
OPERATOR-VALUED FOURIER HAAR MULTIPLIERS

MARIA GIRARDI

Abstract. Criteria are given to ensure the boundedness of Fourier Haar multiplier operators

from Lp ([0; 1] ; X) to Lq ([0; 1] ; Y ) where the Fourier Haar multiplier sequences come not from R ,

as in the classical setting, but rather from the space of bounded linear operators from a Banach

space X into a Banach space Y .

1. INTRODUCTION

It is well known that the Haar system fhjgj2N forms an unconditional basis in Lp ([0; 1]; R )

for 1 < p < 1. Thus the Fourier Haar multiplier operator T , generated by the Fourier Haar

multiplier sequence f�jgj2N from R , de�ned on the span of the Haar system fhjgj2N by

T
�Xm

j=1
cjhj

�
=
Xm

j=1
�jcjhj where cj 2 R and m 2 N ; (1.1)

extends (uniquely) to a bounded linear operator on the whole of Lp ([0; 1]; R ) provided the multiplier

sequence is bounded, in which case,

kTkLp([0;1];R)!Lp([0;1];R)
� Cp sup

j2N
j�j j

for some constant Cp for 1 < p < 1. Much is known (cf. e.g. [19] and the references therein)

about the boundedness of such Fourier Haar multiplier operator from Lp ([0; 1]; R ) to Lq ([0; 1]; R ).

If 1 < p � q <1, then

kTkLp([0;1];R)!Lq([0;1];R)
� sup

(n;k)2�

2
n
�
1

p
� 1

q

�
j�2n+kj (1.2)

where fhnkg(n;k)2� is the dyadic enumeration of the Haar system. While if 1 < q � p <1, then

kTkLp([0;1];R)!Lq([0;1];R)
�


 supj2N j �j hj j




Lr([0;1];R)

(1.3)

where 1
r
= 1

q
� 1

p
. In both cases, the equivalence constants depend only on p and q.

In (1.1), one can replace cj 2 R by xj in some Banach spaceX and then consider the boundedness

of T on Lp ([0; 1];X). Here UMD (unconditionality property for martingale di�erences) spaces play
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a key role. Indeed, each T generated by a Fourier Haar multiplier sequence f"jgj2N from f�1g is

bounded (by some constant depending only on X and p) on Lp ([0; 1];X) for some (or equivalently,

for each) p 2 (1;1) if and only if X is a UMD space.

This paper considers Fourier Haar multiplier operators from Lp ([0; 1];X) to Lq ([0; 1]; Y ) where

the Fourier Haar multiplier sequence comes not from R but rather from the space B (X;Y ) of

bounded linear operators from a Banach space X into a Banach space Y . Not surprisely, UMD

plays a role. However, an R-boundedness assumption on the multiplier sequence is also used.

R-boundedness was introduced by Berkson and Gillespie in [2]. This notion grew out of work

of J. Bourgain on vector-valued Fourier transform [3] and has been central to recent results on

operator-valued Fourier multipliers and singular integrals with operator-valued kernels on Bochner

spaces (e.g. [1, 11, 13, 23]). Through these tools, R-boundedness became important for maximal

regularity of parabolic di�erential equations (e.g. [8, 16, 23]) and the holomorphic functional calculus

of sectorial operators (e.g. [14, 15, 16]). It is a key notion in the study [12] of martingales transforms

by operator-valued multiplier, which is especially useful for the theory of stochastic integration

on Banach spaces which recently was developed in [21] and [22]. For more information on R-

boundedness and its properties, see [7, 10, 16].

Theorem 3.3, which covers the case that 1 < q � p < 1, generalizes (1.3). Its simple short

proof, which uses the notions of UMD and R-boundedness, is very di�erent from the usual proof

for scalar-valued multiplier sequences, which uses interpolation and is much longer. Theorem 3.4,

which covers the case that 1 � p < q < 1, generalizes (1.2). In this case, the usual proof of

the scalar-valued case can be generalized and so no UMD nor R-boundedness assumptions are

necessary. It is interesting that in one case UMD and R-boundedness need to be used but in the

other case they do not. This work was motivated by a recent paper [12] on martingale transforms

where the multiplier sequence is B (X;Y )-valued.

