes the proof.

Proposition 6.4. If f ∈ L (X ,X , µ) and ε > 0, then there exists a X −
measurable simple function φ such that∫

|f − φ| dµ < ε. (6.2)

Proof. By Lemma 2.11 [Bartle] and MCT there exists a φ+ and φ− in

M+(X ,X ) such that∫ ∣∣f+ − φ+
∣∣ dµ < ε and

∫ ∣∣f− − φ−
∣∣ dµ < ε.

Define P = {x ∈ X : f(x) ≥ 0} and N = {x ∈ X : f(x) < 0}. Certainly,

P ∪N = X and P ∩N = ∅. Therefore,∫
|f − φ| dµ =

∫
P
|f − φ| dµ+

∫
N
|f − φ| dµ

=
∫ ∣∣f+ − φ+

∣∣1P dµ+
∫ ∣∣f− − φ−

∣∣1N dµ < ε.
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Proposition 6.5. If f ∈ L (X ,X , µ) and g is a bounded measurable func-

tion, then the product fg also belongs to L (X ,X , µ).

Proof. By assumption g bounded therefore there exists a constant K such

that |g| ≤ K. By 5.5 Theorem [Bartle], Kf is integrable. By 2.6 Lemma

[Bartle], fg is measurable. Clearly, |fg| ≤ |Kf |, therefore by 5.4 Corollary,

fg is in L (X ,X , µ).

Proposition 6.6. Suppose that f is in L (X ,X , µ) and that its indefinite

integral is

λ(E) =
∫
E
f dµ, E ∈ X .

Then

(a) λ(E) ≥ 0 for all E ∈ X if and only if f(x) ≥ 0 for almost all x ∈ X .

(b) λ(E) = 0 for all E if and only if f(x) = 0 for almost all x ∈ X .

Proof.

(a) Assume λ(E) ≥ 0 for all E ∈ X . Let N = {x ∈ X : f(x) < 0}.
Therefore, λ(N ) =

∫
N f+ dµ − ∫N f− dµ. Clearly

∫
N f+ dµ = 0, thus∫

N f− dµ = 0 for all x ∈ N . Since
∫
N f− dµ = 0 by 4.10 Corollary,

f− = 0 for almost all x ∈ X . Whence, f = f+ for almost all x ∈ X
and thus f ≥ 0 for almost all x ∈ X .

Now suppose f ≥ 0 for almost all x ∈ X . Then f− = 0 almost

everywhere. By 4.10 Corollary [Bartle],
∫
f− dµ = 0 For all E ∈ X ,

λ(E) =
∫
f1E dµ =

∫
f+1E dµ ≥ 0.

(b) Define P = {x ∈ X : f(x) ≥ 0}. Let N be as in (a). Suppose λ(E) = 0

for all E ∈ X then,

0 = λ(P) =
∫
f+ dµ
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Therefore by 4.10 Corollary [Bartle], f+ = 0 almost everywhere. Like-

wise

0 = λ(N ) =
∫
f− dµ.

Therefore, f− = 0 almost everywhere. So then f = 0 almost every-

where.

Assume f = 0 for almost x ∈ X . Then by Proposition 6.2 for all

E ∈ X

λ(E) =
∫
E
f dµ = 0.

Proposition 6.7. Suppose that f1, f2 are in L (X ,X , µ) and let λ1, λ2 be

their indefinite integrals, then λ1(E) = λ2(E) for all E ∈ X if and only if

f1(x) = f2(x) for almost all x in X .

Proof. Define f = f1 − f2 and λ(E) =
∫
E f dµ. Clearly

∫
f dµ =

∫
f1 dµ −∫

f2 dµ. Assume λ1(E) = λ2(E) for all E ∈ X . Then

λ(E) =
∫
E
f dµ =

∫
E
f1 dµ−

∫
E
f2 dµ = 0.

By Proposition 6.6, f = 0 for almost all x in X which means that f1 = f2

for almost all x in X .

Let f1 = f2 for almost all x on X . Then f = 0 almost everywhere. Again

by Proposition 6.2 for all E ∈ X ,

0 = λ(E) = λ1(E)− λ2(E).

This completes the proof.

Proposition 6.8. Let X = N, let X be all subsets of N, and let µ be the

counting measure on X , then f belongs to L (X ,X , µ) if and only if the

series
∑∞

n=1 f(n) is absolutely convergent, in which case∫
f dµ =

∞∑
n=1

f(n). (6.3)
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Proof. From 5.3 Theorem [Bartle] and the definition of L (X ,X , µ),

f ∈ L (X ,X , µ) if and only if
∫ |f |+ dµ,

∫ |f |− dµ have finite values and

|f |+ and |f |− are in M+(X ,X ). By Proposition 5.7,∫
|f |+ dµ =

∞∑
n=1

|f(n)|+ <∞ and
∫
|f |− dµ =

∞∑
n=1

|f(n)|− <∞

Therefore, combining the above equations, it is clear that
∑
f(n) is abso-

lutely convergent, provided f ∈ L (X ,X , µ).

If
∑∞

n=1 |f(n)| <∞, then
∑∞

n=1 f
+(n) and

∑∞
n=1 f

−(n) have finite values.

Now f+ and f− have nonnegative values, therefore Proposition 5.7 may be

applied to give f ∈ L (X ,X , µ). Lastly,∫
f dµ =

∫
f+ dµ−

∫
f− dµ =

∞∑
n=1

f+(n)−
∞∑
n=1

f−(n) =
∞∑
n=1

f(n).

Proposition 6.9. If {fn} is a sequence in L (X ,X , µ) which converges uni-

formly on X to a function f , and µ(X ) <∞, then∫
f dµ = lim

n→∞

∫
fn dµ.

Proof. Let f = f+ − f− and fn = f+
n − f−n . By Proposition 5.12,

lim
n→∞

∫
f+
n dµ =

∫
f+ dµ and lim

n→∞

∫
f−n dµ =

∫
f− dµ.

