
OPERATOR-VALUED MARTINGALE TRANSFORMS AND R-BOUNDEDNESS

MARIA GIRARDI AND LUTZ WEIS

Abstract. Banach space X-valued martingale transforms by a B(X)-valued multiplier sequence
are bounded on Lp(X), where 1 < p < ∞ and X is a UMD space, if and only if the multiplier
sequence is pointwise R-bounded. This is also true for unconditionally convergent martingales in
arbitrary Banach spaces.

1. INTRODUCTION

Let X be a Banach space. The martingale transform of an X-valued martingale {fn}n∈N by a

R-valued, predictable, uniformly bounded sequence {vn}n∈N
is the martingale {gn}n∈N where

gn :=
n∑

k=1

vkdk and fn :=
n∑

k=1

dk ; (1.1)

so {dn}n∈N is the martingale difference sequence of {fn}n∈N.

Burkholder [6] introduced UMD (unconditionality property for martingale differences) Banach

spaces: for 1 < p < ∞, the UMD constant of X is the smallest βp (X) ∈ [1,∞] so that

‖ε1d1 + . . . + εmdm‖Lp(Ω,X) ≤ βp (X) ‖d1 + . . . + dm‖Lp(Ω,X) (1.2)

for each X-valued martingale difference sequence {dn}n∈N
with respect to some filtration {Fn}n∈N,

choice {εn}n∈N of signs from {±1}, and m ∈ N. A Banach space X is UMD provided that its UMD

constant is finite for some (or equivalently, by Pisier [29], for each) p ∈ (1,∞).

In this setting, the underlying probability space (unless it is nonatomic) and filtration must

vary. Burkholder [6] showed that (1.2) holds, with the same constant βp(X), if one replaces the

choices {εn}n∈N
of signs by {Fn}-predictable sequences {vn}n∈N

of functions valued in [−1, 1].

Over the years, the interplay between probability and harmonic analysis has been very fruitful

(see, e.g., [10, 11]) Indeed, the study of the martingale transform uses, for example, Doob’s maximal

function (f∗(ω) = supn |fn (ω)|) and the square function (Sf = (
∑

n∈N
|dn|2)1/2). Also [4, 8], X
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has UMD if and only if the Hilbert transform is bounded on Lp(R, X) for some (or equivalently for

each) p ∈ (1,∞).

Mart́ınez and Torrea [27] studied operator-valued martingale transforms where the multiplier

sequences {vn}n∈N
are valued in B (X, Y ) instead of R. They derived a theory that parallels the

R-valued case. For example, they obtained a martingale version of the well-known theorem of

Fefferman and Stein [17] for Hardy-Littlewood maximal operator.

However, they did not give a criteria on a fixed B (X, Y )-valued multiplier sequence {vn}n∈N
to

ensure that, for some Cp ∈ R,

‖v1d1 + . . . + vmdm‖Lp(Ω,Y ) ≤ Cp ‖d1 + . . . + dm‖Lp(Ω,X) (1.3)

for each admissible X-valued martingale difference sequence {dn}n∈N
and m ∈ N and for some (or

for each) p ∈ (1,∞). This paper gives such a criteria, in which R-bounded plays a key role. Indeed,

Theorems 3.2, 3.3, and 4.1 led to the following crystallizing corollary.

Corollary 1.1. Let (Ω,F , µ) be a probability space with filtration {Fn}n∈N0
and p ∈ (1,∞). Let X

and Y be UMD spaces. Let {vn}n∈N
be a B (X, Y )-valued {Fn}-multiplier sequence.

(A) For arbitrary filtrations, the following are equivalent.

(1) There exists Rp ∈ R so that Rp ({vn (ω) : n ∈ N}) ≤ Rp for a.e. ω ∈ Ω.

(2) There exists Cp ∈ R so that for each (uniformly bounded) X-valued martingale differ-

ence sequence {dn}m
n=1 with respect to some subfiltration

{
F̂n

}m

n=1
of

{
F̂n

}
n∈N

, where(
Ω̂, F̂ , µ̂

)
is an extension of (Ω,F , µ),∥∥∥∥∥

m∑
n=1

v̂ndn

∥∥∥∥∥
Lp(Ω̂,Y )

≤ Cp

∥∥∥∥∥
m∑

n=1

dn

∥∥∥∥∥
Lp(Ω̂,X)

.

(B) For atomic filtrations satisfying (4.1), the following are equivalent.

(1) There exists Rp ∈ R so that Rp ({vn (ω) : n ∈ N}) ≤ Rp for each (or equivalently, for

a.e.) ω ∈ Ω.

(2) There exists Cp ∈ R so that for each (uniformly bounded) X-valued martingale differ-

ence sequence {dn}m
n=1 with respect to some subfiltration {Fn}m

n=1 of {Fn}n∈N
,∥∥∥∥∥

m∑
n=1

vndn

∥∥∥∥∥
Lp(Ω,Y )

≤ Cp

∥∥∥∥∥
m∑

n=1

dn

∥∥∥∥∥
Lp(Ω,X)

.

If (1 ) holds, then Cp in (2 ) can be taken to be βp(X)βp(Y )Rp. If (2 ) holds, then Rp in (1 ) can

be taken to be Cp. (Needed definitions and notation to come.)
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R-boundedness was introduced by Berkson and Gillespie in [2]. The notion grew out of work

of J. Bourgain on vector-valued Fourier transform [5] and has been central to recent results on

operator-valued Fourier multipliers and singular integrals with operator-valued kernels on Bochner

spaces (e.g. [1, 20, 19, 33]). Through these tools, R-boundedness became important for maximal

regularity of parabolic differential equations (e.g. [13, 14, 25, 33]) and the holomorphic functional

calculus of sectorial operators (e.g. [21, 22, 25]). Results of the present paper are especially useful

for the theory of stochastic integration on Banach spaces, which recently was developed in [31]

and [32]. For more information on R-boundedness and its properties, see [12, 18, 25].

This paper is organized as follows. Section 2 collects the needed definitions and notation. The

main results are in Sections 3 and 4. Section 5 gives further corollaries to these main theorems.

Section 6 gives a technical proof of a lemma needed in Section 4.

2. DEFINITIONS and NOTATION

Throughout this paper, the Banach spaces that appear are over the fixed scalar field of either

the real or complex numbers. X, Y , and Z are Banach spaces. B (X) is the closed unit ball

of X while S (X) is the unit sphere of X. The space B (X, Y ) of bounded linear operators from X

into Y is endowed with the usual operator norm topology. ([0, 1] ,M, m) is the usual Lebesgue

measure space. (Ω,F , µ) is an arbitrary (complete) probability measure space; corresponding to

it is the usual Bochner-Lebesgue space Lp (Ω, X) of measurable functions from Ω into X with

finite Lp (Ω, X)-norm where 1 ≤ p ≤ ∞. A sequence {dn}n∈N of functions from Ω into X is

uniformly bounded (by M ∈ R) provided

sup
n∈N

sup
ω∈Ω

‖dn (ω)‖X ≤ M .

Following Burkholder [7], a sequence {dn}m
n=1 of functions in Lp (Ω, X) is called τ -unconditional in

Lp (Ω, X) provided ∥∥∥∥∥
m∑

n=1

εnλndn

∥∥∥∥∥
Lp(Ω,X)

≤ τ

∥∥∥∥∥
m∑

n=1

λndn

∥∥∥∥∥
Lp(Ω,X)

for each choice {εn}m
n=1 of signs from {±1} and choice {λn}m

n=1 of scalars.

N is the set of natural numbers while N0 = N ∪ {0}.
Let (Ω,F , µ) be a probability space with a filtration {Fn}n∈N0

(i.e., {Fn}n∈N0
is a nondecreasing

sequence of sub-σ-fields of F). Let m ∈ N ∪ {∞}. A sequence {fn}m
n=1 of functions from Ω into X

is a martingale with respect to {Fn}m
n=1 provided fn ∈ L1 ((Ω,Fn, µ) , X) and E (fn+1 | Fn) = fn

for each admissible n. A sequence {dn}m
n=1 of functions from Ω into X is a martingale difference



4 GIRARDI AND WEIS

sequence with respect to {Fn}m
n=1 provided dn ∈ L1 ((Ω,Fn, µ) , X) and E (dn+1 | Fn) = 0 for each

admissible n. There is a one-to-one correspondence between martingales {fn}m
n=1 and martingale

difference sequence {dn}m
n=1 given by

fn =
n∑

k=1

dk and dn = fn − fn−1

where f0 ≡ 0. Note that for a finite (i.e. m ∈ N) X-valued martingale difference sequence {dn}m
n=1

and p ∈ [1,∞), each dn is in Lp (Ω, X) if and only if
∑m

n=1 dn is in Lp (Ω, X). A sequence {vn}n∈N

of functions from Ω into Z is predictable with respect to {Fn}n∈N0
(in short, {Fn}-predictable)

provided vn is Fn−1-measurable for each n ∈ N. Note that if {vn}n∈N is predictable with respect

to {Fn}n∈N0
, then it is predictable with respect to each subfiltration (i.e. subsequence) {Fjn}n∈N0

of {Fn}n∈N0
.