This paper is organized as follows. Section 2 collects the needed de�nitions and notation. Sec-

tion 3 contains the main results. Closing examples and remarks are in Section 4.

2. DEFINITIONS and NOTATION

Throughout this paper, the Banach spaces that appear are over the �xed scalar �eld of either

the real or complex numbers. X, Y , and Z are Banach spaces. B (X) is the closed unit ball of X.

The space B (X;Y ) of bounded linear operators from X into Y is endowed with the usual operator

norm topology. For a measure space (
;F ; �), the Bochner-Lebesgue space Lp (
;X) consists of the

measurable functions from 
 into X with �nite Lp (
;X)-norm where 1 � p � 1. The weak-Lp
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space Lwkp (
;X), for 1 � p <1, consists of the measurable functions from 
 into X that satisfy

kfkLwkp (
;X) := sup
�>0

� [� (f! 2 
: kf (!)kX > �g)]
1

p <1 :

It is well-known that the above expression k�kLwkp (
;X) is a quasi-norm on Lwkp (
;X) with

kf + gkLwkp (
;X) � 2
h
kfkLwkp (
;X) + kgkLwkp (
;X)

i
:

The balls with respect to k�kLwkp (
;X) de�ne a linear topology on Lwkp (
;X) and Lwkp (
;X), en-

dowed with this topology, is a quasi-Banach space.

N is the set of natural numbers while N 0 = N [ f0g. Nonnumerical subscripts on constants

indicate dependency.

Let (
;F ; �) be a probability space with a �ltration fFng
m
n=1 (i.e., fFng

m
n=1 is a nondecreasing se-

quence of sub-�-�elds of F) where m 2 N . A sequence fdng
m
n=1 of functions from 
 into X is a (sta-

tionary) martingale di�erence sequence with respect to fFng
m
n=1 provided dn 2 L1 ((
;Fn; �) ;X)

and E (dn+1 j Fn) = 0 for each admissible n. There is a one-to-one correspondence between mar-

tingales ffng
m
n=1 and martingale di�erence sequence fdng

m
n=1 given by fn =

Pn
k=1 dk. A sequence

fvng
m
n=1 of functions from 
 into Z is fFng

m
n=1-predictable provided vn is Fn�1-measurable for

each n 2 f1; 2; : : :mg (where F0 := F1). The martingale transform of an X-valued martingale

f
Pn

k=1 dkg
m
n=1 with respect to fFng

m
n=1 by a B (X;Y )-valued fFng

m
n=1-predictable sequence fvng

m
n=1

is the Y -valued martingale f
Pn

k=1 vkdkg
m
n=1 with respect to fFng

m
n=1. Burkholder [4] introduced

UMD Banach spaces.

De�nition 2.1. The UMD constant of X is the smallest �p (X) 2 [1;1] so that

k"1d1 + : : :+ "mdmkLp(
;X) � �p (X) kd1 + : : :+ dmkLp(
;X)

for each X-valued martingale di�erence sequence fdng
m
n=1 with respect to some �ltration fFng

m
n=1,

choice f"ng
m
n=1 of signs from f�1g, and m 2 N . A Banach space X is UMD provided that its UMD

constant is �nite for some (or equivalently, by Pisier [18], for each) p 2 (1;1).

One obtains an equivalent formulation of UMD spaces (with the same UMD constant) if, in De�-

nition 2.1, one replaces choice f"ng
m
n=1 of signs from f�1g with [�1; 1]-valued fFng

m
n=1-predictable

sequence fvng
m
n=1.

Notation 2.2. Henceforth, (
;F ; �) denotes the usual Lebesgue measure space on [0; 1].

Let

�1 = f(n; k) 2 N 0 � N : 1 � k � 2ng
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�0 = f(0; 0)g and � = �0 [�1 :

There is a bijection from � onto N given by (n; k)! 2n+k, which provides a linear ordering on �.

Thus any sequence f�jgj2N of objects can also be denoted by
�
�(n;k)

	
(n;k)2�

where �(n;k) = �2n+k.

This identi�cation will be used freely throughout this paper.

