OPERATOR-VALUED FOURIER HAAR MULTIPLIERS

MARIA GIRARDI

ABSTRACT. Criteria are given to ensure the boundedness of Fourier Haar multiplier operators
from L, ([0,1],X) to Lg ([0,1],Y) where the Fourier Haar multiplier sequences come not from R,
as in the classical setting, but rather from the space of bounded linear operators from a Banach
space X into a Banach space Y.

1. INTRODUCTION

It is well known that the Haar system {h;}.  forms an unconditional basis in L, ([0, 1], R)

JEN
for 1 < p < oco. Thus the Fourier Haar multiplier operator 7', generated by the Fourier Haar

multiplier sequence {A;},  from R, defined on the span of the Haar system {h;}, by

T (ijl c]-hj> = ijl Ajcih; where ¢; € R and m e N, (1.1)

extends (uniquely) to a bounded linear operator on the whole of L, ([0, 1], R) provided the multiplier

sequence is bounded, in which case,
1T 2, 0,11,8) =L, (0,R) < Cp sup A
j

for some constant C), for 1 < p < co. Much is known (cf. e.g. [19] and the references therein)
about the boundedness of such Fourier Haar multiplier operator from L, ([0, 1], R) to L, ([0, 1], R).
If1l<p<qg< oo, then

n(l_1
ITlsytomenatomey ~ 312, 207 P 1

where {hZ}(n Kea is the dyadic enumeration of the Haar system. While if 1 < g < p < oo, then

1T, 08— Loomy & || supsen | A5 25 1| o110 (1.3)

where % == — %. In both cases, the equivalence constants depend only on p and q.

1
q
In (1.1), one can replace ¢; € R by ; in some Banach space X and then consider the boundedness

of T on Ly ([0, 1], X). Here UMD (unconditionality property for martingale differences) spaces play
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a key role. Indeed, each T generated by a Fourier Haar multiplier sequence {¢;},. from {£1} is
bounded (by some constant depending only on X and p) on Ly ([0, 1], X') for some (or equivalently,
for each) p € (1,00) if and only if X is a UMD space.

This paper considers Fourier Haar multiplier operators from L, ([0, 1], X) to L4 ([0,1],Y) where
the Fourier Haar multiplier sequence comes not from R but rather from the space B (X,Y) of
bounded linear operators from a Banach space X into a Banach space Y. Not surprisely, UMD
plays a role. However, an R-boundedness assumption on the multiplier sequence is also used.
R-boundedness was introduced by Berkson and Gillespie in [2]. This notion grew out of work
of J. Bourgain on vector-valued Fourier transform [3] and has been central to recent results on
operator-valued Fourier multipliers and singular integrals with operator-valued kernels on Bochner
spaces (e.g. [1, 11, 13, 23]). Through these tools, R-boundedness became important for maximal
regularity of parabolic differential equations (e.g. [8, 16, 23]) and the holomorphic functional calculus
of sectorial operators (e.g. [14, 15, 16]). It is a key notion in the study [12] of martingales transforms
by operator-valued multiplier, which is especially useful for the theory of stochastic integration
on Banach spaces which recently was developed in [21] and [22]. For more information on R-
boundedness and its properties, see [7, 10, 16].

Theorem 3.3, which covers the case that 1 < ¢ < p < oo, generalizes (1.3). Its simple short
proof, which uses the notions of UMD and R-boundedness, is very different from the usual proof
for scalar-valued multiplier sequences, which uses interpolation and is much longer. Theorem 3.4,
which covers the case that 1 < p < ¢ < oo, generalizes (1.2). In this case, the usual proof of
the scalar-valued case can be generalized and so no UMD nor R-boundedness assumptions are
necessary. It is interesting that in one case UMD and R-boundedness need to be used but in the
other case they do not. This work was motivated by a recent paper [12] on martingale transforms
where the multiplier sequence is B (X, Y')-valued.

This paper is organized as follows. Section 2 collects the needed definitions and notation. Sec-

tion 3 contains the main results. Closing examples and remarks are in Section 4.