Definition 2.1. To ease the statements of theorems to come, for a probability space (Ω,F , µ) with

filtration {Fn}n∈N0
, let

M ({Fn} , X) :=
{ {fn}n∈N

: {fn}n∈N
is an X-valued martingale with respect to {Fn}n∈N

}
and

D ({Fn} , X) :=
{ {dn}m

n=1 : {dn}m
n=1 is an X-valued martingale difference sequence

with respect to some subfiltration {Fjn}m
n=1 of {Fn}n∈N

and m ∈ N
}

.

Definition 2.2. Let (Ω,F , µ) be a probability space with filtration {Fn}n∈N0
.

(1) A B (X, Y )-valued {Fn}-multiplier sequence is a sequence {vn}n∈N
of functions from Ω into

B (X, Y ) that is predictable with respect to {Fn}n∈N0
and is uniformly bounded by one.

(2) For such a multiplier sequence v := {vn}n∈N
, the martingale transform of a martingale

f := {fn}n∈N
∈ M ({Fn} , X) is the martingale {(Tvf)n}n∈N

∈ M ({Fn} , Y ) where

fn :=
n∑

k=1

dk and (Tvf)n :=
n∑

k=1

vkdk

for each n ∈ N.

The dyadic sigma-fields {Dn}n∈N0 are given by

Dn = σ (In
k : 1 ≤ k ≤ 2n)
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and the Rademacher functions {rn}n∈N are given by

rn =
2n∑

k=1

(−1)k+11In
k

where, for n ∈ N0, In
1 =

[
0
2n , 1

2n

]
and

In
k =

(
k − 1
2n

,
k

2n

]
if k ∈ N and 1 < k ≤ 2n.

A proof of the next fact can be found at [16, Contraction Principle 12.2]. In the special case of

when the independent symmetric sequence is the Rademacher functions {rn}n∈N, it is known as

Kahane’s Contraction Principle.

Fact 2.3 (Contraction Principle). Let {d̃o
n}n∈N be a sequence of independent, symmetric, R-valued

random variables on a probability space (Ω,F , µ). If {zn}m
n=1 is a sequence in any Banach space Z

and {λn}m
n=1 is a sequence from R, then∥∥∥∥∥

m∑
n=1

λn zn d̃o
n

∥∥∥∥∥
Lp(Ω,Z)

≤
[

max
1≤n≤m

|λn|
] ∥∥∥∥∥

m∑
n=1

zn d̃o
n

∥∥∥∥∥
Lp(Ω,Z)

for each p ∈ [1,∞).

R-boundedness is the central notion of this paper.

Definition 2.4. Let τ be a subset of B (X, Y ) and p ∈ [1,∞). Let Rp(τ) be the smallest constant

R ∈ [0,∞] with the property that for each n ∈ N and subset {Tj}n
j=1 of τ and subset {xj}n

j=1 of X,∥∥∥∥∥∥
n∑

j=1

rj(·)Tj(xj)

∥∥∥∥∥∥
Lp([0,1],Y )

≤ R

∥∥∥∥∥∥
n∑

j=1

rj(·)xj

∥∥∥∥∥∥
Lp([0,1],X)

.

The set τ is R-bounded provided Rp(τ) is finite for some (and thus then, by Kahane’s inequality

[16], for each) p ∈ [1,∞).

Thus a set τ is R-bounded provided Kahane’s Contraction Principle holds for operator coefficients

from τ . Pisier [1] showed that X is isomorphic to a Hilbert space if and only if each (norm) bounded

subset of B (X, X) is R-bounded. Note that if X and Y are q-concave Banach lattices for some

finite q (e.g. X = Y = Lq (Ω, C) where 1 ≤ q < ∞) then R-boundedness is equivalent to the square

function estimate ∥∥∥∥∥∥∥
 m∑

j=1

|Tjxj |2
1/2

∥∥∥∥∥∥∥
Y

≤ R

∥∥∥∥∥∥∥
 n∑

j=1

|xj |2
1/2

∥∥∥∥∥∥∥
X
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known from harmonic analysis (cf. [26, Thm. II.1.d.6]). For basic properties of R-bounded sets and

further references, see [12, 33].

All notation and terminology, not otherwise explained, are as in [9, 15, 26].

3. MAIN RESULTS for ARBITRARY FILTRATIONS

Part (A) of Corollary 1.1 follows easily from Theorems 3.2 and 3.3.

For arbitrary filtrations, the notion of an extension (cf. eg. [23]) of a probability space is used.

Definition 3.1. Let (Ω,F , µ) and (Ω′,F ′, µ′) be probability spaces with filtrations {Fn}n∈N0

and {F ′
n}n∈N0

respectively. The extension of (Ω,F , µ) by (Ω′,F ′, µ′) is their product probabil-

ity space (Ω̂, F̂ , µ̂), along with the filtration {F̂n}n∈N0 where F̂n = σ(Fn ×F ′
n). For h ∈ L0 (Ω, Z),

define ĥ ∈ L0

(
Ω̂, Z

)
by

ĥ(ω, ω′) := h(ω) .

In the special case that (Ω′,F ′, µ′) = ([0, 1],M, m) and {F ′
n}n∈N0

= {Dn}n∈N0
, one calls (Ω̂, F̂ , µ̂)

the dyadic extension of (Ω,F , µ).

Note that if h ∈ Lp (Ω, Z) then ‖h‖Lp(Ω,Z) = ‖ĥ‖
Lp(Ω̂,Z) for 1 ≤ p ≤ ∞. Also, if {vn}n∈N is a

{Fn}-multiplier sequence then {v̂n}n∈N is a
{
F̂n

}
-multiplier sequence.

Theorem 3.2. Let (Ω,F , µ) be a probability space with filtration {Fn}n∈N0
and p ∈ [1,∞). Let

{vn}n∈N be a B (X, Y )-valued {Fn}-multiplier sequence that satisfies, for some Cp ∈ R,

Rp ({vn (ω) : n ∈ N}) ≤ Cp

for a.e. ω ∈ Ω.

(a) If {dn}m
n=1 ∈ D ({Fn} , X) is so that {dn}m

n=1 is αp-unconditional in Lp (Ω, X)

and {vndn}m
n=1 is βp-unconditional in Lp (Ω, Y ), then∥∥∥∥∥

m∑
n=1

vndn

∥∥∥∥∥
Lp(Ω,Y )

≤ αp βp Cp

∥∥∥∥∥
m∑

n=1

dn

∥∥∥∥∥
Lp(Ω,X)

.

(b) If {dn}m
n=1 ∈ D

({
F̂n

}
, X

)
, for some extension (Ω̂, F̂ , µ̂) of (Ω,F , µ), is so that {dn}m

n=1

is αp-unconditional in Lp

(
Ω̂, X

)
and {v̂ndn}m

n=1 is βp-unconditional in Lp

(
Ω̂, Y

)
, then∥∥∥∥∥

m∑
n=1

v̂ndn

∥∥∥∥∥
Lp(Ω̂,Y )

≤ αp βp Cp

∥∥∥∥∥
m∑

n=1

dn

∥∥∥∥∥
Lp(Ω̂,X)

.
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Proof. Part (a) follows easily from (b). Towards (b), note that for each fixed t ∈ [0, 1]∥∥∥∥∥
m∑

n=1

rn (t) dn

∥∥∥∥∥
p

Lp(Ω̂,X)
≤ αp

p

∥∥∥∥∥
m∑

n=1

dn

∥∥∥∥∥
p

Lp(Ω̂,X)∥∥∥∥∥
m∑

n=1

v̂ndn

∥∥∥∥∥
p

Lp(Ω̂,Y )
≤ βp

p

∥∥∥∥∥
m∑

n=1

rn (t) v̂ndn

∥∥∥∥∥
p

Lp(Ω̂,Y )
.

Thus ∥∥∥∥∥
m∑

n=1

v̂ndn

∥∥∥∥∥
p

Lp(Ω̂,Y )
≤ βp

p

∫
[0,1]

∥∥∥∥∥
m∑

n=1

rn (t) v̂ndn

∥∥∥∥∥
p

Lp(Ω̂,Y )
dt

= βp
p

∫
Ω

∫
Ω′

∫
[0,1]

∥∥∥∥∥
m∑

n=1

rn (t) vn (ω) dn

(
ω, ω′)∥∥∥∥∥

p

Y

dt dµ′(ω′) dµ(ω)

≤ βp
p Cp

p

∫
Ω

∫
Ω′

∫
[0,1]

∥∥∥∥∥
m∑

n=1

rn (t) dn

(
ω, ω′)∥∥∥∥∥

p

X

dt dµ′(ω′) dµ(ω)

= βp
p Cp

p

∫
[0,1]

∥∥∥∥∥
m∑

n=1

rn (t) dn

∥∥∥∥∥
p

Lp(Ω̂,X)
dt

≤ βp
p Cp

p αp
p

∥∥∥∥∥
m∑

n=1

dn

∥∥∥∥∥
p

Lp(Ω̂,X)
.

This finishes the proof of (b). �

Theorem 3.3. Let (Ω,F , µ) be a probability space with filtration {Fn}n∈N0
and p ∈ [1,∞).