The dyadic intervals fInk : (n; k) 2 �1g are given by

In1 =

�
0;

1

2n

�
and Ink =

�
k � 1

2n
;
k

2n

�
for k > 1 :

The Haar system fhnkg(n;k)2� is given by h00 = 1I0
1
and, for (n; k) 2 �1,

hnk = 1In+1
2k�1

� 1In+1
2k

:

The Haar �ltration fHjgj2N is de�ned by

Hj = � fh1; : : : ; hjg :

The Rademacher functions frngn2N0 take the form r0 = h00 and, for n 2 N ,

rn =

2n�1X
k=1

hn�1k :

Let

E (
;X) :=
n
f : 
! X j f =

Xn

j=1
xjhj for some n 2 N ; xj 2 X

o
:

E (
;X) is norm dense in Lp (
;X) for 1 � p < 1; indeed, X-valued simple functions are dense

in Lp (
;X) and the Haar system is a basis for Lp (
; R ). Also, the representation of functions in

E (
;X) is unique: if f =
Pn

j=1 xjhj then xj = khjk
�1
L1

R


f (!)hj (!) d!.

De�nition 2.3. The Fourier Haar multiplier operator T , generated by a Fourier Haar multiplier

sequence fTjgj2N from B (X;Y ), is the linear mapping from E (
;X) to E (
; Y ) given by

T
�X

j2N
xjhj

�
=
X

j2N
Tjxjhj for

X
j2N

xjhj 2 E (
;X) :

For 1 � p; q <1 de�ne

kTkLp(
;X)!Lq(
;Y )
:= sup

f2E(
;X)
f 6=0

kTfkLq(
;Y )

kfkLp(
;X)
: (2.1)

If the supremum in (2.1) is �nite, the T is called a bounded Fourier Haar multiplier operator (from

Lp (
;X) to Lq (
; Y )).
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In De�nition 2.3, if T is a bounded Fourier Haar multiplier operator, then T : E (
;X)! E (
; Y )

extends uniquely to a bounded linear operator from Lp (
;X) to Lq (
; Y ), with norm the supre-

mum in (2.1). In De�nition 2.3, one can replace Lq (
; Y ) with Lwkq (
; Y ) for 1 � q < 1. All

remains valid except, in the bounded case, the norm of the extension is at most twice the supremum

in (2.1).

Loosely speaking, a set � of operators is R-bounded provided Kahane's Contraction Principle

holds for operator coeÆcients from � . The precise de�nition is as follows.

De�nition 2.4. Let � be a subset of B (X;Y ) and p 2 [1;1). Let Rp(�) be the smallest constant

R 2 [0;1] with the property that for each n 2 N and subset fTjg
n
j=1 of � and subset fxjg

n
j=1 of X,







nX
j=1

rj(�)Tj(xj)








Lp([0;1];Y )

� R








nX
j=1

rj(�)xj








Lp([0;1];X)

:

The set � is R-bounded provided Rp(�) is �nite for some (and thus then, by Kahane's inequality,

for each) p 2 [1;1).

Pisier [1] showed that each (norm) bounded subset of B (X;Y ) is R-bounded if and only if X has

cotype 2 and Y has type 2 (cf. e.g. [17] for needed de�nitions). Note that if X and Y are q-concave

Banach lattices for some �nite q (e.g. X = Y = Lq (
; C ) where 1 � q < 1) then R-boundedness

is equivalent to the square function estimate







0
@ mX

j=1

jTjxj j
2

1
A
1=2








Y

� R









0
@ nX

j=1

jxj j
2

1
A
1=2








X

known from harmonic analysis (cf. [17, Thm. II.1.d.6]). For basic properties of R-bounded sets and

further references, see [7, 10, 16, 23].

All notation and terminology, not otherwise explained, are as in [6, 9, 17].

3. MAIN RESULTS

Consider a Fourier Haar multiplier operator T generated by fTjgj2N from B (X;Y ). This sec-

tion gives conditions on fTjgj2N that guarantee that T is bounded from Lp (
;X) to Lq (
; Y ).

Remark 3.1 relates the boundedness of T to the boundedness of certain martingale transforms.