2. DEFINITIONS anD NOTATION

Throughout this paper, the Banach spaces that appear are over the fixed scalar field of either
the real or complex numbers. X, Y, and Z are Banach spaces. B (X) is the closed unit ball of X.
The space B (X,Y) of bounded linear operators from X into Y is endowed with the usual operator
norm topology. For a measure space (€2, F, 11), the Bochner-Lebesgue space Ly, (€2, X) consists of the
measurable functions from Q into X with finite L, (€2, X)-norm where 1 < p < co. The weak-L,,
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space L;,Vk (Q,X), for 1 < p < oo, consists of the measurable functions from € into X that satisfy
1
Ifllzyx@.x) = Sup Alp({we: |[F(wllx > A} <oo.

It is well-known that the above expression ||-| Lyk(Q,x) 1 & quasi-norm on Ly*(Q, X) with

1 + gllge@y < 2 [Iflip) + l9lliye@)
The balls with respect to ||'||L;)vk(97X) define a linear topology on LZV,Vk (©,X) and LZV,Vk (Q, X), en-
dowed with this topology, is a quasi-Banach space.

N is the set of natural numbers while Ny = N U {0}. Nonnumerical subscripts on constants
indicate dependency.

Let (92, F, ) be a probability space with a filtration {F, }.—; (i.e., {Fn} -, is a nondecreasing se-
quence of sub-o-fields of F) where m € N. A sequence {d,},-, of functions from  into X is a (sta-
tionary) martingale difference sequence with respect to {F,}"" ; provided dn € L1 ((Q, Fn,p) , X)
and E (dy41 | Fn) = 0 for each admissible n. There is a one-to-one correspondence between mar-
tingales {f,,},; and martingale difference sequence {d,}, , given by f, = > _; dr. A sequence
{vn},—, of functions from Q into Z is {F,}," -predictable provided v, is F,_i-measurable for
each n € {1,2,...m} (where Fy := Fi). The martingale transform of an X-valued martingale
{>h_q1di} | with respect to {F,}" | by a B(X,Y)-valued {F,} - ;-predictable sequence {vy } " 4
is the Y-valued martingale {} }_; vpdi} -, with respect to {F,},—;. Burkholder [4] introduced
UMD Banach spaces.

Definition 2.1. The UMD constant of X is the smallest 8, (X) € [1, 00] so that

lerdy + ...+ £‘3mdm||L,,(Q,X) < Bp(X) lldi+...+ dm”Lp(Q,X)

for each X-valued martingale difference sequence {d,,} ., with respect to some filtration {F,}n";,
choice {e, }" ; of signs from {£1}, and m € N. A Banach space X is UMD provided that its UMD

constant is finite for some (or equivalently, by Pisier [18], for each) p € (1, 00).

One obtains an equivalent formulation of UMD spaces (with the same UMD constant) if, in Defi-
nition 2.1, one replaces choice {e,}n-, of signs from {£1} with [—1, 1]-valued {F,} ", -predictable

sequence {vp }n' .
Notation 2.2. Henceforth, (2, F, 1) denotes the usual Lebesgue measure space on [0, 1].

Let

Ay = {(n,k) eNg x N: 1 < k < 2}
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Ay = {(0,0)} and A = AgUA;.

There is a bijection from A onto N given by (n, k) — 2™+ k, which provides a linear ordering on A.

Thus any sequence {Gj}jeN of objects can also be denoted by {G(n,k)} A Where O, gy = Ogn .

(n,k)e
This identification will be used freely throughout this paper.

The dyadic intervals {I}}: (n,k) € A} are given by

; 1 ; k—1 k
Il = |:0,2—n:| and Ik: = (2—n,2—n:| fOI'k>].

The Haar system {hg}(n kyea 1s given by h) = 1y and, for (n, k) € Ay,
N

The Haar filtration {#;},\ is defined by
Hj - O'{hl,...,h,j} .

The Rademacher functions {ry} take the form 79 = h9 and, for n € N,

n€Np

2n—1
Ty, = Z hz_l .
k=1
Let
n
E(Q,X) := {f: Q— X | f:ijlxjhj for somen € N, z; EX} .
E (2, X) is norm dense in Ly, (2, X) for 1 < p < oo; indeed, X-valued simple functions are dense

in L, (€2, X) and the Haar system is a basis for L, (Q,R). Also, the representation of functions in
E (2, X) is unique: if f = Y7, @;h; then z; = [|h|| ;] [o f () bj (w) dw.