Let {vn}n∈N be a B (X, Y )-valued {Fn}-multiplier sequence that satisfies, for some Cp ∈ R,

for each uniformly bounded {dn}m
n=1 ∈ D

({
F̂n

}
, X

)
,

where (Ω̂, F̂ , µ̂) is the dyadic extension of (Ω,F , µ) ,∥∥∥∥∥
m∑

n=1

v̂ndn

∥∥∥∥∥
Lp(Ω̂,Y )

≤ Cp

∥∥∥∥∥
m∑

n=1

dn

∥∥∥∥∥
Lp(Ω̂,X)

.

(3.1)

Then

Rp ({vn (ω) : n ∈ N}) ≤ Cp

for a.e. ω ∈ Ω.
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Remark 3.4. Condition (3.1) can be replaced by the (apparently) weaker Condition (3.1′).

Condition (3.1′):

for each R-valued finite martingale difference sequence {dn}m
n=1

with respect to {F̂m−1+n}m
n=1,

where (Ω̂, F̂ , µ̂) is the dyadic extension of (Ω,F , µ),

of the form dn(ω, t) = rm−1+n (t) 1A (ω) where A ∈ Fm−1,

one has that∥∥∥∥∥
m∑

n=1

v̂nxndn

∥∥∥∥∥
Lp(Ω̂,Y )

≤ Cp

∥∥∥∥∥
m∑

n=1

xndn

∥∥∥∥∥
Lp(Ω̂,X)

for each choice {xn}m
n=1 from B(X).

Thus Condition (3.1′) reduces, from Condition (3.1), the class of martingale difference sequences

that one must test. Note that for such a martingale difference sequence {dn}m
n=1 in Condition (3.1′),

if {zn}m
n=1 is from any Banach space Z, then {zndn}m

n=1 is 1-unconditional in Lp

(
Ω̂, Z

)
by Fact 2.3.

Proof of Theorem 3.3. Assume condition (3.1′) of Remark 3.4 holds (but not that condition (3.1)

necessarily holds). Let {εj}j∈N be a sequence of real numbers tending to zero.

For each n ∈ N, since vn ∈ L∞ ((Ω,Fn−1, µ),B (X, Y )), there is a sequence {vj
n}j∈N of countably-

valued functions in L∞ ((Ω,Fn−1, µ),B (X, Y )) so that limj→∞
∥∥∥vn − vj

n

∥∥∥
L∞

= 0. Note that for any

sub-σ-field Gj
n containing σ(vj

n)∥∥vn − E (vn | Gj
n)

∥∥
L∞

≤ ∥∥vn − E (vj
n | Gj

n)
∥∥

L∞
+

∥∥E
(
vj
n − vn | Gj

n

)∥∥
L∞

≤ 2
∥∥vn − vj

n

∥∥
L∞

.

So, for each j ∈ N, there is a sequence {Gj
n}n∈N0 of sub-σ-fields of F so that

(1)
∥∥∥vn − wj

n

∥∥∥
L∞(Ω,B(X,Y ))

<
εj

2n where wj
n := E

(
vn | Gj

n−1

)
(2) Gj

n−1 ⊂ Fn−1 and Gj
n−1 ⊂ Gj

n

(3) Gj
n−1 is generated by a partition of Ω into (finitely or countably many) sets of (strictly)

positive measure

for each n ∈ N. So there exists G ∈ F so that µ(G) = 1 and∥∥vn (u) − wj
n (u)

∥∥
B(X,Y )

<
εj

2n

for each u ∈ G and j, n ∈ N.
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Fix u ∈ G. Fix {xn}m
n=1 from B(X). Fix j ∈ N. It suffices to show∥∥∥∥∥

m∑
n=1

rnvn (u)xn

∥∥∥∥∥
Lp([0,1],Y )

≤ Cp

∥∥∥∥∥
m∑

n=1

rnxn

∥∥∥∥∥
Lp([0,1],X)

+ 2εj . (3.2)

Find the atom A of Gj
m−1 so that u ∈ A. Note that

wj
n (u) = wj

n (ω) for each ω ∈ A , n ∈ {1, . . . , m} .

So ∥∥∥ m∑
n=1

rnvn (u)xn

∥∥∥
Lp([0,1],Y )

≤
∥∥∥∥∥

m∑
n=1

wj
n (u) xnrm−1+n

∥∥∥∥∥
Lp([0,1],Y )

+ εj

=

∫
A

∫
[0,1]

∥∥∥∥∥
m∑

n=1

wj
n (ω) xnrm−1+n (t)

∥∥∥∥∥
p

Y

dt
dµ (ω)
µ(A)


1/p

+ εj

≤ 1
µ1/p(A)

∫
Ω

∫
[0,1]

∥∥∥∥∥
m∑

n=1

vn (ω) xnrm−1+n (t) 1A (ω)

∥∥∥∥∥
p

Y

dt dµ (ω)


1/p

+ 2εj

≤ Cp

µ1/p(A)

∫
Ω

∫
[0,1]

∥∥∥∥∥
m∑

n=1

xnrm−1+n (t) 1A (ω)

∥∥∥∥∥
p

X

dt dµ (ω)


1/p

+ 2εj

=
Cp

µ1/p(A)

µ(A)
∫

[0,1]

∥∥∥∥∥
m∑

n=1

xnrm−1+n (t)

∥∥∥∥∥
p

X

dt


1/p

+ 2εj

= Cp

∥∥∥∥∥
m∑

n=1

rnxn

∥∥∥∥∥
Lp([0,1],X)

+ 2εj .

Thus (3.2) holds. �

4. MAIN RESULTS for ATOMIC FILTRATIONS

Now consider a probability space (Ω,F , µ) with a filtration {Fn}n∈N0
satisfying:

each Fn is generated by (finitely or countably many) atoms of (strictly) positive measure

and lim
n→∞ sup {µ(B) : B is an atom of Fn} = 0 .

(4.1)

Part (B) of Corollary 1.1 follows easily from Theorems 4.1 and 3.2.
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Theorem 4.1 is the atomic version of the general filtration Theorem 3.3. Note that Theorem 4.1

reduces the test class of martingale difference sequences from the test class needed in Theorem 3.3

in that, for the atomic case, one need not have to pass to extensions.

Theorem 4.1. Let (Ω,F , µ) be a probability space with a filtration {Fn}n∈N0
satisfying (4.1)

and p ∈ [1,∞).

Let {vn}n∈N be a B (X, Y )-valued {Fn}-multiplier sequence that satisfies, for some Cp ∈ R,

for each uniformly bounded {dn}m
n=1 ∈ D ({Fn} , X)∥∥∥∥∥

m∑
n=1

vndn

∥∥∥∥∥
Lp(Ω,Y )

≤ Cp

∥∥∥∥∥
m∑

n=1

dn

∥∥∥∥∥
Lp(Ω,X)

.
(4.2)

Then

Rp ({vn (ω) : n ∈ N}) ≤ Cp

for each ω ∈ Ω.

Remark 4.2. Condition (4.2) can be replaced by the (apparently) weaker Condition (4.2′).

Condition (4.2′):

there exists τ > 1 so that

for each uniformly bounded {dn}m
n=1 ∈ D ({Fn} , R) satisfying that

if {zn}m
n=1 is from any Banach space Z

then {zndn}m
n=1 is τ -unconditional in Lp (Ω, Z)

(4.3)

one has that∥∥∥∥∥
m∑

n=1

vnxndn

∥∥∥∥∥
Lp(Ω,Y )

≤ Cp

∥∥∥∥∥
m∑

n=1

xndn

∥∥∥∥∥
Lp(Ω,X)

(4.4)

for each choice {xn}m
n=1 from X.

Thus Condition (4.2′) reduces, from Condition (4.2), the class of martingale difference sequences

that one must test.

The proof of Theorem 4.1 uses the following lemma, whose long technical proof is in Section 6.

Lemma 4.3. Let (Ω,F , µ) be a probability space with a filtration {Fn}n∈N0
satisfying (4.1).

Let A be an atom of some Fj. Let p ∈ [1,∞) and τ, τ1 > 1 and ε > 0 and m ∈ N. Then there

exists a uniformly bounded R-valued martingale difference sequence {dn}m
n=1 with respect to some

subfiltration {Fjn}m
n=1 such that
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(1) j1 > j

(2) supp dn ⊂ A for each n ∈ {1, . . . , m}
(3) 1 ≤ |dn (ω)| ≤ τ1 for each n ∈ {1, . . . , m} and ω ∈ Gm := supp dm

and furthermore, for any choice {zn}m
n=1 from any Banach space Z,

(4) {zndn}m
n=1 is τ -unconditional in Lp (Ω, Z)

(5) if zn0 6= 0, then∫
A

∥∥∥∥∥
m∑

n=1

dn (ω) znrn

∥∥∥∥∥
p

Lp([0,1],Z)

dµ (ω) ≤ [1 + εMp]
∫

Gm

∥∥∥∥∥
m∑

n=1

dn (ω) znrn

∥∥∥∥∥
p

Lp([0,1],Z)

dµ (ω)

where M ‖zn0‖Z = τ1
∑m

n=1 ‖zn‖Z .

Proof of Theorem 4.1. Assume condition (4.2′) of Remark 4.2 holds (thus giving τ > 1) (but not

that condition (4.2) necessarily holds).

Fix u ∈ Ω. Fix m ∈ N and {xn}m
n=1 from X. Let τ1, τ2 > 1. It suffices to show∥∥∥∥∥

m∑
n=1

rnvn (u)xn

∥∥∥∥∥
Lp([0,1],Y )

≤ τ1 τ2 Cp

∥∥∥∥∥
m∑

n=1

rnxn

∥∥∥∥∥
Lp([0,1],X)

. (4.5)

Without loss of generality, there exists n0 ∈ {1, . . . m} so that xn0 6= 0.