Therefore,∫
f dµ =

∫
f+ dµ−

∫
f− dµ = lim

∫
f+
n dµ− lim

∫
f−n dµ = lim

∫
fn dµ.

Remark 2. In general, the conclusion in Proposition 6.9 is false if the con-

dition µ(X ) <∞ is dropped. Let fn = 1
n1[0, n], let X = R and X = B and

let µ be the Lebesgue measure. Clearly, fn converges uniformly to f = 0.

Moreover,
∫
fn dµ = 1. Thus,

lim
∫
fn dµ = 1 6=

∫
f dµ = 0.
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Remark 3. In general, the Lebesgue Dominated Convergence Theorem fails

if the condition |fn| ≤ g for all n and g integrable is dropped. Let fn =

n1[0, 1
n

], let X = R and X = B and let λ be the Lebesgue measure. Now

lim fn converges almost everywhere to f = 0. However, there does not exist

an integrable function g such that |fn| ≤ g for all n. Clearly,
∫
fn dµ = 1.

Thus, ∫
f dλ = 0 6= 1 = lim

∫
fn dλ.

Proposition 6.10. If fn ∈ L (X ,X , µ), and if
∞∑
n=1

∫
|fn| dµ <∞,

then the series
∑
fn(x) converges almost everywhere to a function f in

L (X ,X , µ). Moreover, ∫
f dµ =

∞∑
n=1

∫
fn dµ.

Proof. By 4.13 Corollary [Bartle] and since f+
n ≤ |fn| for all n ∈ N,∫ ∞∑

n=1

f+
n dµ ≤

∫ ∞∑
n=1

|fn| dµ <∞.

Therefore,
∑∞

n=1 f
+
n converges almost everywhere to some function in

L (X ,X , µ). Call this function f+. Likewise,
∑∞

n=1 f
−
n converges almost

everywhere to some function in L (X ,X , µ). Call this function f−. Com-

bining
∑∞

n=1 f
+
n and

∑∞
n=1 f

+
n , it is clear that

∑∞
n=1 fn(x) converges almost

everywhere to f in L (X ,X , µ). Moreover,∫
f dµ =

∫ ∞∑
n=1

fn dµ =
∫ [ ∞∑

n=1

f+
n −

∞∑
n=1

f−n

]
dµ

=
∫ ∞∑

n=1

f+
n dµ−

∫ ∞∑
n=1

f−n dµ

=
∞∑
n=1

[∫
f+
n −

∫
f−n dµ

]
=

∞∑
n=1

∫
fn dµ.
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Proposition 6.11. Let fn ∈ L (X ,X , µ), and suppose that {fn} converges

to a function f . If

lim
n→∞

∫
|fn − f | dµ = 0, then

∫
|f | dµ = lim

n→∞

∫
|fn| dµ.

Proof. By hypothesis and by the triangle inequality, for ε > 0 there exists

Nε ∈ N so that for each n ≥ Nε∫ ∣∣∣|fn| − |f |
∣∣∣ dµ ≤ ∫ |fn − f | dµ < ε.

By 5.3 Theorem [Bartle] for each n ≥ Nε∣∣∣∣∫ (|fn| − |f |) dµ
∣∣∣∣ ≤ ∫ ∣∣∣|fn| − |f |

∣∣∣ dµ < ε.

Therefore,

lim
n→∞

∫
|fn| dµ =

∫
|f | dµ.

Proposition 6.12. Let f be an X −measurable function on X to R. For

n ∈ N, let {fn} be the sequence of truncates of f (see Proposition 3.20. If f

is integrable with respect to µ, then∫
f dµ = lim

n→∞

∫
fn dµ.

Conversely, if

sup
n∈N

∫
|fn| dµ <∞,

then f is integrable.

Proof. Assume f is integrable with respect to µ. By Proposition 3.20 fn

measurable for each n ∈ N. Since |fn| ≤ |f | for each n ∈ N and f integrable,

by 5.4 Corollary fn is integrable for each n ∈ N. Clearly fn converges

almost everywhere to f , therefore by the Lebesgue Dominated Convergence

Theorem (LDCT), ∫
f dµ = lim

n→∞

∫
fn dµ.
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Now assume sup
n

∫
|fn| dµ <∞. Then |fn| is integrable for all n and |fn|

is monotone increasing to |f |. So by (MCT)∫
|f | dµ = lim

n→∞

∫
|fn| dµ ≤ sup

n

∫
|fn| dµ <∞.

Thus f is integrable.
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7. The Lebesgue Spaces Lp

Definition 7.1. If V is a real linear (=vector) space, then a real valued

function N on V is said to be a norm for V in case it satisfies

(i) N(v) ≥ 0 for all v ∈ V
(ii) N(v) = 0 if and only if v = 0

(iii) N(αv) = |α|N(v) for all v ∈ V and real α;

(iv) N(u+ v) ≤ N(u) +N(v) for all u, v ∈ V

If condition (ii) is dropped, the function N is said to be a semi-norm or

a pseudo-norm for V.

Example 7.2. Let C[0, 1] be the linear space of continuous functions on

[0, 1] to R. Define N0 for f in C[0, 1] by N0(f) = |f(0)|.Clearly, N0(f) =

|f(0)| ≥ 0 for all f ∈ C[0, 1]. Moreover, N0(αf) = |α| |f(0)| = |α|N0(f).

Lastly, if f, g ∈ C[0, 1], then

N0(f + g) = |f(0) + g(0)| ≤ |f(0)|+ |g(0)| = N0(f) +N0(g).

Therefore, N0(f) = |f(0)| is a semi-norm since Conditions (i), (iii), and (iv)

of Definition 7.1 are satisfied.