Remark 3.1. Note that fdng
m
n=1 is an X-valued martingale di�erence sequence with respect to the

Haar �ltration fHng
m
n=1 if and only if it takes the form dn = xnhn for some xn 2 X. Let

vj (�) := Tj jhj (�)j :
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Then fvng
m
n=1 is a B (X;Y )-valued fHng

m
n=1-predictable sequence. Furthermore, the martingale

transform of f
Pn

k=1 dkg
m
n=1 by fvng

m
n=1 has the form

mX
n=1

vn (�) dn (�) =

mX
n=1

Tn jhn (�)j xnhn (�) =

mX
n=1

Tn xnhn (�) :

Thus T is bounded (by some constanst CXY pq) if and only if





mX
n=1

vndn







Lq(
;Y )

� CXY pq







mX
n=1

dn







Lp(
;X)

for each X-valued Haar martingale di�erence sequence fdng
m
n=1.

Motivated by Remark 3.1, de�ne up : 
! [0;1] by

up (�) := Rp (fTj jhj (�)j : j 2 N g) (3.1)

for 1 � p <1. Thus

up (!) = Rp

��
T 00
	
[ fTn

k : (n; k) 2 �1 ; ! 2 Ink g
�
:

Clearly up is measurable since it is the pointwise limit of the sequence fsngn2N where

sn (�) :=

2nX
k=1

Rp

��
T 00
	
[
�
Tm
j : (m; j) 2 �1 ; I

n
k � Imj

	�
1In

k
(�) :

The case p = q is a direct consequence of results in [12].

Theorem 3.2. Let T be the Fourier Haar multiplier operator generated by fTjgj2N from B (X;Y ).

Let X and Y be UMD spaces. Let up be as in (3.1).

(a) If 1 < p <1 then

kTkLp(
;X)!Lp(
;Y )
� �p (X) �p (Y ) kupkL1(
;[0;1]) :

(b) There exists a constant AXY so that

kTkL1(
;X)!Lwk
1
(
;Y ) � AXY ku1kL1(
;[0;1]) :

Proof. Theorem 3.2 follows easily from Remark 3.1 and [12, Theorem 3.2 and Fact 5.1]). �

The next theorems covers the case q � p. Its rather simple proof is quite di�erent from the usual

proof for scalar-valued multiplier sequences (see [19, Theorem 12.2]), which uses interpolation.

Theorem 3.3. Let 1 < q � p < 1. Let X and Y be UMD spaces. Let T be the Fourier Haar

multiplier operator generated by fTjgj2N from B (X;Y ). Then

kTkLp(
;X)!Lq(
;Y )
� �p (X) �q (Y ) kuqkLr(
;[0;1])
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where r 2 (1;1] is given by 1
r
= 1

q
� 1

p
.

Recall that uq is de�ned in (3.1).

Proof. Fix
P

j2N xjhj 2 E (
;X). Note that for each �xed t 2 [0; 1],


X
j2N

rj (t)xjhj




q
Lp(
;X)

� �qp (X)



X

j2N
xjhj




q
Lp(
;X)


X

j2N
Tjxjhj




q
Lq(
;Y )

� �qq (Y )



X

j2N
rj (t)Tjxjhj




q
Lq(
;Y )

:

Thus 


X
j2N

Tjxjhj




q
Lq(
;Y )

� �qq (Y )

Z
[0;1]




X
j2N

rj (t)Tjxjhj (�)



q
Lq(
;Y )

dt

= �qq (Y )

Z






X
j2N

rj (�) (Tj jhj (!)j)xjhj (!)



q
Lq([0;1];Y )

d!

� �qq (Y )

Z



Rq
q (fTj jhj (!)j : j 2 N g)




X
j2N

rj (�)xjhj (!)



q
Lq([0;1];X)

d!

= �qq (Y )

Z
[0;1]




uq (�) �X
j2N

rj (t)xjhj (�)
�


q

Lq(
;X)
dt

� �qq (Y )

Z
[0;1]

kuqk
q
Lr(
;[0;1])




X
j2N

rj (t)xjhj (�)



q
Lp(
;X)

dt

� �qq (Y ) kuqk
q
Lr(
;[0;1])

�qp (X)



X

j2N
xjhj




q
Lp(
;X)

:

This completes the proof. �

The next theorem covers the case p < q. It gives a vector-valued analogue of (1.2). In this case,

the usual proof of the scalar-valued case can be generalized and so no UMD nor R-boundedness

assumptions are necessary.