Find the atom A of Fm−1 so that u ∈ A. Note that

vn (u) = vn (ω) for each ω ∈ A , n ∈ {1, . . . m} . (4.6)

Find ε > 0 so that

1 + ε

[
τ1

∑m
n=1 ‖xn‖X

‖xn0‖X

]p

< τp
2 . (4.7)

Apply Lemma 4.3 (with Fj := Fm−1 and other notation consistent) to find the corresponding

uniformly bounded {dn}m
n=1 ∈ D ({Fn} , R). Let Gm := supp dm. Note that {dn}m

n=1 satisfies

condition (4.3) and so (4.4) holds for the choice {rn (t)xn}m
n=1 from X for each fixed t ∈ [0, 1]. By

Kahane’s Contraction Principle (Fact 2.3), for each fixed w ∈ Gm,∥∥∥∥∥
m∑

n=1

dn (ω) xnrn

∥∥∥∥∥
Lp([0,1],X)

≤ τ1

∥∥∥∥∥
m∑

n=1

xnrn

∥∥∥∥∥
Lp([0,1],X)

(4.8)

∥∥∥∥∥
m∑

n=1

vn (u)xnrn

∥∥∥∥∥
Lp([0,1],Y )

≤
∥∥∥∥∥

m∑
n=1

dn (ω) vn (u)xnrn

∥∥∥∥∥
Lp([0,1],Y )

(4.9)

by (3) of Lemma 4.3. Thus∥∥∥∥∥
m∑

n=1

rnvn (u) xn

∥∥∥∥∥
p

Lp([0,1],Y )

≤
∫

Gm

∥∥∥∥∥
m∑

n=1

dn (ω) rnvn (u)xn

∥∥∥∥∥
p

Lp([0,1],Y )

dµ (ω)
µ(Gm)
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≤
∫

[0,1]

∫
Ω

∥∥∥∥∥
m∑

n=1

vn (ω) [rn (t)xn] dn (ω)

∥∥∥∥∥
p

Y

dµ (ω)
µ(Gm)

dt

≤ Cp
p

∫
[0,1]

∫
Ω

∥∥∥∥∥
m∑

n=1

rn (t)xndn (ω)

∥∥∥∥∥
p

X

dµ (ω)
µ(Gm)

dt

= Cp
p

∫
A

∥∥∥∥∥
m∑

n=1

dn (ω) [xnrn]

∥∥∥∥∥
p

Lp([0,1],X)

dµ (ω)
µ(Gm)

≤ Cp
p τp

2

∫
Gm

∥∥∥∥∥
m∑

n=1

dn (ω) [xnrn]

∥∥∥∥∥
p

Lp([0,1],X)

dµ (ω)
µ(Gm)

≤ Cp
p τp

2 τp
1

∥∥∥∥∥
m∑

n=1

xnrn

∥∥∥∥∥
p

Lp([0,1],X)

where the inequalities (in order) follow from: (4.9), the monotonicity of the integral for nonnegative

functions and (4.6), (4.4), Lemma 4.3 and (4.7), and (4.8). So (4.5) holds. �

The next example shows that the condition

lim
n→∞ sup {µ(B) : B is an atom of Fn} = 0

of (4.1) in Theorem 4.1 is necessary.

Example 4.4. Consider any filtration {Fn}n∈N0
on ([0, 1] ,M, m) satisfying that

(
1
2 , 1

]
is an atom

of Fn for each n ∈ N0. Let vn : Ω → B (X, X) have the form

vn (ω) =

{
Tn if ω ∈ (

1
2 , 1

]
0 if ω ∈ [

0, 1
2

]
.

Any {dn}m
n=1 ∈ D ({Fn} , X) satisfies dn (ω) = 0 if ω ∈ (

1
2 , 1

]
for n > 1. So (4.2) holds. But if X is

not Hilbertian, then there is a non-R-bounded set {Tn}n∈N in B (X, X).

5. COROLLARIES to the MAIN RESULTS

As in the scalar case, boundedness of operator-valued martingale transforms in one sense is

equivalent to other notions of boundedness. To be precise, for a Z-valued martingale f := {fn}n∈N
,

define

‖f‖Lp(Ω,Z) := sup
n∈N

‖fn‖Lp(Ω,Z) for 1 ≤ p < ∞
f∗

n (ω) := sup
1≤k≤n

‖fk (ω)‖Z for n ∈ N
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f∗ (ω) := sup
n∈N

‖fn (ω)‖Z Doob’s maximal function .

Let’s keep with the notation in Definitions 2.1 and 2.2.

Fact 5.1. Let (Ω,F , µ) be a probability space with filtration {Fn}n∈N0
. Let {vn}n∈N be a B (X, Y )-

valued {Fn}-multiplier sequence. Then conditions (1) through (5) are equivalent.

(1) For each (or equivalently, for some) p ∈ (1,∞) there exists Cp ∈ R so that

‖(Tvf)m‖Lp(Ω,Y ) ≤ Cp ‖fm‖Lp(Ω,X)

for each f := {fn} ∈ M ({Fn} , X) and m ∈ N.

(2) For each (or equivalently, for some) p ∈ (1,∞) there exists Cp ∈ R so that

‖(Tvf)∗‖Lp(Ω,R) ≤ Cp ‖f‖Lp(Ω,X)

for each f := {fn} ∈ M ({Fn} , X).

(3) For each p ∈ [1,∞) there exists Cp ∈ R so that

‖(Tvf)∗‖Lp(Ω,R) ≤ Cp ‖f∗‖Lp(Ω,R)

for each f := {fn} ∈ M ({Fn} , X).

(4) There exists C ∈ R so that

λ µ [(Tvf)∗ > λ] ≤ C ‖f∗‖L1(Ω,R)

for each f := {fn} ∈ M ({Fn} , X) and λ > 0.

(5) There exists C ∈ R so that

λ µ [(Tvf)∗ > λ] ≤ C ‖f‖L1(Ω,X)

for each f := {fn} ∈ M ({Fn} , X) and λ > 0.

If, furthermore, Y has the Radon-Nikodym property, then (3) implies (6).

(6) For each f := {fn} ∈ M ({Fn} , X), if ‖f‖L1(Ω,X) is finite then (Tvf) converges a.e..

Mart́ınez and Torrea [27] showed the equivalence of (2) through (5) and the implication to (6)

indicated above. Of course, that (1) implies (2) follows from standard techniques (such as those

found in [27, Remark 1]) while that (2) implies (1) follows easily from the definitions.

Corollary 5.2. Let (Ω,F , µ) be a probability space with filtration {Fn}n∈N0
. Let X and Y be UMD

spaces. Let {vn}n∈N be a B (X, Y )-valued {Fn}-multiplier sequence that satisfies, for some C ∈ R,

R2 ({vn (ω) : n ∈ N}) ≤ C for a.e. ω ∈ Ω .
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Then (1) through (6) of Fact 5.1 hold (with the constants appearing depending also on the UMD

constants of X and Y ).

Proof. Let f := {fn} ∈ M ({Fn} , X) and m ∈ N. It follows from Theorem 3.2 that

‖(Tvf)m‖L2(Ω,Y ) ≤ β2(X)β2(Y )C ‖fm‖L2(Ω,X) .

Now apply Fact 5.1. �

Remark 5.3. Mart́ınez and Torrea [28] showed the equivalence of (1) in Fact 5.1 to the boundedness

of the martingale transform on various Banach space valued BMO and Hardy spaces. Thus, similar

to Corollary 5.2, a pointwise R-bounded B (X, Y )-valued multiplier sequence {vn}n∈N, where X

and Y are UMD spaces, yields bounded martingale transform operators between BMO and Hardy

spaces.

Burkholder [6] showed that if X is a UMD space then (1.2) holds, with the same constant βp(X),

if one replaces the choices {εn}n∈N
of signs by [−1, 1]-valued {Fn}-multiplier sequences {vn}n∈N

.

A similar result is true for operator-valued multiplier sequences.

Corollary 5.4. Let (Ω,F , µ) be a probability space with filtration {Fn}n∈N0
and p ∈ [1,∞). Assume

that there is τp ({Fn} , X) ∈ R so that for each {dn}m
n=1 ∈ D ({Fn} , X)∥∥∥∥∥

m∑
n=1

εndn

∥∥∥∥∥
Lp(Ω,X)

≤ τp ({Fn} , X)

∥∥∥∥∥
m∑

n=1

dn

∥∥∥∥∥
Lp(Ω,X)

for each choice {εn}m
n=1 of signs from {±1}.

If a B (X, X)-valued {Fn}-multiplier sequence {vn}n∈N satisfies, for some Cp ∈ R,

Rp ({vn (ω) : n ∈ N}) ≤ Cp for a.e. ω ∈ Ω

then ∥∥∥∥∥
m∑

n=1

vndn

∥∥∥∥∥
Lp(Ω,X)

≤ [τp ({Fn} , X)]2 Cp

∥∥∥∥∥
m∑

n=1

dn

∥∥∥∥∥
Lp(Ω,X)

for each {dn}m
n=1 ∈ D ({Fn} , X).