Example 7.3. Let C[0, 1] be as before and define N1 for f in C[0, 1] to be

the Riemann integral of |f | over [0, 1]. Obviously, by the properties of the

Riemann integral N1 satisfies the conditions of a semi-norm.

Proposition 7.4. If {fn} is defined for n ≥ 1 to be equal to 0 for 0 ≤
x ≤ (1 − 1/n)/2, to be equal to 1 for 1

2 ≤ x ≤ 1, and to be linear for

(1 − 1/n)/2 ≤ x ≤ 1
2 , then {fn} is a Cauchy sequence, but {fn} does not

converge relative in N1 (as defined in Example 7.3) to an element of C[0, 1].

Proof. Clearly, lim fn = f where f = 0 if 0 < x ≤ 1
2 and f = 1 if 1

2 ≤ x ≤ 1.

Certainly, f is not in C[0, 1]. Now, let m ≥ n where m,n ∈ N. From the
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definition of N1,

N1(fm − fn) =
∫ 1

0
|fm − fn| dx =

1
4n

[
fn

(
1
2
− 1

2m

)]
.

However fn
(

1
2 − 1

2m

) ≤ 1. Therefore,

lim
n→∞

1
4n

[
fn

(
1
2
− 1

2m

)]
≤ lim

n→∞
1
4n

= 0.

Hence, for ε > 0, there exists an M(ε) ∈ N such that

N1(fm − fn) =
∫ 1

0
|fm − fn| dx =

1
4n

[
fn

(
1
2
− 1

2m

)]
< ε

for all n,m ≥M(ε). Therefore {fn} Cauchy.

Proposition 7.5. Let N be a norm on a linear space V and let d be defined

for u, v ∈ V by d(u, v) = N(u− v), then d is a metric on N ; that is

(i) d(u, v) ≥ 0 for all u, v ∈ V
(ii) d(u, v) = 0 if and only if u = v

(iii) d(u, v) = d(v, u)

(iv) d(u, v) ≤ d(u,w) + d(w, v).

Proof. Condition (i) follows immediately, since N is a norm and u− v ∈ V.

Condition (ii) is satisfied since d(u, v) = N(u− v) if and only if u− v = 0

if and only if u = v. Condition (iii) follows since

d(u, v) = N(u− v) = N
(
(−1)(v − u)

)
= |−1|N(v − u) = d(v, u).

Finally let w, u, v ∈ V

d(u, v) = N(u− v) = N(u− w + w − v)

≤ N(u,w) +N(w, v) = d(u,w) + d(w, v).

Thus, Condition (iv) is satisfied.

Proposition 7.6. Let 1 ≤ p <∞. If f ∈ Lp and ε > 0, then there exists a

simple X −measurable function φ such that ‖f − φ‖p < ε.

Proof. The case p = 1 follows from Proposition 6.4. Let 1 < p < ∞. From

2.11 Lemma [Bartle] there exists {φn} of X -measurable functions such that
47



|f+ − φ+
n | converges almost everywhere to 0 and φ+

n ≤ f+. Certainly, then

|f+ − φ+
n |p converges almost everywhere to 0. Since |f+ − φ+

n |p ≤ 2p |f | the

Lebesgue Dominated Convergence Theorem implies that∫ ∣∣f+ − φ+
n

∣∣p dµ = lim
n→∞

∫ ∣∣f+ − φ+
n

∣∣p dµ
Therefore, given ε > 0, ‖f+ − φ+

n ‖p < ε for n sufficiently large. Likewise,

‖f−−φ−n ‖p < ε for n sufficiently large. Let limφ+
n = φ+ and let limφ−n = φ−.

Moreover, let P = {x ∈ X : f(x) ≥ 0} and let N = {x ∈ X : f(x) < 0}.
Then,[∫

|f − φ|p dµ
] 1

p

=
[∫ ∣∣f+ − φ+

∣∣p 1P dµ+
∫ ∣∣f− − φ−

∣∣p 1N dµ

] 1
p

< ε

for n sufficiently large enough.

Remark 4. Proposition 7.6 holds if f ∈ L∞.

Proof. For p = ∞ , ‖f(x)−φ(x)‖∞ = inf {S(N ) : N ∈ X , µ(N ) = 0} where

S(N ) = sup {|f(x)− φ(x)| : x /∈ N}. As seen before, for ε > 0 there exists

a simple X -measurable function such that |f(x)− φ(x)| < ε for all x /∈ N .

Therefore,

S(N ) = sup {|f(x)− φ(x)| : x /∈ N} < ε.

Thus

‖f(x)− φ(x)‖∞ = inf {S(N ) : N ∈ X , µ(N ) = 0} < ε.

Proposition 7.7. If f ∈ Lp, 1 ≤ p < ∞, and if E = {x ∈ X : |f(x)| 6= 0},
then E is σ-finite.

Proof. Let En =
{
x ∈ X : |f(x)| ≥ 1

n

}
. Then E =

⋃∞
n=1 En. The proof is

complete if µ(En) < ∞ for each n ∈ N. Clearly, |f | ≥ 1
n1En for each n.

Thus, |f |p ≥ ( 1
n1En

)p for each n. By 4.5 Lemma,
∫ |f |p dµ ≥ ∫ ( 1

n

)p
µ(En)

for each n. Therefore,

∞ >

[∫
|f |p dµ

] 1
p

≥ 1
n

[µ(En)]
1
p for each n.
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It can be concluded that µ(En) <∞ for each n ∈ N.

Proposition 7.8. If f ∈ Lp, and if En = {x ∈ X : |f(x)| ≥ n}, then

µ(En) → 0 as n→∞.

Proof. From the definition of En, |f(x)| ≥ n1En(x) for all x ∈ X . Whence,

|f(x)|p ≥ np1En(x). By 4.5 Lemma and f ∈ Lp
lim
n→∞µ(En) ≤ lim

n→∞
1
np

∫
|f |p dµ = 0.

This finishes the proof.