Theorem 3.4. Let 1 � p < q < 1. Let T be the Fourier Haar multiplier operator generated by

fTjgj2N from B (X;Y ). De�ne

Apq := sup
(n;k)2�

2
n
�
1

p
� 1

q

�
kTn

k kB(X;Y ) :

(a) If 1 < p then

Apq � kTkLp(
;X)!Lq(
;Y )
� Cpq Apq :

(b) If 1 = p then

kTkL1(
;X)!Lwkq (
;Y ) � Cq A1q :
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Proof. The lower bound in part (a) follows from Remark 4.1.

Set

� =
1

p
�

1

q
;

thus, 0 < � < 1. De�ne J : R ! R via

J (t) :=

(
jtj��1 if t 6= 0

0 if t = 0 .

By the Hardy-Littlewood-Sobolev theorem (cf. [20, page 119]), for each g 2 Lp (R ; R ), the integral

(Sg) (t) :=

Z
R

g (s)

jt� sj1��
ds = (J � g) (t)

converges absolutely for a.e. t 2 R and the operator S satis�es

kSgkLq(R;R ) � Cpq kgkLp(R;R ) if p > 1

kSgkLwkq (R;R ) � Cpq kgkL1(R;R ) if p = 1

for some constants Cpq.

De�ne K : 
� 
! B (X;Y ) via

K (t; s) =

(P
(n;k)2� 2nTn

k h
n
k (t)h

n
k (s) if t 6= s

0 if t = s .
(3.2)

Note that, for each �xed t and s with t 6= s, only a �nite number of terms in the summand in (3.2)

are nonzero. Fix f =
P

(n;k)2� xnkh
n
k 2 E (
;X). Thus, for each t 2 
,

Z



K (t; s) f (s) ds =

Z

nftg

2
4 X
(m;j)2�

2mTm
j hmj (t)hmj (s)

3
5
2
4 X
(n;k)2�

xnkh
n
k (s)

3
5 ds

=
X

(n;k)2�

Z



X
(m;j)2�

�
Tm
j xnkh

m
j (t)

� �
2mhmj (s)hnk (s)

�
ds

=
X

(n;k)2�

Tn
k x

n
kh

n
k (t) = (Tf) (t) :

Fix t; s 2 
 with t 6= s. Find the unique m 2 N so that

2�m < jt� sj � 2�m+1 :
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So hnk (t)h
n
k (s) = 0 if n � m and (n; k) 2 �1. Thus

kK (t; s)kB(X;Y ) �
X

(n;k)2�

2n kTn
k kB(X;Y ) jh

n
k (t)h

n
k (s)j

�
X

(n;k)2�

2nApq2
�n� jhnk (t)h

n
k (s)j

� Apq

"
1 +

m�1X
n=0

�
21��

�n#

= Apq

"
1 +

2(1��)m � 1

21�� � 1

#
2��1

2��1

�
Apq

1� 2��1
1

(2�m+1)
1��

�
Apq

1� 2��1
1

jt� sj1��

=
Apq

1� 2��1
J (t� s) :

(3.3)

Fix f 2 E (
;X). De�ne g 2 L1 (R ; R ) via

g (t) :=

(
kf (t)kX if t 2 


0 if t =2 
 :

Towards part (b), now let 1 = p < q <1. For each t 2 


k(Tf) (t)kY =






Z



K (t; s) f (s) ds






Y

�
A1q

1� 2��1

Z



J (t� s) g (s) ds

by (3.3). Thus, for each � > 0,

��1=q (ft 2 
: k(Tf) (t)kY > �g)

�
A1q

1� 2��1
�
�
1� 2��1

�
A1q

�1=q

 (
t 2 R : j(J � g) (t)j >

�
�
1� 2��1

�
A1q

)!

�
A1q

1� 2��1
kJ � gkLwkq (R;R )

�
C1q

1� 2��1
A1q kgkL1(R;R ) =

C1q

1� 2��1
A1q kfkL1(
;X) :

Thus part (b) holds.