Note that if {vn}n∈N is a [−1, 1]-valued {Fn}-multiplier sequence then {vn1X}n∈N is a B (X, X)-

valued {Fn}-multiplier sequence and Rp ({vn (ω) 1X : n ∈ N}) = sup {|vn (ω)| : n ∈ N}.

Proof. The result follows directly from Theorem 3.2. �

This section closes with a special case of Theorem 4.1: note that here one must only test condi-

tion (4.2) for translated filtration rather than for all subfiltration.
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Proposition 5.5. Consider the Lebesgue measure space ([0, 1],M, m) along with its dyadic filtra-

tion {Dn}n∈N0
. Let p ∈ [1,∞).

Let {vn}n∈N be a B (X, Y )-valued {Dn}-multiplier sequence that satisfies, for some Cp ∈ R,

for each X-valued finite martingale difference sequence {dn}m
n=1

with respect to {Dm−1+n}m
n=1

of the form dn = xnrm−1+n1Im−1
k

(5.1)

for some {xn}m
n=1 ⊂ B(X) and k ∈ {

1, . . . , 2m−1
}∥∥∥∥∥

m∑
n=1

vndn

∥∥∥∥∥
Lp([0,1],Y )

≤ Cp

∥∥∥∥∥
m∑

n=1

dn

∥∥∥∥∥
Lp([0,1],X)

.

Then

Rp ({vn (u) : n ∈ N}) ≤ Cp

for each u ∈ [0, 1].

Note that any martingale difference sequence of the above form is 1-unconditional in Lp ([0, 1], X).

Proof. Fix u ∈ [0, 1].

Fix m ∈ N and {xn}m
n=1 from B(X). Find k ∈ {

1, . . . , 2m−1
}

so that u ∈ Im−1
k . Note that,

for n ∈ {1, . . . , m}, each vn is constant on Im−1
k . Thus, by changes of variables and (5.1),∫

[0,1]

∥∥∥∥∥
m∑

n=1

rn (t) vn (u) xn

∥∥∥∥∥
p

Y

dt = 2m−1

∫
Im−1
k

∥∥∥∥∥
m∑

n=1

vn (u)
[
xnrn

(
2m−1t − k + 1

)]∥∥∥∥∥
p

Y

dt

= 2m−1

∫
[0,1]

∥∥∥∥∥
m∑

n=1

vn (t)
[
xnrm−1+n (t) 1Im−1

k
(t)

]∥∥∥∥∥
p

Y

dt

≤ 2m−1 Cp
p

∫
[0,1]

∥∥∥∥∥
m∑

n=1

xnrm−1+n (t) 1Im−1
k

(t)

∥∥∥∥∥
p

X

dt

= 2m−1 Cp
p

∫
Im−1
k

∥∥∥∥∥
m∑

n=1

xnrn

(
2m−1t − k + 1

)∥∥∥∥∥
p

X

dt

= Cp
p

∫
[0,1]

∥∥∥∥∥
m∑

n=1

xnrn (t)

∥∥∥∥∥
p

X

dt .

Thus Rp ({vn (u) : n ∈ N}) ≤ Cp. �



16 GIRARDI AND WEIS

6. PROOF of LEMMA 4.3

A tree-structured sequence {Γ∗
n}n∈N0

of indexing sets is needed. Let Γ∗
0 := {∅} and, for n ∈ N,

Γ∗
n = ((0,±1) × N0)

n .

There is a natural identification of Γ∗
n with Γ∗

n−1 × ((0,±1) × N0) and so one can express Γ∗
n as

Γ∗
n = {((δ1, k1) , . . . (δn, kn)) : δj ∈ {0 ± 1} and kj ∈ N0 for each j ∈ {1, . . . , n}}

=
{
(γ, (δ, k)) : γ ∈ Γ∗

n−1 , δ ∈ {0,±1} , k ∈ N0

}
for n ∈ N. The notation

A ] B = C

indicates that C is the disjoint union of A and B.

Lemma 6.1. Let (Ω,F , µ) be a probability space with a filtration {Fn}n∈N0
satisfying (4.1). Let A

be an atom of some Fj and 0 < δ < 1
2 . Let n ∈ N satisfy

sup {µ (B) : B ⊂ A , B is an atom of Fn} < δµ (A) . (6.1)

(Note n > j). Then there exists A1 and A−1 in Fn so that, for ε = ±1,

(1) A1 ] A−1 ⊂ A

(2) Aε is a finite union of atoms of Fn

(3) 1
2 − δ < µ(Aε)

µ(A) < 1
2

and so

(4) (1 − 2δ)µ (A) < µ (A1 ∪ A−1)

(5) 1 < µ(A)
2µ(Aε)

< 1
1−2δ

(6)
∣∣∣ εµ(A)
2µ(Aε)

− ε
∣∣∣ < 2δ

1−2δ .

Proof. One can express A as

A =
m⊎

k=1

A(0,k)

where the A(0,k)’s are (disjoint) atoms of Fn and m ∈ N ∪ {∞}. Note that

µ
(
A(0,k)

)
µ (A)

< δ <
1
2

and so m ≥ 3.
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So there exists l1 ∈ N (with 1 + l1 < m) so that
l1∑

k=1

µ
(
A(0,k)

)
µ (A)

<
1
2

≤
1+l1∑
k=1

µ
(
A(0,k)

)
µ (A)

.

Let

A1 :=
l1⋃

k=1

A(0,k) .

Note

1
2
− δ <

1
2

−
[

1+l1∑
k=1

µ
(
A(0,k)

)
µ (A)

−
l1∑

k=1

µ
(
A(0,k)

)
µ (A)

]
≤

l1∑
k=1

µ
(
A(0,k)

)
µ (A)

=
µ (A1)
µ (A)

<
1
2

and
1
2

<

m∑
k=1+l1

µ
(
A(0,k)

)
µ (A)

= 1 −
l1∑

k=1

µ
(
A(0,k)

)
µ (A)

<
1
2

+ δ .

So there exists l−1 ∈ N (with 1 + l−1 + l1 ≤ m) so that
l−1+l1∑
k=1+l1

µ
(
A(0,k)

)
µ (A)

<
1
2

≤
1+l−1+l1∑
k=1+l1

µ
(
A(0,k)

)
µ (A)

.

Let

A−1 :=
l−1⋃
k=1

A(0,k+l1) .

Note

1
2
− δ <

1
2

−
1+l−1+l1∑

k=1+l1

µ
(
A(0,k)

)
µ (A)

−
l−1+l1∑
k=1+l1

µ
(
A(0,k)

)
µ (A)

 ≤
l−1+l1∑
k=1+l1

µ
(
A(0,k)

)
µ (A)

=
µ (A−1)
µ (A)

<
1
2

.

Thus (1), (2), and (3) hold, from which (4), (5), and (6) follow easily. �

The ultimate goal of (the long) Lemma 6.2 is to find the functions mentioned in Remark 6.3

along with some sets {Gn}n∈N
, all of which satisfy conditions (F7) through (F11) of Lemma 6.2.

Lemma 6.2. Let (Ω,F , µ) be a probability space with a filtration {Fn}n∈N0
satisfying (4.1). Let A

be an atom of Fj and Ao ∈ M be so that µ(A) = m(Ao). Let {δn}n∈N be a sequence from
(
0, 1

2

)
.

Then there exists, for n ∈ N0,

(E1) good sets ΓG
n ⊂ Γ∗

n

(E2) bad sets ΓB
n ⊂ Γ∗

n

(E3) subsets {lγ}γ∈ΓG
n

of N

(E4) expansions of the good sets ~Γn ⊂ Γ∗
n+1

(E5) jn ∈ N
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(E6) subsets {Aγ}γ∈ΓG
n

of Fjn

(E7) atoms {Aγ}γ∈~Γn
of Fjn

(E8) subsets
{
Ao

γ

}
γ∈ΓG

n ∪~Γn
and

{
Bo

γ

}
γ∈ΓG

n ∪ΓB
n

of M
where the items in (E1) through (E8) corresponding to n = 0 are

(Z1) ΓG
0 = {∅}

(Z2) ΓB
0 = ∅

(Z3) lγ = 1 for γ ∈ ΓG
0

(Z4) ~Γ0 = {(∅, (0, 1))} ⊂ Γ∗
1

(Z5) j0 = j

(Z6) if γ ∈ ΓG
0 , then Aγ = ∅ and Ao

γ = ∅ = Bo
γ

(Z7) if γ ∈ ~Γ0, then Aγ = A and Ao
γ = Ao

and the indexing sets take the form, for n ∈ N,

(I1) ΓG
n =

{
(γ, (ε, k)) ∈ Γ∗

n : γ ∈ ΓG
n−1 , ε = ±1 , 1 ≤ k ≤ lγ

}
(I2) ΓB

n =
{
(γ, (ε, 0)) ∈ Γ∗

n : γ ∈ ΓG
n−1 ∪ ΓB

n−1 , ε = ±1
}

(the zero is a notationally convenient way to ensure ΓG
n ∩ ΓB

n = ∅)
(I3) ~Γn =

{
(γ, (0, l)) ∈ Γ∗

n+1 : γ ∈ ΓG
n , 1 ≤ l ≤ lγ

}
(which also holds for n = 0)

and so one can write

(I3′) ~Γn =
{
(γ, (ε, k) , (0, l)) ∈ Γ∗

n+1 : γ ∈ ΓG
n−1 , ε = ±1 , 1 ≤ k ≤ lγ , 1 ≤ l ≤ l(γ,(ε,k))