Definition 2.3. The Fourier Haar multiplier operator T, generated by a Fourier Haar multiplier

sequence {Tj}jeN from B(X,Y), is the linear mapping from E (2, X) to E (2,Y) given by

T <ZjeN .73jhj> = Z]’GNzjjhj for ijhj €eE(Q,X) .

jeN
For 1 < p,q < oo define
ITfll L, 0,v)
1Tl L 0x)—Ly@y) =  SUP  —F——— . (2.1)
ree@,x) 1fll,@x)
£#0

If the supremum in (2.1) is finite, the T is called a bounded Fourier Haar multiplier operator (from
L,(Q,X) to Ly (R,Y)).
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In Definition 2.3, if T is a bounded Fourier Haar multiplier operator, then T': E (Q,X) — E (Q,Y)
extends uniquely to a bounded linear operator from L, (2, X) to L, (2,Y), with norm the supre-
mum in (2.1). In Definition 2.3, one can replace L4 (2,Y") with L;"k (2,Y) for 1 < g < oco. All
remains valid except, in the bounded case, the norm of the extension is at most twice the supremum
in (2.1).

Loosely speaking, a set 7 of operators is R-bounded provided Kahane’s Contraction Principle

holds for operator coefficients from 7. The precise definition is as follows.

Definition 2.4. Let 7 be a subset of B(X,Y’) and p € [1,00). Let R,(7) be the smallest constant

R € [0, 00] with the property that for each n € N and subset {T};}7_; of 7 and subset {z;}]_; of X,
> i ()Ty(=)) < R |D ri()e;
j=1 Ly([0,1,Y) =1 Ly([0,1],X)

The set 7 is R-bounded provided R,(7) is finite for some (and thus then, by Kahane’s inequality,

for each) p € [1,00).

Pisier [1] showed that each (norm) bounded subset of B (X,Y") is R-bounded if and only if X has
cotype 2 and Y has type 2 (cf. e.g. [17] for needed definitions). Note that if X and Y are g-concave
Banach lattices for some finite ¢ (e.g. X =Y = L, (Q,C) where 1 < g < 0o) then R-boundedness
is equivalent to the square function estimate

1/2 1/2

2 2
> | Ty < R (D |zl
i=1 i=1
Y X
known from harmonic analysis (cf. [17, Thm. II.1.d.6]). For basic properties of R-bounded sets and
further references, see [7, 10, 16, 23|.

All notation and terminology, not otherwise explained, are as in [6, 9, 17].

3. MAIN RESULTS

Consider a Fourier Haar multiplier operator 1" generated by {Tj}jeN from B (X,Y). This sec-

tion gives conditions on {T}}.  that guarantee that 7' is bounded from L, (2, X) to L4 (2,Y).

JEN
Remark 3.1 relates the boundedness of 7' to the boundedness of certain martingale transforms.

Remark 3.1. Note that {d,},~; is an X-valued martingale difference sequence with respect to the

Haar filtration {#,} " ; if and only if it takes the form d,, = z,hy for some z, € X. Let

v; (1) == Tj |h; ()] -
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Then {v,}1' ; is a B(X,Y)-valued {H,}' ;-predictable sequence. Furthermore, the martingale
transform of {}°;_; di}; by {vn}nt, has the form

Zvn(')dn () = ZTn A ()] @b (1) = ZTn Tnhn (+) -

Thus T is bounded (by some constanst Cxyypg) if and only if

Z Undp < Cx Ypq Z dp
n=1 Lq(92,Y) n=l 1Ly (2,X)
for each X-valued Haar martingale difference sequence {d,,}" ;.
Motivated by Remark 3.1, define u,: Q — [0, c0] by
up () = Bp({T; |hj () =5 €N}) (3.1)

for 1 <p < oco. Thus
up (w) = R, ({T9} U {Tp : (n,k) € Ay, we I} .

Clearly u, is measurable since it is the pointwise limit of the sequence {s,}, .y Where
2TL

sn() == > Ry ({T0} U {T/": (m,j) € Ay, IR CIT'}) 1r () -
k=1
The case p = ¢ is a direct consequence of results in [12].

Theorem 3.2. Let T" be the Fourier Haar multiplier operator generated by {1}, from B (X,Y).
Let X andY be UMD spaces. Let u, be as in (3.1).