Towards part (a), now let 1 < p < q <1. By (3.3)

kTfk
q
Lq(
;Y )

=

Z








Z



K (t; s) f (s) ds






q

Y

dt

�

Z



�Z



kK (t; s)kB(X;Y ) kf (s)kX ds

�q
dt
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�

�
Apq

1� 2��1

�q Z



�Z
R

J (t� s) g (s) ds

�q
dt

=

�
Apq

1� 2��1

�q Z



j(Sg) (t)jq dt

�

�
Apq

1� 2��1

�q
kSgk

q
Lq(R;R )

�

�
Apq

1� 2��1

�q
Cq
pq kgk

q
Lp(R;R )

=

�
Cpq

1� 2��1
Apq kfkLp(
;X)

�q
:

Thus part (a) holds. �

4. EXAMPLES AND REMARKS

A lower bound on the norm of a Fourier Haar multiplier operator is easy.

Remark 4.1. Let T be the Fourier Haar multiplier operator generated by fTjgj2N from B (X;Y ).

Then

kTkLp(
;X)!Lq(
;Y )
� sup

(n;k)2�

2
n
�
1

p
� 1

q

�
kTn

k kB(X;Y )

for each 1 � p; q <1.

Proof. Fix (n; k) 2 �. Then

kTkLp(
;X)!Lq(
;Y )
� sup

x2B(X)

kTn
k xh

n
kkLq(
;Y )

xhnk

Lp(
;X)

= sup
x2B(X)

kTn
k xkY
kxkX

khnkkLq(
;Y )

hnk

Lp(
;X) = kTn
k kB(X;Y )

(2�n)
1=q

(2�n)1=p
:

This �nishes the proof. �

Example 4.2 shows that R-bounded is a natural assumption in Section 3.

Example 4.2. Consider a sequence fSngn2N0 from B (X;Y ). De�ne fTn
k g(n;k)2� by T 00 = S0 and

Tn
k = Sn+1 for (n; k) 2 �1. Then

Cpq Rq (fSn : n 2 N 0g) � kTkLp(
;X)!Lq(
;Y )

for 1 � p; q <1. Indeed

kTkLp(
;X)!Lq(
;Y )
� sup

N2N
xn2X
xn 6=0




T 00 x0h00 +PN
n=0

P2n

k=1 T
n
k xn+1h

n
k





Lq(
;Y )


x0h00 +PN

n=0

P2n

k=1 xn+1h
n
k





Lp(
;X)
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= sup
N2N
xn2X
xn 6=0




S0x0r0 +PN
n=0 Sn+1xn+1rn+1





Lq(
;Y )


x0r0 +PN

n=0 xn+1rn+1





Lp(
;X)

= sup
N2N
xn2X
xn 6=0




PN
n=0 Snxnrn





Lq(
;Y )


PN

n=0 xnrn





Lq(
;X)




PN
n=0 xnrn





Lq(
;X)


PN

n=0 xnrn





Lp(
;X)

� Rq (fSn : n 2 N 0g) inf
N2N
xn2X
xn 6=0




PN
n=0 xnrn





Lq(
;X)


PN

n=0 xnrn





Lp(
;X)

� Cpq Rq (fSn : n 2 N 0g)

for some constant Cpq 2 (0;1).

Example 4.2 also sheds light on the proper generalization of (1.3).

Example 4.3. Now let X and Y be UMD spaces and 1 < q � p <1.

Theorem 3.3 generalizes (1.3) via the function

uq (�) = Rq (fTj jhj (�)j : j 2 N g) :

Also consider the function

eu (�) = sup
j2N

kTj jhj (�)j kB(X;Y ) :

Clearly, eu � uq. If X has cotype 2 and Y has type 2, then uq � CXY qeu for some constant

CXY q 2 (0;1).

Note that, in Example 4.2, the functions uq and eu are constant:

uq (!) = Rq (fSn : n 2 N 0g) and eu (!) = sup
n2N0

kSnkB(X;Y )

for each ! 2 
. Thus, for this example, the bounds in Theorems 3.2 and 3.3 are of the proper

order; that is,

kTkLp(
;X)!Lq(
;Y )
� kuqkLr(
;[0;1])

where 1
r
= 1

q
� 1

p
.

However, if X does not have cotype 2 or Y does not have type 2, then there exists a sequence

fSngn2N0 from the unit sphere of B (X;Y ) that is not R-bounded. Consider the corresponding

Fourier Haar multiplier operator T as de�ned in Example 4.2. Then T is not bounded, indeed,

uq (!) =1 for each ! 2 
. However, eu (!) = 1 for each ! 2 
.