}
and it easily follows that

(I1′) ΓG
n =

{
(γ, (ε, k)) ∈ Γ∗

n : ε = ±1 , (γ , (0, k)) ∈ ~Γn−1

}
so that, for n ∈ N,

(C0) ΓG
n , ΓB

n , and ~Γn each have finitely many elements

(C1) jn > jn−1

(C2) if γ1, γ2 ∈ ~Γn and γ1 6= γ2, then Aγ1 ∩ Aγ2 = ∅ and Ao
γ1

∩ Ao
γ2

= ∅
(C3) if γ ∈ ΓG

n then

Aγ =
⋃

(γ,(0,l))∈~Γn

A(γ,(0,l)) and Ao
γ =

⋃
(γ,(0,l))∈~Γn

Ao
(γ,(0,l))

(C4) if (γ, (±1, k)) ∈ ΓG
n then for ε = ±1

A(γ,(1,k)) ] A(γ,(−1,k)) ⊂ A(γ,(0,k)) and
1
2
− δn <

µ
(
A(γ,(ε,k))

)
µ

(
A(γ,(0,k))

) <
1
2

(C5) if γ ∈ ~Γn then m(Ao
γ) = µ(Aγ)
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(C6) if (γ, (±1, k)) ∈ ΓG
n then for ε = ±1[

Ao
(γ,(1,k)) ] Ao

(γ,(−1,k))

]
]

[
Bo

(γ,(1,k)) ] Bo
(γ,(−1,k))

]
= Ao

(γ,(0,k))

m
(
Ao

(γ,(ε,k)) ∪ Bo
(γ,(ε,k))

)
=

1
2
m

(
Ao

(γ,(0,k))

)
(C7) if (γ, (±1, 0)) ∈ ΓB

n then

Bo
(γ,(1,0)) ] Bo

(γ,(−1,0)) = Bo
γ and m

(
Bo

(γ,(1,0))

)
= m

(
Bo

(γ,(−1,0))

)
(C8) the family Mn :=

{
Ao

γ

}
γ∈ΓG

n
∪ {

Bo
γ

}
γ∈ΓG

n ∪ΓB
n

is pairwise disjoint

(C9)
[
∪γ∈ΓG

n
Ao

γ

]
∪

[
∪γ∈ΓG

n ∪ΓB
n
Bo

γ

]
= Ao .

Furthermore, if for n ∈ N one defines

(D1) dn :=
∑

(γ,(ε,k))∈ΓG
n

ε µ(A(γ,(0,k)))
2 µ(A(γ,(ε,k)))

1A(γ,(ε,k))
: Ω → R

(D2) do
n :=

∑
(γ,(ε,k))∈ΓG

n

ε m
(
Ao

(γ,(0,k))

)
2 m

(
Ao

(γ,(ε,k))

) 1Ao
(γ,(ε,k))

: [0, 1] → R

(D3) d̃o
n :=

∑
(γ,(ε,k))∈ΓG

n
ε 1Ao

(γ,(ε,k))
∪Bo

(γ,(ε,k))
+

∑
(γ,(ε,0))∈ΓB

n
ε 1Bo

(γ,(ε,0))
: [0, 1] → R

(D4) Fo
jn

:= σ
({

Ao
γ : γ ∈ ~Γn

})
and Fo

j0
:= σ

({
Ao

γ : γ ∈ ~Γ0

})
(D5) Gn := ∪γ∈ΓG

n
Aγ

then for each n ∈ N

(F1) dn is Fjn-measurable

(F2) if B is an atom of Fjn−1, then
∫
B dn dµ = 0

(F3) do
n is Fo

jn
-measurable

(F4) if Bo is an atom of Fo
jn−1

, then
∫
Bo do

n dm = 0

(F5) m
[
d̃o

n = 1
]

= m(Ao)
2 = m

[
d̃o

n = −1
]

(F6) for each choice {εl}n
l=1 of signs there exists Γ̃G

n ⊂ ΓG
n and Γ̃B

n ⊂ ΓB
n such that

• ∩n
l=1

[
d̃o

l = εl

]
=

[
∪

γ∈Γ̃G
n
Ao

γ

]
∪

[
∪

γ∈Γ̃G
n ∪Γ̃B

n
Bo

γ

]
• m

(
∩n

l=1

[
d̃o

l = εl

])
=

(
1
2

)n
m (Ao)

(F7) Gn ⊂ Gn−1 where G0 := A

(F8) 1 < |dn (ω)| < 1
1−2δn

if ω ∈ Gn and dn (ω) = 0 if ω ∈ Ω \ Gn

(F9) µ (Gn) > [
∏n

k=1 (1 − 2δk) ] µ (A)

(F10) if 1 ≤ p < ∞ and {zn}n
k=1 are from any Banach space Z then

‖∑n
k=1 zkdk‖Lp(Ω,Z) = ‖∑n

k=1 zkd
o
k‖Lp([0,1],Z)

(F11) if 1 ≤ p < ∞ then∥∥∥do
n − d̃o

n

∥∥∥p

Lp([0,1],R)
<

[(
2δn

1−2δn

)p
+ (1 − ∏n

k=1 (1 − 2δk))
]

µ (A) .
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Remark 6.3. Note that, in Lemma 6.2,

(1) {dn}n∈N
is a martingale difference sequence with respect to the filtration {Fjn}n∈N

(2) {do
n}n∈N

is a martingale difference sequence with respect to the filtration
{
Fo

jn

}
n∈N

(3)
{

d̃o
n 1Ao

}
n∈N

is an independent sequence of {±1}-valued symmetric random variables on

the probability space
(
Ao, {B ∈ M : B ⊂ Ao} , m(·)

m(Ao)

)
.

Proof of Lemma 6.2. Let the desired items in (E1) through (E8) corresponding to n = 0 be as

in (Z1) through (Z7). The proof now continues by induction on n.

Let n = 1. Let

ΓG
1 := {(∅, (ε, 1)) ∈ Γ∗

1 : ε = ±1} ≡ {(ε, 1) ∈ Γ∗
1 : ε = ±1}

ΓB
1 := {(∅, (ε, 0)) ∈ Γ∗

1 : ε = ±1} ≡ {(ε, 0) ∈ Γ∗
1 : ε = ±1} .

Recall ~Γ0 = {(∅, (0, 1))} ⊂ Γ∗
1.

Since A = A(∅,(0,1)) is an atom of Fj0 , there exists j1 > j0 so that

sup
{
µ (B) : B ⊂ A(∅,(0,1)) , B is an atom of Fj1

}
< δ1 µ

(
A(∅,(0,1))

)
.

By Lemma 6.1, there are sets A(∅,(±1,1)) ∈ Fj1 so that

A(∅,(1,1)) ] A(∅,(−1,1)) ⊂ A(∅,(0,1)) (6.2)

and, for ε = ±1, each A(∅,(ε,1)) is a finite union of atoms of Fj1 , say

A(∅,(ε,1)) =
l(∅,(ε,1))⊎

l=1

A(∅,(ε,1),(0,l)) , (6.3)

and
1
2
− δ1 <

µ
(
A(∅,(ε,1))

)
µ

(
A(∅,(0,1))

) <
1
2

. (6.4)

Let
~Γ1 :=

{
(∅, (ε, 1) , (0, l)) ∈ Γ∗

2 : ε = ±1, 1 ≤ l ≤ l(∅,(ε,1))

}
.

This completes the construction of the desired items in (E1) through (E7) that satisfy their condi-

tions in (C0) through (C4).

Since A(∅,(0,1)) = A and Ao
(∅,(0,1)) = Ao and µ (A) = m (Ao), by (6.2), for ε = ±1, there ex-

ists Ao
(∅,(ε,1)) ∈ M so that

Ao
(∅,(1,1)) ] Ao

(∅,(−1,1)) ⊂ Ao
(∅,(0,1))

m
(
Ao

(∅,(ε,1))

)
= µ

(
A(∅,(ε,1))

)
. (6.5)
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So by (6.4), for ε = ±1,

1
2
− δ1 <

m
(
Ao

(∅,(ε,1))

)
m

(
Ao

(∅,(0,1))

) <
1
2

.

So, for ε = ±1, there exists Bo
(∅,(ε,1)) ∈ M so that (C6) holds. It follows from (6.3) and (6.5) that,

for ε = ±1, there exists Ao
(∅,(ε,1),(0,l)) ∈ M so that

Ao
(∅,(ε,1)) =

l(∅,(ε,1))⊎
l=1

Ao
(∅,(ε,1),(0,l))

m
(
Ao

(∅,(ε,1),(0,l))

)
= µ

(
A(∅,(ε,1),(0,l))

)
.

If γ ∈ ΓB
1 , let Bo

γ = ∅. This completes the construction of the desired items in (E8) that satisfy

their conditions in (C2), (C3), and (C5) through (C9).