Proposition 7.9. Let X = N and let µ be the counting measure on N. If

f is defined on N by f(n) = 1
n , then f does not belong to L1, but it does

belong to Lp for 1 < p ≤ ∞.

Proof. Let p = 1 therefore,∫
|f(n)| dµ =

∞∑
n=1

1
n

= ∞.

Let p > 1 therefore, ∫
|f(n)|p dµ =

∞∑
n=1

1
np

<∞.

An alternative way to look at Proposition 7.9 is to let X = R, X = B, and

µ be the Lebesgue measure and define g(x) = 0 for x < 1 and g(x) = 1
x for

x ≥ 1. For p = 1,∫
|g(x)| dµ =

∫
[1,∞]

|g(x)| dµ = lim
n→∞

∫ n

1

1
x
dx = lim

n→∞ ln(n) = ∞.

For p > 1,∫
|g(x)|p dµ =

∫
[1,∞]

|g(x)|p dµ = lim
n→∞

[
1

p− 1
+

1
(−p+ 1)np−1

]
=

1
p− 1

.

Proposition 7.10. Let X = N, and let λ be the measure on N which has

measure 1
n2 at the point n. (More precisely λ(E) =

∑{
1
n2 : n ∈ E}.) Then

(i) λ(X ) <∞
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(ii) for f defined on X as f(n) =
√
n, f ∈ Lp if and only if 1 ≤ p < 2.

Proof. Clearly,

λ(X ) =
∞∑
n=1

1
n2

<∞.

Also, ∫ ∣∣√n∣∣p dµ =
∞∑
n=1

n
p−4
2 .

For 1 ≤ p < 2, −3
2 ≤ p−4

2 < −1. The result follows from the fact that∑ 1
np <∞ when p > 1.

By letting λ(E) =
∑{

1
n2.1 : n ∈ E} and letting f(n) = n

1
p◦ then f ∈ Lp

if and only if 1 ≤ p ≤ (1.1)p0. It is seen that∫
|f(n)|p dµ =

∞∑
n=1

(
1
n

)2.1− p
p0

.

Obviously 2.1− p
p0
> 1 for all 1 ≤ p ≤ (1.1)p0.

Proposition 7.11. Let (X ,X , µ) be a finite measure space. If f is X -

measurable function let En = {x ∈ X : (n− 1) ≤ |f(x)| < n}. Show that f ∈
L1 if and only if

∞∑
n=1

nµ(En) <∞. (7.1)

More generally, f ∈ Lp for 1 ≤ p <∞, if and only if
∞∑
n=1

npµ(En) <∞. (7.2)

Proof. Assume (7.1) holds. From the definition of En, n1En(x) ≥ |f(x)|1En(x)

for each n ∈ N and x ∈ X . By a now familiar argument,∫
En

|f(x)| dµ ≤ nµ(En) for each n ∈ N.

Since En ∩ Em = ∅ when n 6= m and
⋃ En = X ,

∞∑
n=1

∫
En

|f(x)| dµ =
∫
X
|f(x)| dµ ≤

∞∑
n=1

nµ(En) <∞.

Therefore, f ∈ L1.
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Assume f ∈ L1. For each n ∈ N and x ∈ X , (n−1)1En(x) ≤ |f(x)|1En(x)

Arguing as above,
∞∑
n=1

(n− 1)µ(En) ≤
∫
X
|f(x)| dµ <∞.

Now
∞∑
n=1

(n− 1)µ(En) =
∞∑
n=1

(n)µ(En)−
∞∑
n=1

µ(En) <∞.

Since (X ,X , µ) is a finite measure space,
∞∑
n=1

µ(En) < ∞, therefore (7.1)

holds.

As above, it is quickly seen that∫
X
|f(x)|p dµ ≤

∞∑
n=1

np µ(En) <∞

Thus, if (7.2) holds, then f ∈ Lp. Now suppose f ∈ Lp. For all x ∈ En,
n − 1 ≤ |f(x)|. Clearly then, np ≤ (|f(x)| + 1)p ≤ 2p|f(x)|p + 1m for all

x ∈ En. From this inequality, we get (7.2).

Proposition 7.12. If (X ,X , µ) is a finite measure space and f ∈ Lp, then

f ∈ Lr for 1 ≤ r ≤ p.

Proof. From Proposition 7.11, f ∈ Lp implies that
∑
npµ(En) < ∞. For

1 ≤ r ≤ p, nrµ(En) ≤ npµ(En) for each n ∈ N. Therefore,
∞∑
n=1

nrµ(En) ≤
∞∑
n=1

npµ(En) <∞.

Employing Proposition 7.11 again, gives the conclusion.

Proposition 7.13. Suppose that X = N and µ is the counting measure on

N. If f ∈ Lp, then f ∈ Ls with 1 ≤ p ≤ s <∞, and ‖f‖s ≤ ‖f‖p.

Proof. Since µ is the counting measure on N, f can be viewed as a sequence,

{an} of real numbers. Therefore,

‖f‖p =

[ ∞∑
n=1

|an|p
] 1

p

<∞
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Since
∑ |an|p <∞, the lim |an|p = 0. Thus for some n◦ ∈ N, |an| < 1 for all

n ≥ n◦. Since 1 ≤ p ≤ s, |an|s < |an|p for all n ≥ n◦. It can be concluded

then that

∞ >

∞∑
n=n0

|an|p >
∞∑

n=n◦

|an|s .

Clearly,
n◦−1∑
n=1

|an|s <∞.

Therefore, f ∈ Ls.

Proposition 7.14. Let (X ,X , µ) be any measure space and let f belong to

both Lp1 and Lp2, with 1 ≤ p1 ≤ p2 < ∞, then f ∈ Lp for any value of p

such that p1 ≤ p ≤ p2.

Proof. Let A = {x ∈ X : |f(x)| ≥ 1}. Let B = {x ∈ X : |f(x)| < 1}. Now,∫
|f(x)|p 1A dµ ≤

∫
|f(x)|p2 1A dµ <∞.