(a) If 1 <p < oo then

||T||LP(Q,X)—>LP(Q,Y) < Bp(X) Bp(Y) ||“p||Lw(Q,[o,oo]) :

(b) There exists a constant Axy so that
1Tl L, 0,x)»Lory) < Axy llualls o, -
Proof. Theorem 3.2 follows easily from Remark 3.1 and [12, Theorem 3.2 and Fact 5.1]). O

The next theorems covers the case g < p. Its rather simple proof is quite different from the usual

proof for scalar-valued multiplier sequences (see [19, Theorem 12.2]), which uses interpolation.

Theorem 3.3. Let 1 < ¢ < p < o0o. Let X andY be UMD spaces. Let T be the Fourier Haar
multiplier operator generated by {TJ}J ey from B(X,Y). Then

“THLP(Q,X)—)LQ(Q,Y) < Bp(X) Bq(Y) ||“q||LT(Q,[o,oo])
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where r € (1,00] is given by 1 =1 — 1
’ r q p

Recall that u, is defined in (3.1).

Proof. Fix ) .yzjh; € E(Q, X). Note that for each fixed ¢ € [0, 1],
q q
. . < 9 7
HZ]'ENTJ ®) w’h]H @.x) ~ A (X) HZ]'ENth]HL (QX)
HZ ENTJ J J‘ La(9,Y) < b HZJGN t) Tjwsh;
Thus
I Tﬂf’qu Sl A DOILACE O
jEN Ly(QYy) — jeN ' Lq(QY)
q
- (T} |h; B ‘ d
v | HZ@ : ot Dam @)

< B [mAnm @) [ nomh @l
= falY) /[0,1} Huq () (ZjeN ri () eihy (')Miq(ﬂ,X) &
< BI(Y) /[071 ||uq||qu(Q,[0,oo]) HZjENTj (D) zjh; () ip(n,X) at
< BF(Y) llugl} 00,00 P HZ en ]H 2(2,X)
This completes the proof. H

The next theorem covers the case p < ¢. It gives a vector-valued analogue of (1.2). In this case,
the usual proof of the scalar-valued case can be generalized and so no UMD nor R-boundedness

assumptions are necessary.

Theorem 3.4. Let 1 < p < q < oo. Let T be the Fourier Haar multiplier operator generated by
{Tj}jeN from B(X,Y). Define

1
Apg = sup 2" (3 1T sex,y) -
(n,k)eA

(a) If 1 < p then

Apg < Tz 0x)—Lo@y) < Cpg Apg -
(b) If 1 = p then

“THLl(Q,X)%L}]“k(Q,Y) < G Ay -
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Proof. The lower bound in part (a) follows from Remark 4.1.

Set

"=
Q|

thus, 0 < @ < 1. Define J: R — R via

a—1 .

f
J(t) = 4 %t#O
0 ift=0.

By the Hardy-Littlewood-Sobolev theorem (cf. [20, page 119]), for each g € L, (R,R), the integral

S
S0 = [ L0 ds = 9
R |t — s
converges absolutely for a.e. £ € R and the operator S satisfies

1590, er) < Cpq 9L, mry HpP>1
||Sg||L;vk(R,R) < Cpg l9llp,mry fp=1

for some constants Cp,.
Define K: Q2 x Q@ — B(X,Y) via

K (t,s) = {Z(n,k)EA 2VIEhy (t) by (s) ift#s 52)

ift=s.

Note that, for each fixed ¢t and s with ¢ # s, only a finite number of terms in the summand in (3.2)

are nonzero. Fix f = Z(n,k)EA zph} € E(Q,X). Thus, for each t € ,

/Q K (t,5) f (s) ds = /Q " (Z (o (s)| | ST aphp (s)| ds

m,j)EA (n,k)eA

= X [ ey o) M o) ds

(n,k)eEA Q (m,j)eA

= > Tpaph(t) = (TF)() .