Thus, in generalizing (1.3), R-boundedness is needed.
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Remark 4.4. In Theorems 3.2 and 3.3, it is essential that X and Y be UMD spaces. Indeed,

one obtains ([18], see [5]) an equivalent formulation of UMD spaces (with the same constant) if,

in De�nition 2.1, one replaces the arbitrary �ltration fFng
m
n=1 with the Haar �ltration fHng

m
n=1.

Thus (see Remark 3.1), X is a UMD space if and only if each Fourier Haar multiplier operator T

generated by a multiplier sequence of the form f"j1Xgj2N for some choice f"jgj2N of signs f�1g

is bounded from Lp (
;X) to Lp (
;X) by a constant depending only on X and p for some (or

equivalently, for each) p 2 (1;1). Note that for such an operator T

up (!) = 1

for each ! 2 
.

Remark 4.5. Theorem 3.2 part (a) fails for p = 1 (or equivalently: Theorem 3.2 part (b) fails

if Lwk1 (
; Y ) is replaces with L1 (
; Y )). Indeed, let X = Y = R and assume that there is a

constant C such that each Fourier Haar multiplier operator T generated by fTn
k g(n;k)2� satis�es

kTkL1(
;R)!L1(
;R)
� C ku1kL1(
;[0;1]) : (4.1)

By considering fTn
k g(n;k)2� of the form Tn

k = "nk where "nk 2 f�1g, equation (4.1) would imply that

the
�
hkn
	
(n;k)2�

is an unconditional basis for L1 (
; R ), which is not true (cf. [17]).

Remark 4.6. Theorem 3.4 part (a) fails for 1 = p < q <1 (or equivalently: Theorem 3.4 part (b)

fails if Lwkq (
; Y ) is replaced with Lq (
; Y )). Indeed, let X = Y = R and consider the Fourier

Haar multiplier operator T generated by f�nkg(n;k)2� where �nk := 2
� n

q0 with 1
q
+ 1

q0
= 1. Clearly

Apq := sup
(n;k)2�

2
n
�
1

p
� 1

q

�
j�nk j = 1 :

If T where bounded from L1 (
; R ) to Lq (
; R ), then its adjoint T � would be bounded from

Lq0 (
; R ) to L1 (
; R ). But





mX
n=1

2
n

q0
1

n
hn1







Lq0 (
;R)

�






�
1

n

�m
n=1






`q0




T �

 
mX
n=1

2
n

q0
1

n
hn1

!





L1(
;R)

=






�
1

n

�m
n=1






`1

:

for each m 2 N .

Remark 4.7. Theorem 3.4 part (a), it is essential that p 6= q. Indeed, let 1 < p = q < 1. Let X

and Y be UMD spaces such that X does not have cotype 2 or Y does not have type 2. Then there
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exists a sequence fSngn2N0 from the unit sphere of B (X;Y ) that is not R-bounded. Consider the

corresponding Fourier Haar multiplier operator T as de�ned in Example 4.2. Clearly,

Apq := sup
(n;k)2�

2
n
�
1

p
� 1

q

�
kTn

k kB(X;Y ) = 1 :

However, as noted in Example 4.3, T is not bounded from Lp (
;X) to Lp (
; Y ).

Remark 4.8. Let fvjgj2N be a B (X;Y )-valued fHjgj2N -predictable sequence and 1 � p; q <1.

Let's consider the following natural question.

When does there exist a constant CXY pq so that





mX
n=1

vndn







Lq(
;Y )

� CXY pq







mX
n=1

dn







Lp(
;X)

for each X-valued Haar martingale di�erence sequence fdng
m
n=1?

(4.2)

This question reduces to Fourier Haar multipliers.

Indeed, by predictability, each vj is constant on the support of hj and so there exists a unique

sequence fTjgj2N from B (X;Y ) so that

vj (�) jhj (�)j = Tj jhj (�)j

for each j 2 N .

It now follows from De�nition 2.3 and Remark 3.1 that question (4.2) is true if and only if

the Fourier Haar multiplier generated by the Fourier Haar multiplier sequence fTjgj2N is bounded

from Lp (
;X) to Lq (
; Y ).
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