Furthermore, ∫
|f(x)|p 1B dµ ≤

∫
|f(x)|p1 1B dµ <∞.

Therefore,∫
|f(x)|p 1A dµ+

∫
|f(x)|p 1B dµ =

∫
|f(x)|p dµ <∞.

From Hölder’s inequality, if 1 < p <∞,
(

1
p

)
+
(

1
q

)
= 1 and f ∈ Lp, then∣∣∣∣∫ fg dµ

∣∣∣∣ ≤ ‖f‖p

for all g ∈ Lq such that ‖g‖q ≤ 1. This leads to the following proposition.

Proposition 7.15. If f 6= 0, f ∈ Lp, and g◦(x) = c[signumf(x)]f(x)p−1

for x on X where c = (‖f‖p)−p/q, then g◦ ∈ Lq, ‖g◦‖q = 1 and∣∣∣∣∫ fg◦ dµ
∣∣∣∣ = ‖f‖p.
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Proof. First, note that if 1
p + 1

q = 1, then pq − q = p. Now∫
|g◦|q dµ = |c|q

∫
|f |pq−q dµ = |c|q

∫
|f |p dµ <∞.

Thus, g◦ ∈ Lq. Secondly,

‖g◦‖q =
[∫

|g◦|q dµ
] 1

q

= |c|
[∫

|f |p dµ
] 1

q

= |c| (‖f‖p)
p
q =

(‖f‖p)
p
q

(‖f‖p)
p
q

= 1.

Finally∣∣∣∣∫ fg◦ dµ
∣∣∣∣ = c

∫
[signumf ] fp dµ = c (‖f‖p)p =

(‖f‖p)p
(‖f‖p)p/q

= ‖f‖p,

since p− p/q = 1.

Proposition 7.16. If f ∈ Lp, 1 ≤ p < ∞ and ε > 0 then there exists a

set Eε ∈ X with µ(Eε) < ∞ such that if F ∈ X and F ∩ Eε = ∅, then

‖f1F‖p < ε.

Proof. Let ε > 0. If f ∈ Lp, then |f | ∈ M+(X ,X ). Consequently, |f |p ∈
M+(X ,X ) since for α ∈ R,

{x ∈ X : |f |p < α} =
{
x ∈ X : |f | < α

1
p

}
∈ X .

From Proposition 5.17 there exists a set in X , call it Eε, such that µ(Eε) <∞
and ∫

|f |p dµ <
∫
Eε

|f |p dµ+ εp.

Let F be such that F ∩ Eε = ∅. It is clear then that∫
Eε

|f |p dµ+
∫
F
|f |p dµ ≤

∫
|f |p dµ <

∫
Eε

|f |p dµ+ εp.

Therefore, ‖f1F‖p < ε.

Proposition 7.17. Let fn ∈ Lp (X ,X , µ), 1 ≤ p <∞, and let βn be defined

for E ∈ X by

βn(E) =
[∫

E
|fn|p dµ

] 1
p

.

Then |βn(E)− βm(E)| ≤ ‖fn − fm‖p
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Proof. Clearly it is sufficient to show that,

| ‖fn‖p − ‖fm‖p| ≤ ‖fn − fm‖p.

Now

‖fn‖p = ‖fn‖p − ‖fm‖p + ‖fm‖p ≤ ‖fn − fm‖p + ‖fm‖p.

Therefore, ‖fn‖p − ‖fm‖p ≤ ‖fn − fm‖p Arguing in the same fashion, it is

seen that

‖fm‖p − ‖fn‖p ≤ ‖fm − fn‖p = ‖fn − fm‖p.

Finally,

−‖fn − fm‖p ≤ ‖fn‖p − ‖fm‖ ≤ ‖fn − fm‖p

which proves the proposition.

As a consequence of Proposition 7.17 if {fn} Cauchy sequence in Lp, then

limβn exists for each E ∈ X since every Cauchy sequence in R converges.

Proposition 7.18. Let fn, βn be as in Proposition 7.17. If {fn} is a

Cauchy sequence and ε > 0, then there exists a set Eε ∈ X with µ(Eε) <∞
such that if F ∈ X and F ∩ Eε = ∅, then βn(F) < ε for all n ∈ N.

Proof. Let {fn} be a Cauchy sequence and let ε > 0, therefore we can

find an N(ε) such that for n,m ≥ N(ε), ‖fn − fm‖p ≤ ε
2 . Employing

Proposition 7.16 there exist E1, · · · , EN(ε) such that

(i) µ ([Ei]c) <∞ where 1 ≤ i ≤ N(ε)

(ii) ‖fi1Ei‖p < ε
2 for 1 ≤ i ≤ N(ε).

Let Eε =
N(ε)⋃
i=1

Eci and F ∈ X with F ∩ Eε = ∅. Clearly, µ(Eε) < ∞. If

1 ≤ n ≤ N(ε), then F ⊆ En. Thus, by (ii)

‖fn1F‖p ≤ ‖fn1En‖p <
ε

2
< ε.
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If N(ε) < n, then

‖fn1F‖p ≤ ‖fn1F − fN(ε)1F‖p + ‖fN(ε)1F‖p < ‖fn1F − fN(ε)1F‖p +
ε

2
≤ ‖fn − fN(ε)‖p +

ε

2
<
ε

2
+
ε

2
= ε.

This concludes the proof.

Proposition 7.19. Let fn, βn be as in Proposition 7.18, and suppose {fn}
is Cauchy. If ε > 0, then there exists a δ(ε) such that if E ∈ X and µ(E) <

δ(ε), then βn < ε for all n ∈ N.

Proof. Let λn(E) =
∫ |fn|p dµ. Clearly, |fn|p ∈ M+(X ,X ) for each n ∈ N.