(n,k)eA

Fix t,s € Q with ¢ # s. Find the unique m € N so that

27 < |t —s| <27
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So h} (t) ki (s) =0if n > m and (n,k) € Ay. Thus

1K (t8)lpyy < 2. 2" 1T ey 1Bk (8) RE (9)]
(n,k)EA

D 2% Ap 27 Ry () B (s)]
(n,k)eA

1+ mzzl (21—“)"]

2(1=e)m _ 1| ga—1 (3.3)
21—a _ 1 2a—1

IN

INA

qu

= A, |1 +

Pq

Apq 1

1 —9a—-1 (2,m+1)1—a
Apg 1

1 —9a-1 |t—S|1_a

INA

<

= —P _Jit—s).
Fix f € E(Q,X). Define g € Lo (R,R) via

_JIfF@llx ifteq
9(t) = {0 : iftedQ.

Towards part (b), now let 1 =p < ¢ < co. For each t €

A
ienely = |[xeorea] < 2 [re-900 0
by (3.3). Thus, for each A > 0,

MM ({t € Q: I(TF) ()lly > A})

Ay A(1-2YH Al =221
S Tt 4, H VPR T ()] > =

Ay
< 1_723[,1 ||J*9||L;vk(R,R)

Clq Clq
< T oot A 9l er) = T5a=1 Ate [flziex) -

Thus part (b) holds.
Towards part (a), now let 1 < p < g < co. By (3.3)

11 = [ 5 o) 10|

: /n [/n 1K (& 8)llx, vy 1F (3)l1x dsr dt

Y

dt
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[ qu 17 !
[ A _
<[] /Q[/RJ(t 5)g(5) ds] dt
[ Ay ] q
- || [ o
[ A ]* q Apg " a
< |Toge] 1591mm) < [W] Coa 191z, mr)
_ C q
- [ A W)
Thus part (a) holds. -

4. EXAMPLES AND REMARKS

A lower bound on the norm of a Fourier Haar multiplier operator is easy.

Remark 4.1. Let T be the Fourier Haar multiplier operator generated by {Tj}jeN from B (X,Y).
Then

n(i_1 .
1T, ,x)>L,y) = sup 2 (-3) 1T | 8ex,v)
(n,k)EA
for each 1 < p, q < oc.
Proof. Fix (n,k) € A. Then
1Tz, o,y
TN, 0,x)>Ly@y) = SUP hn AR
weB(x) | k:HLp(Q,X)
B 1Tplly, 1L,y o (2-m)1/
- n = HellBx,y .
zeB(x)  lzllx HthL,,(Q,X) KX (g-m) e
This finishes the proof. O

Example 4.2 shows that R-bounded is a natural assumption in Section 3.

Ezample 4.2. Consider a sequence {Sy},cy, from B(X,Y). Define {T,?}(n Kea bY T = Sp and
T3 = Spy for (n, k) € Ay. Then

Cpg Bq({Sn:n €No}) < (T (0,x)>1,0v)
for 1 < p,q < 0o. Indeed

HT(?moh(o) DI D Tl?xnﬂhz‘

La(,Y)
1Tl > sup R
Ly(Q,X)>Le(QY) = P —
e onho + 2n=0 k=1 xn+1h2‘ Ly (,X)

TpF#
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N
HSofvoTo + o Sn+1$n+17‘n+1’

Lo(Q,Y
e Sup Q( ) )
NeN Hmoro—i—z Tpt1T ‘
—0 4n+1"n+1
“;Zi)é Lp(2,X)
N N
o SpTnr H 0 Tnt
= sup Hzn_o T Zin=o Tnn Lq(2,X)
o 2n=0 T 0 x) o Lp(2.X)
| = owara
= X
> Ry({Sn:n€Ng}) inf Ly(@.X)
NeN HZ TnTn
anX n=0 Lp(Q:X)
> R, ({Sn: n e No})

for some constant Cpq € (0, 00).
Example 4.2 also sheds light on the proper generalization of (1.3).

Ezample 4.3. Now let X and Y be UMD spaces and 1 < ¢ < p < o0.

Theorem 3.3 generalizes (1.3) via the function

ug () = Rg({T |h; ()] :J €N}) .
Also consider the function
() = sup Ty h; O ) -
jEN
Clearly, u < uqy. If X has cotype 2 and Y has type 2, then uy; < Cxyqu for some constant
nyq S (0, OO)
Note that, in Example 4.2, the functions u, and @ are constant:

ug(w) = Rg({Sn:ne€No}) and u(w) = sup [|Sullgxy)

neNy

for each w € Q. Thus, for this example, the bounds in Theorems 3.2 and 3.3 are of the proper

order; that is,

||T||LP(Q,X)—>Lq(Q,Y) ~ ||U’Q||LT(Q,[O,00])
1

-1
However, if X does not have cotype 2 or Y does not have type 2, then there exists a sequence

{Sn}nen, from the unit sphere of B(X,Y) that is not R-bounded. Consider the corresponding

where % =

Q=

Fourier Haar multiplier operator 1" as defined in Example 4.2. Then T is not bounded, indeed,
Uq (w) = oo for each w € Q. However, u (w) = 1 for each w € Q.