Note that

d1 =
µ

(
A(∅,(0,1))

)
2 µ

(
A(∅,(1,1))

)1A(∅,(1,1))
− µ

(
A(∅,(0,1))

)
2 µ

(
A(∅,(−1,1))

)1A(∅,(−1,1))

do
1 =

m
(
Ao

(∅,(0,1))

)
2 m

(
Ao

(∅,(1,1))

)1Ao
(∅,(1,1))

−
m

(
Ao

(∅,(0,1))

)
2 m

(
Ao

(∅,(−1,1))

)1Ao
(∅,(−1,1))

d̃o
1 = 1Ao

(∅,(1,1))
∪Bo

(∅,(1,1))
− 1Ao

(∅,(−1,1))
∪Bo

(∅,(−1,1))
.

So, clearly, (F1) through (F7) along with (F10) hold. A quick look at Lemma 6.1 gives (F8)

and (F9) and also that∥∥∥do
1 − d̃o

1

∥∥∥p

Lp([0,1],R)
<

∑
γ∈ΓG

n

(
2δ1

1 − 2δ1

)p

m
(
Ao

γ

)
+

∑
γ∈ΓG

n

m
(
Bo

γ

)
=

(
2δ1

1 − 2δ1

)p

µ (G1) + µ (A \ G1) .

So (F11) now follows from (F9).

This completes the n = 1 base step.

Fix n ∈ N with n ≥ 2 and assume that the desired items in (E1) through (E8) have been found

for k ∈ {0, 1, . . . , n − 1}. Let

ΓG
n :=

{
(γ, (ε, k)) ∈ Γ∗

n : γ ∈ ΓG
n−1 , ε = ±1 , 1 ≤ k ≤ lγ

}
ΓB

n :=
{
(γ, (ε, 0)) ∈ Γ∗

n : γ ∈ ΓG
n−1 ∪ ΓB

n−1 , ε = ±1
}

.

If (γ, (0, k)) ∈ ~Γn−1, then A(γ,(0,k)) is an atom of Fjn−1 ; find jn > jn−1 so that

sup
{
µ (B) : B ⊂ A(γ,(0,k)) , B is an atom of Fjn

}
< δn µ

(
A(γ,(0,k))

)
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for each (γ, (0, k)) ∈ ~Γn−1.

Fix (γ, (0, k)) ∈ ~Γn−1 (and so γ ∈ ΓG
n−1 and 1 ≤ k ≤ lγ). By Lemma 6.1, there are sets

A(γ,(±1,k)) ∈ Fjn so that

A(γ,(1,k)) ] A(γ,(−1,k)) ⊂ A(γ,(0,k)) (6.6)

and, for ε = ±1, each A(γ,(ε,k)) is a finite union of atoms of Fjn , say

A(γ,(ε,k)) =
l(γ,(ε,k))⊎

l=1

A(γ,(ε,k),(0,l)) , (6.7)

and
1
2
− δn <

µ
(
A(γ,(ε,k))

)
µ

(
A(γ,(0,k))

) <
1
2

. (6.8)

Let

~Γn :=
{
(γ, (ε, k) , (0, l)) ∈ Γ∗

n+1 : γ ∈ ΓG
n−1 , ε = ±1 , 1 ≤ k ≤ lγ , 1 ≤ l ≤ l(γ,(ε,k))

}
.

Towards (C2), note that for distinct elements (γ1, (ε1, k1) , (0, l1)) and (γ2, (ε2, k2) , (0, l2)) from ~Γn

A(γ1,(ε1,k1),(0,l1)) ∩ A(γ2,(ε2,k2),(0,l2)) = ∅ ; (6.9)

indeed, it follows from (6.6) and (6.7) that, for i ∈ {1, 2},

A(γi,(εi,ki),(0,li)) ⊂ A(γi,(εi,ki)) ⊂ A(γi,(0,ki))

and so if γ1 6= γ2 or k1 6= k2 then (6.9) follows from the inductive hypothesis (specifically (C2))

while if γ1 = γ2 and k1 = k2 then (6.9) follows from (6.6) if ε1 6= ε2 and from (6.7) if ε1 = ε2. This

completes the construction of the desired items in (E1) through (E7) that satisfy their conditions

in (C0) through (C4).

Towards (E8), fix (γ, (0, k)) ∈ ~Γn−1. Thus m
(
Ao

(γ,(0,k))

)
= µ

(
A(γ,(0,k))

)
. By (6.6), for ε = ±1,

there exists Ao
(γ,(ε,k)) ∈ M so that

Ao
(γ,(1,k)) ] Ao

(γ,(−1,k)) ⊂ Ao
(γ,(0,k)) (6.6′)

m
(
Ao

(γ,(ε,k))

)
= µ

(
A(γ,(ε,k))

)
. (6.10)

So by (6.8), for ε = ±1,

1
2
− δn <

m
(
Ao

(γ,(ε,k))

)
m

(
Ao

(γ,(0,k))

) <
1
2

. (6.8′)
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So, for ε = ±1, there exists Bo
(γ,(ε,k)) ∈ M so that (C6) holds. It follows from (6.7) and (6.10) that,

for ε = ±1, there exists Ao
(γ,(ε,k),(0,l)) ∈ M so that

Ao
(γ,(ε,k)) =

l(γ,(ε,k))⊎
l=1

Ao
(γ,(ε,k),(0,l)) (6.7′)

m
(
Ao

(γ,(ε,k),(0,l))

)
= µ

(
A(γ,(ε,k),(0,l))

)
.

Fix (γ, (±1, 0)) ∈ ΓB
n . Thus γ ∈ ΓG

n−1 ∪ ΓB
n−1. Find Bo

(γ,(±1,0)) ∈ M so that (C7) holds. This

completes the construction of the items in (E8). Clearly, their conditions in (C3), (C5), (C6)

and (C7) hold. As (C2) holds for the Aγ ’s follows from the inductive hypothesis, (6.6), and (6.7),

that (C2) holds for the Ao
γ ’s follows from the inductive hypothesis, (6.6′), and (6.7′).

Towards (C9), note that by (C6) and (C3)⋃
γ∈ΓG

n

(
Ao

γ ∪ Bo
γ

)
=

⋃
(γ,(0,k))∈~Γn−1

⋃
ε=±1

[
Ao

(γ,(ε,k)) ∪ Bo
(γ,(ε,k))

]
=

⋃
(γ,(0,k))∈~Γn−1

Ao
(γ,(0,k)) =

⋃
γ∈ΓG

n−1

⋃
(γ,(0,k))∈~Γn−1

Ao
(γ,(0,k)) =

⋃
γ∈ΓG

n−1

Ao
γ

and by (C7) ⋃
γ∈ΓB

n

Bo
γ =

⋃
(γ,(1,0))∈ΓB

n

[
Bo

(γ,(1,0)) ∪ Bo
(γ,(−1,0))

]

=
⋃

(γ,(1,0))∈ΓB
n

Bo
γ =

 ⋃
γ∈ΓG

n−1

Bo
γ

 ∪

 ⋃
γ∈ΓB

n−1

Bo
γ

 .

So (C9) holds by the inductive hypothesis.

Now to show (C8). Note that the family

M1
n :=

{
Ao

γ

}
γ∈ΓG

n
∪ {

Bo
γ

}
γ∈ΓG

n
is pairwise disjoint. (6.11)

Indeed, if γ ∈ ΓG
n then Ao

γ ∩ Bo
γ = ∅. So fix γ̃i = (γi, (εi, ki)) ∈ ΓG

n with γ̃1 6= γ̃2 and consider

Cγi ∈ M1
n. If γ1 = γ2 and k1 = k2, then (6.11) follows from (C6). If γ1 6= γ2 or k1 6= k2, then (6.11)

follows from (C2) since

C(γi,(εi,ki)) ⊂ Ao
(γi,(0,ki))

.

and (γi, (0, ki)) ∈ ~Γn−1. Next note that the family

M2
n :=

{
Bo

γ

}
γ∈ΓB

n
is pairwise disjoint. (6.12)
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Indeed, if γ̃i = (γi, (εi, 0)) ∈ ΓB
n then

Bo
(γi,(εi,0))

⊂ Bo
γi

.

If γ1 = γ2, then (6.12) follows from (C7). If γ1 6= γ2, then (6.12) follows by the inductive hypothesis

(specifically, (C8)) since γi ∈ ΓG
n−1 ∪ ΓB

n−1. Now if

C(γ1,(ε1,k1)) ∈ M1
n and Bo

(γ2,(ε2,0)) ∈ M2
n

then C(γ1,(ε1,k1)) ⊂ Ao
γ1

with γ1 ∈ ΓG
n−1 and Bo

(γ2,(ε2,0)) ⊂ Bo
γ2

with γ2 ∈ ΓG
n−1 ∪ ΓB

n−1. So by the

inductive hypothesis on (C8), C(γ1,(ε1,k1)) ∩ Bo
(γ2,(ε2,0)) = ∅. So (C8) holds.

Now to show that (F1) through (F11) hold. (F1) follows from (E6). Towards (F2), rewrite dn as

dn =
∑

(γ,(0,k))∈~Γn−1

[
µ

(
A(γ,(0,k))

)
2 µ

(
A(γ,(1,k))

)1A(γ,(1,k))
− µ

(
A(γ,(0,k))

)
2 µ

(
A(γ,(−1,k))

)1A(γ,(−1,k))

]

and note that, by (C4) and (E7)

A(γ,(1,k)) ] A(γ,(−1,k)) ⊂ A(γ,(0,k)) ∈ {
B : B is an atom of Fjn−1

}
.