By 4.9 Corollary [Bartle], λn is a measure for each n. By 4.11 Corollary

[Bartle], λn is absolutely continuous with respect to µ for each n. Fix ε > 0.

Since {fn} is Cauchy there exists an N(ε) such that for ‖fn − fm‖p < ε
2

for n,m ≥ N(ε). Since λn is absolutely continuous with respect to µ, for

each n ∈ N there exists an δn < 0 such that if E ∈ X and µ(E) < δn, then

λn(E) <
(
ε
2

)p. Let δ◦(ε) = inf
{
δ1, · · · , δN(ε)

}
. Therefore for all n such that

1 ≤ n ≤ N(ε), if E ∈ X and µ(E) < δ◦, then λn(E) <
(
ε
2

)p ≤ (ε)p, (i.e) for

1 ≤ n ≤ N(ε), ‖fn1E‖ < ε. Since {fn} is Cauchy and ‖fN(ε)1E‖p < ε
2 , then

for n ≥ N(ε),

‖fn1E‖p ≤ ‖fn1E − fN(ε)1E‖p + ‖fN(ε)1E‖p <
ε

2
+
ε

2
= ε.

Thus, if E ∈ X and µ(E) < δ◦(ε), then

βn(E) = ‖fn1E‖p < ε,

for all n ∈ N.

The following remark will be useful in the next proposition.

Remark 5. If f ∈ Lp (X ,X , µ), p = ∞, then from the definition of ‖f‖∞,

|f(x)| ≤ ‖f‖∞ for almost all x

Proposition 7.20. If A < ‖f‖∞, then there exists a set E ∈ X with µ(E) >

0 such that |f(x)| > A for all x ∈ E.
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Proof. Without loss of generality, let 0 ≤ A < ‖f‖∞. Define fA(x) for

x ∈ X as fA(x) = A for x ∈ E = {x ∈ X : |f(x)| > A} and fA(x) = |f(x)|
if |f(x)| ≤ A. From Proposition 3.20, E ∈ X . Moreover, |f(x)| > A for all

x ∈ E . Now, let ε > 0 be such that A+ε < ‖f‖∞. Clearly (A+ ε)1E > A1E .

Thus Aµ(E) + εµ(E) > Aµ(E). Therefore µ(E) > 0. This completes the

proof.

Proposition 7.21. If f ∈ Lp, 1 ≤ p ≤ ∞, and g ∈ L∞, then the product

fg ∈ Lp and ‖fg‖p ≤ ‖f‖p‖g‖∞.

Proof. From the definition of ‖g‖∞, there is an M ∈ R such that |g| ≤ M

almost everywhere. Therefore |fg|p ≤Mp |f |p. By a now familiar argument,∫
|fg|p dµ ≤Mp

∫
|f |p dµ <∞.

Therefore, fg ∈ Lp. Moreover from above[∫
|fg|p dµ

] 1
p

≤ ‖g‖∞‖f‖p.

Proposition 7.22. The space L∞ is contained in L1 if and only if µ(X ) <

∞. Moreover, if µ(X ) = 1 and f ∈ L∞, then

‖f‖∞ = lim
p→∞ ‖f‖p.

Proof. From the definition of L∞ and 4.7 Corollary [Bartle],∫
|f | dµ ≤ ‖f‖∞ µ(X ) where ‖f‖∞ = inf {M ∈ R : |f | ≤M µ-a.e} .

Clearly then µ(X ) <∞ implies f ∈ L1. To show the other implication, we

will show the contrapositive (i.e. if µ(X ) = ∞, then L∞ is not contained

in L1). To that end, assume µ(X ) = ∞ and let f = 1X then f ∈ L∞ but

f /∈ L1.

Moreover if f ∈ Lp and µ(X ) = 1, then again employing the definition of

‖f‖∞, it is evident that |f |p ≤ ‖f‖p∞ almost everywhere. Therefore

lim sup
p→∞

‖f‖p ≤ ‖f‖∞.
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Now let 0 < ε < ‖f‖∞. By Proposition 7.20, the measurable set

E = {x ∈ X : |f(x)| ≥ ‖f‖∞ − ε}

satisfies µ(E) > 0. For 1 < p <∞, (‖f‖∞ − ε)p ≤ |f |p on the set E . Thus

(‖f‖∞ − ε)µ(E)
1
p ≤ ‖f‖p

for 1 < p <∞. As p→∞, µ(E)
1
p = 1 therefore

‖f‖∞ − ε ≤ lim inf
p→∞ ‖f‖p.

Thus,

lim sup
p→∞

‖f‖p ≤ ‖f‖∞ ≤ lim inf
p→∞ ‖f‖p.

This completes the proof.
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8. Modes of Convergence

In following examples (R,B, λ) denotes the real line with Lebesgue mea-

sure defined on the Borel subsets of R. Also, 1 ≤ p ≤ ∞.

Example 8.1. Let fn = n
− 1

p 1[0,n] Then, the sequence {fn} converges uni-

formly to the 0-function but it does not converge in Lp (R,B, λ).

Proof. Clearly n
1
p > 0 for 1 ≤ p <∞. By Theorem 2.2.6 [Stoll]

lim
n→∞

1

n
1
p

= 0.

Thus given ε > 0 there exists n◦ ∈ N such that |fn(x)− 0| = 1

n
1
p
< ε for all

x ∈ R and for all n ≥ n◦. This shows that fn → 0 uniformly. However,

‖fn − 0‖p =

[∫
[0,n]

∣∣∣∣ 1

n
1
p

∣∣∣∣p dµ
] 1

p

=
[
n− 0
n

] 1
p

= 1

Letting ε = 1 it is seen that f does not converge to 0 in Lp.

Example 8.2. Let fn = n1[ 1
n
, 2
n

]. Then the sequence {fn} converges every-

where to the 0-function, but it does not converge in Lp (R,B, λ).