Thus, in generalizing (1.3), R-boundedness is needed.
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Remark 4.4. In Theorems 3.2 and 3.3, it is essential that X and Y be UMD spaces. Indeed,
one obtains ([18], see [5]) an equivalent formulation of UMD spaces (with the same constant) if,
in Definition 2.1, one replaces the arbitrary filtration {F,}” ; with the Haar filtration {H,} " .
Thus (see Remark 3.1), X is a UMD space if and only if each Fourier Haar multiplier operator T
generated by a multiplier sequence of the form {e;1x},  for some choice {¢;},  of signs {£1}
is bounded from Ly, (2, X) to Ly, (2, X) by a constant depending only on X and p for some (or
equivalently, for each) p € (1,00). Note that for such an operator T’

up(w) =1

for each w € Q.

Remark 4.5. Theorem 3.2 part (a) fails for p = 1 (or equivalently: Theorem 3.2 part (b) fails
if LY%(Q,Y) is replaces with L1 (Q,Y)). Indeed, let X = Y = R and assume that there is a

constant C' such that each Fourier Haar multiplier operator 1" generated by {17’} (nk)EA satisfies

1T, op—i@r < C luill @00 - (4.1)

By considering {T]?}(n kyea of the form Tit = i where ef € {1}, equation (4.1) would imply that
the {h,’i}(n K)eA is an unconditional basis for Ly (Q2,R), which is not true (cf. [17]).

Remark 4.6. Theorem 3.4 part (a) fails for 1 = p < ¢ < oo (or equivalently: Theorem 3.4 part (b)
fails if L;"k (2,Y) is replaced with Lg (2,Y)). Indeed, let X =Y = R and consider the Fourier
Haar multiplier operator T generated by {)\Z}(n ke where A} := 94 with % + % = 1. Clearly
11
Apg == sup 2n(1’ q) IAg] = 1.
(n,k)eA

If T where bounded from L; (2,R) to Lq (2, R), then its adjoint 7 would be bounded from

Ly (2,R) to Ly (2,R). But
1 m
H { n }n_l Eq/

-[{31.

Remark 4.7. Theorem 3.4 part (a), it is essential that p # ¢. Indeed, let 1 < p = ¢ < co. Let X

L (QR)

2

for each m € N.

and Y be UMD spaces such that X does not have cotype 2 or Y does not have type 2. Then there



OPERATOR-VALUED FOURIER HAAR MULTIPLIERS 13

exists a sequence {Sy},cy, from the unit sphere of B (X,Y’) that is not R-bounded. Consider the
corresponding Fourier Haar multiplier operator 1" as defined in Example 4.2. Clearly,
(D)
qu = sup 2 P a ||Tk ||B(X,Y) = 1 .
(n,k)EA
However, as noted in Example 4.3, T is not bounded from Ly, (2, X) to L, (Q,Y).

Remark 4.8. Let {”j}jeN be a B (X,Y)-valued {’Hj}jeN—predictable sequence and 1 < p,q < co.
Let’s consider the following natural question.

When does there exist a constant Cxypq so that

Zvndn < CXqu Z dn (42)
n=1 Ly(Q,Y) n=1 Lp(9,X)

for each X-valued Haar martingale difference sequence {d, }n-?
This question reduces to Fourier Haar multipliers.
Indeed, by predictability, each v; is constant on the support of h; and so there exists a unique
sequence {T}}, \ from B (X,Y’) so that
vj () h; ()] = Tj|h; ()]
for each j € N.
It now follows from Definition 2.3 and Remark 3.1 that question (4.2) is true if and only if

the Fourier Haar multiplier generated by the Fourier Haar multiplier sequence {7} }j en 18 bounded
from L, (2, X) to Ly (Q2,Y).
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