Proof. Clearly for each x ∈ R and for ε > 0 there exists an N(ε, x) ∈ N

such that |fn(x)| < ε for all n ≥ N(ε, x) therefore fn converges everywhere

to the 0-function. However

‖fn − 0‖p =

[∫
[ 1

n
, 2
n ]
|n|p dµ

] 1
p

=
[
np

1
n

] 1
p

= n
1− 1

p .

Since 1− 1
p ≥ 0 when p ≥ 1,

lim
n→∞ ‖fn‖p 6= 0.

So {fn} does not converge in Lp to the 0-function.

Example 8.2 shows that convergence in measure does not imply Lp con-

vergence even for a finite measure space since the integral of fn vanishes

outside of the interval
[

1
n ,

2
n

]
and it equals n1− 1

p on the interval
[

1
n ,

2
n

]
.
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Proposition 8.3. Both sequences in Examples 8.1 and 8.2 converge in mea-

sure to their limits.

Proof. Let α > 0. For Example 8.1, it has been shown that there exists an

N ∈ N such that |fn(x)− 0| < α for all x ∈ R. For n ≥ N ,

{x ∈ X : |fn − 0| ≥ α} = ∅.

Therefore,

lim
n→∞λ ({x ∈ X : |fn − 0| ≥ α}) = λ(∅) = 0.

For Example 8.2, provided 0 < α ≤ 1,

limλ ({x ∈ X : |fn − 0| ≥ α}) = limλ

([
1
n
,
2
n

])
= limλ

(
1
n

)
= 0.

Therefore, each sequence of functions converges in measure.

Example 8.4. Let fn = 1[n,n+1]. The sequence {fn} converges everywhere

to the 0-function, but it does not converge in measure.

Proof. Clearly for each x ∈ R there exists an N(x) ∈ N such that fn(x) = 0

for all n ≥ N(x). Let 0 < α ≤ 1. Now for all n ∈ N,

λ ({x ∈ X : |fn(x)− 0| ≥ α}) = 1.

Therefore, {fn} does not converge in measure to the 0-function.

Looking at 7.4 Example [Bartle], it is seen that the sequence converges in

Lp to the 0-function and thus converges in measure to the 0-function, but

does not converge at any point of [0, 1]. However, from 7.6 Theorem [Bartle]

there exists a subsequence of {fn} which converges almost everywhere to

the 0-function. Clearly, if fn = 1[0, 1
n

] then for ε > 0 and for each x ∈ [0, 1]

there exists an N(ε, x) ∈ N such that |fn(x)| ≤ ε except for x = 0 but

λ ({0}) = 0. However there is not a subsequence from 7.4 Example that

converges everywhere since each fn maps a rational to 1.
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Proposition 8.5. If a sequence {fn} converges in measure to a function f ,

then every subsequence of {fn} converges in measure to f . More generally,

if {fn} is Cauchy in measure, then every subsequence is Cauchy in measure.

Proof. Let {fnk
} be a subsequence of {fn}. From assumption, for α > 0

lim
n→∞µ ({x ∈ X : |f(x)− fn(x)| ≥ α}) = 0.

Therefore for ε > 0 there exists an N such that

µ ({x ∈ X : |f(x)− fn(x)| ≥ α}) < ε

for all n ≥ N . Since {nk} strictly increasing, there exists K ∈ N so that

nk ≥ N for all k ≥ K. Therefore

µ ({x ∈ X : |f(x)− fnk
(x)| ≥ α}) < ε

for k ≥ K. Thus,

lim
k→∞

µ ({x ∈ X : |f(x)− fnk
(x)| ≥ α}) = 0.

Similarly, if {fn} is Cauchy, then

lim
m,n→∞µ ({x ∈ X : |fm(x)− fn(x)| ≥ α}) = 0.

For ε > 0 there exists N ∈ N such that

µ ({x ∈ X : |fm(x)− fn(x)| ≥ α}) < ε

for all m ≥ n ≥ N . Since {nk} strictly increasing, there exists K ∈ N so

that nl ≥ nk ≥ N for all l ≥ k ≥ K. Therefore

lim
l,k→∞

µ ({x ∈ X : |fnl
(x)− fnk

(x)| ≥ α}) = 0.

Proposition 8.6. If a sequence {fn} converges in Lp to a function f , and

a subsequence of {fn} converges in Lp to g, then f = g almost everywhere.

Proof. Since convergence in Lp implies convergence in measure, {fn} con-

verges to f in measure and {fnk
} converges to g in measure. Moreover,

from Proposition 8.5 {fnk
} converges in measure to f . By 7.7 Corollary
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[Bartle] f is uniquely determined almost everywhere therefore f = g almost

everywhere.

Proposition 8.7. If {fn}n∈N
is a sequence of characteristic functions of

sets in X , and if {fn}n∈N
converges to f in Lp, then f is almost everywhere

equal to the characteristic function of a set in X .

Proof. Let fn = 1An where An ∈ X for all n ∈ N and let fn(x) → f(x) in

Lp. Since fn(x) → f(x) in Lp there is a subsequence
{
fnj

}
j∈N

of {fn}n∈N

such that there exists E ∈ X where µ (Ec) = 0 and fnj (x) → f(x) for all

x ∈ E . Since fnj (x) = 0 or 1 on E , then f(x) = 0 or 1 on E . This finishes

the proof.

Proposition 8.8. Let {fn} be as in Example 8.2. If δ > 0, then {fn}
converges uniformly to the 0-function on the complement of [0, δ].

Proof. Let δ > 0. Clearly, there exists an N ∈ N such that 2
n < δ for all

n ≥ N . Therefore, fn(x) = 0 for all x ∈ [0, 1]∩([0, δ])c and for all n ≥ N .

Remark 6. There does not, however, exist a set of measure zero, on the

complement of which the sequence from Example 8.2 is uniformly convergent

to the 0-function.

Proof. Without loss of generality we can restrict ourselves to the interval

[0, 2] on the real line since for points outside of this interval, fn = 0 for all

n ∈ N. Let E ∈ B be such that E ⊂ [0, 2] and λ(E) = 0. It is enough

then to show that Ec ∩ [ 1
n ,

2
n ] 6= ∅ for all n ∈ N. Clearly, λ(Ec) = 2.

Therefore, if Ec and
[

1
n ,

2
n

]
are disjoint, then λ(

[
1
n ,

2
n

]
) + λ(Ec) > 2 which is

a contradiction.

The following propositions demonstrate that in Fatou’s Lemma and the

Lebesgue Dominated Convergence Theorem almost everywhere convergence

can be replaced by convergence in measure. In fact once it is shown that
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Fatou’s Lemma holds for convergence in measure, the Lebesgue Dominated

Convergence Theorem for convergence in measure is immediate.

First the following fact will be useful in the proof of Fatou’s Lemma for

convergence in measure.

Fact 8.9. A sequence {an}∞n=1 converges to a if and only if every subse-

quence of {an}∞n=1 has a subsequence that converges to a.

Proposition 8.10. If {fn} is a sequence of nonnegative measurable func-

tions and {fn(x)} converges to f(x) in measure, then∫
f dµ ≤ lim inf

∫
f dµ.

Proof. By Fact 8.9, it will suffice to show that each subsequence of {fn} has

a subsequence that converges a.e. to f . By assumption fn converges to f in

measure therefore from Proposition 8.5 every subsequence of {fn} converges

in measure to f . By 7.6 Theorem [Bartle] each subsequence of {fn} has a

subsequence which converges a.e. to f . So fn converges a.e. to f . Thus by

Fatou’s Theorem for a.e. convergence we are done.

Proposition 8.11. The Lebesgue Dominated Convergence holds for con-

vergence in measure.

Proof. Follows from Proposition 8.10.

Proposition 8.12. Let (X ,X , µ) be a finite measure space. If f is an X -

measurable function, let

r(f) =
∫ |f |

1 + |f | dµ.

A sequence {fn} of X -measurable functions converges in measure to f if

and only if r(fn − f) → 0.

Proof. Assume that r(fn − f) → 0. Notice

0 ≤ |fn − f |
1 + |fn − f | < 1 (8.1)
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Therefore, the limit of the left hand side of (8.1) exists. By Fatou’s Theorem,

0 ≤
∫

lim inf
|fn − f |

1 + |fn − f | dµ ≤ lim inf
∫ |fn − f |

1 + |fn − f | dµ = 0.

By 4.10 Corollary,

lim
|fn − f |

1 + |fn − f | = 0

almost everywhere. Thus |fn − f | = 0 almost everywhere. Applying Ego-

roff’s Theorem, it is concluded that {fn} converges to f in measure.

Fix ε > 0 and assume that {fn} → f in measure. Then there exists N

such that for all n ≥ N

µ

({
x ∈ X : |fn − f | ≥ ε

2µ(X )

})
<
ε

2
.

Let Bnε =
{
x ∈ X : |fn − f | ≥ ε

2µ(X )

}
. So for all n ≥ N ,

r(fn − f) =
∫
Bnε

|fn − f |
1 + |fn − f | dµ+

∫
X\Bnε

|fn − f |
1 + |fn − f | dµ

≤
∫
Bnε

1 dµ+
∫
X\Bnε

|fn − f | dµ

≤ µ(Bnε) +
ε

2

(
µ(X\Bnε)
µ(X )

)
<
e

2
+
ε

2
= ε.

Thus, r(fn − f) → 0.

Proposition 8.13. If the sequence {fn} of measurable functions converges

almost everywhere to a measurable function f and φ is continuous on R to

R, then the sequence {φ ◦ fn} converges almost everywhere to φ ◦ f .

Proof. By Proposition 3.26 φ ◦ f is measurable and φ ◦ fn is measurable for

each n ∈ N. Since φ is continuous, then for ε > 0 and for each x ∈ X there

exists a δ > 0 such that |φ(fn(x))− φ(f(x))| < ε where |fn(x)− f(x)| < δ.

Moreover fn → f almost everywhere therefore, there exists a set M ∈ X
such that for every δ > 0 and x ∈ Mc there exists N(ε, x) ∈ N such that

if n ≥ N(ε, x) then |fn(x)− f(x)| < δ. Thus for ε > 0 there exists a set

M ∈ X such that for each X ∈ Mc there exists N(ε, x) such that if n ≥
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N(ε, x) then |φ(fn(x)− φ(f(x))| < ε. In other words, {φ ◦ fn} converges

almost everywhere to φ ◦ f

In the following example, it will be shown that if φ has a point of disconti-

nuity, then there exists a sequence {fn} which converges almost everywhere

to f but {φ ◦ f} does not converge almost everywhere to φ ◦ f .

Example 8.14. Let φ = 1 for x ≥ 0 and let φ = −1 for x < 0. Let {fn} be

a sequence of negative-valued functions which converges almost everywhere

to f = 0. Therefore φ(f(x)) = 1. Now let M ∈ X be such that for all

x /∈ M fn converges everywhere to the 0-function and let ε = 2. Thus for

all x /∈ M and for all n ∈ N, |φ(fn(x))− φ(f(x))| = 2. Therefore {φ ◦ fn}
does not converge almost everywhere to φ ◦ f .
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9. Conclusion

To write a conclusion to this paper is difficult and inappropriate since the

paper, in a sense, opens a can of worms. It has discussed the foundations

of the Lebesgue Integral and some of the important theorems that emerge

from the topic. Certainly, sections seven and eight provide a glimpse at

some of the higher theory that uses this integral. To be sure, the problems

presented in this paper merely scratch the surface of the theory behind the

General Lebesgue Integral, however they suggest the depth and power of

this mathematical technique.
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