So (F2) holds. (F3) follows from (C3). Note that

do
n =

∑
(γ,(0,k))∈~Γn−1

 m
(
Ao

(γ,(0,k))

)
2 m

(
Ao

(γ,(1,k))

)1Ao
(γ,(1,k))

−
m

(
Ao

(γ,(0,k))

)
2 m

(
Ao

(γ,(−1,k))

)1Ao
(γ,(−1,k))


and by (C6) and the definition of Fo

jn−1

Ao
(γ,(1,k)) ] Ao

(γ,(−1,k)) ⊂ Ao
(γ,(0,k)) ∈

{
B : B is an atom of Fo

jn−1

}
.

So (F4) holds. Towards (F5), note that by (C8), (C9), (C6), and (C7)

m
[
d̃o

n = 1
]

=
∑

(γ,(1,k))∈ΓG
n

m
(
Ao

(γ,(1,k)) ∪ Bo
(γ,(1,k))

)
+

∑
(γ,(1,0))∈ΓB

n

m
(
Bo

(γ,(1,0))

)
=

∑
(γ,(−1,k))∈ΓG

n

m
(
Ao

(γ,(−1,k)) ∪ Bo
(γ,(−1,k))

)
+

∑
(γ,(−1,0))∈ΓB

n

m
(
Bo

(γ,(−1,0))

)
= m

[
d̃o

n = −1
]

.

So (F5) holds (again by using (C8) and (C9)).

Towards (F6), fix a choice {εl}n
l=1 of signs. Find Γ̃G

n−1 ⊂ ΓG
n−1 and Γ̃B

n−1 ⊂ ΓB
n−1 such that

n−1⋂
l=1

[
d̃o

l = εl

]
=

 ⋃
γ∈Γ̃G

n−1

Ao
γ

 ∪

 ⋃
γ∈Γ̃G

n−1∪Γ̃B
n−1

Bo
γ

 .
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Let

Γ̃G
n =

{
(γ, (εn, k)) ∈ ΓG

n : γ ∈ Γ̃G
n−1

}
Γ̃B

n =
{

(γ, (εn, 0)) ∈ ΓB
n : γ ∈ Γ̃G

n−1 ∪ Γ̃B
n−1

}
.

It follows from (C3), (C6), and (C7) that

[
d̃o

n = εn

]
∩

 ⋃
γ∈Γ̃G

n−1

Ao
γ

 =
⋃

γ∈Γ̃G
n

(
Ao

γ ∪ Bo
γ

)
[
d̃o

n = εn

]
∩

 ⋃
γ∈Γ̃G

n−1∪Γ̃B
n−1

Bo
γ

 =
⋃

γ∈Γ̃B
n

Bo
γ .

Thus

n⋂
l=1

[
d̃o

l = εl

]
=


⋃

(γ,(εn,k))∈ΓG
n

γ∈Γ̃G
n−1

(
Ao

(γ,(εn,k)) ∪ Bo
(γ,(εn,k))

)
 ∪


⋃

(γ,(εn,0))∈ΓB
n

γ∈Γ̃G
n−1∪Γ̃B

n−1

Bo
(γ,(εn,0))

 . (6.13)

By (C6) and (C7), for the set on the right-hand side of (6.13), replacing εn by −εn does not change

its measure. So (F6) holds.

(F7) follows from (C3) and (C4) while (F8) follows from (C4).

Fix γ ∈ ΓG
n−1 and 1 ≤ k ≤ lγ . So (γ, (0, k)) ∈ ~Γn−1 and (γ, (±1, k)) ∈ ΓG

n . It follows from (C4)

that

(1 − 2δn) µ
(
A(γ,(0,k))

)
< µ

(
A(γ,(1,k)) ] A(γ,(−1,k))

)
.

Taking the double sum
∑

γ∈ΓG
n−1

∑
1≤k≤lγ

of both sides gives (via (C3))

(1 − 2δn) µ (Gn−1) < µ (Gn) .

So (F9) holds. (F10) is clear. Since∥∥∥do
n − d̃o

n

∥∥∥p

Lp([0,1],R)
<

∑
γ∈ΓG

n

(
2δn

1 − 2δn

)p

m
(
Ao

γ

)
+

∑
γ∈ΓG

n ∪ΓB
n

m
(
Bo

γ

)
=

(
2δn

1 − 2δn

)p

µ (Gn) + µ (A \ Gn) .

(F11) now follows from (F9). �

The next lemma follows easily from the Contraction Principle (Fact 2.3) and a standard [3, 24]

perbutation argument. A proof is included for completeness sake.
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Lemma 6.4. Let p ∈ [1,∞) and 0 < δ < 1.

Let {d̃o
n}m

n=1 be a sequence of independent, symmetric, {±1}-valued random variables on a prob-

ability space (Ω,F , µ) and {do
n}m

n=1 be a sequence in Lp (Ω, R). If
m∑

n=1

∥∥∥d̃o
n − do

n

∥∥∥
Lp(Ω,R)

≤ δ

2

then for any choice {xn}m
n=1 from a Banach space X, {xndo

n}m
n=1 is a

(
1+δ
1−δ

)
-unconditional sequence

in Lp (Ω, X).

Proof. Fix {xn}m
n=1 from some Banach space X, a choice {εn}m

n=1 of signs from {±1}, and scalars

{λn}m
n=1. It needs to be shown that∥∥∥∥∥

m∑
n=1

εn λn xn do
n

∥∥∥∥∥
Lp(Ω,X)

≤
(

1 + δ

1 − δ

) ∥∥∥∥∥
m∑

n=1

λn xn do
n

∥∥∥∥∥
Lp(Ω,X)

. (6.14)

Find {x̃n}m
n=1 from S(X) and {λ̃n}m

n=1 from R so that λn xn = λ̃nx̃n for each n ∈ {1, . . . , m}.
It follows from Fact 2.3 that {x̃nd̃o

n}m
n=1 is a (normalized) 1-unconditional basic sequence in

Lp (Ω, X). Since
∑m

n=1

∥∥∥x̃nd̃o
n − x̃ndo

n

∥∥∥
Lp(Ω,X)

≤ δ
2 , for any choice {αn}m

n=1 of scalars

(1 − δ)

∥∥∥∥∥
m∑

n=1

αnx̃nd̃o
n

∥∥∥∥∥
Lp(Ω,X)

≤
∥∥∥∥∥

m∑
n=1

αnx̃ndo
n

∥∥∥∥∥
Lp(Ω,X)

≤ (1 + δ)

∥∥∥∥∥
m∑

n=1

αnx̃nd̃o
n

∥∥∥∥∥
Lp(Ω,X)

(cf., eg., [26, Prop. I.1.a.9]) Thus {x̃ndo
n}m

n=1 is a (1+δ
1−δ )-unconditional basic sequence. So (6.14)

holds. �

Proof of Lemma 4.3. Let’s keep with the notation in Lemma 6.2.

Pick {δn}m
n=1 so that

(a) 0 < δn < 1
2 for each n ∈ {1, . . . , m}

(b) 1
1−2δn

≤ τ1 for each n ∈ {1, . . . , m}
(c)

∑m
n=1

[(
2δn

1−2δn

)p
+ (1 − ∏m

k=1 (1 − 2δk))
] 1

p ≤ 1
2

τ−1
τ+1

(d)
∏m

n=1 (1 − 2δn)−1 ≤ 1 + ε .

Apply Lemma 6.2 to find {dn}m
n=1 ∈ Lp (Ω, R), along with everything else. Thus (1) of Lemma 4.3

holds.

Condition (b) above along with (F7) and (F8) of Lemma 6.2 imply (2) and (3) of Lemma 4.3.

By (c) above and (F11) of Lemma 6.2,
m∑

n=1

[∫
Ao

∣∣∣do
n − d̃o

n

∣∣∣p dm

m(Ao)

] 1
p

=
m∑

n=1

∥∥∥do
n − d̃o

n

∥∥∥
Lp([0,1],R)

[µ (A)]
−1
p ≤ 1

2

(
τ − 1
τ + 1

)
.
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So (4) of Lemma 4.3 holds by Lemma 6.4, Remark 6.3, and (F10) of Lemma 6.2.

Towards (5) of Lemma 4.3, let zn0 6= 0. Then for each ω ∈ Gm, by Kahane’s Contraction

Principle (Fact 2.3) and (3) of Lemma 4.3∥∥∥∥∥
m∑

n=1

dn (ω) znrn

∥∥∥∥∥
Lp([0,1],Z)

≥ ‖dn0 (ω) zn0rn0‖Lp([0,1],Z) ≥ ‖zn0‖Z .

Thus, by (b) and (F8), along with (d) and (F9)∫
A\Gm

∥∥ m∑
n=1

dn (ω)znrn

∥∥p

Lp([0,1],Z)
dµ (ω) ≤

∫
A\Gm

[
m∑

n=1

‖dn (ω) znrn‖L∞([0,1],Z)

]p

dµ (ω)

≤
∫

A\Gm

[
m∑

n=1

τ1 ‖zn‖Z

]p

dµ (ω)

=
µ (A \ Gm)

µ (Gm)

[
τ1

∑m
n=1 ‖zn‖Z

‖zn0‖Z

]p

µ (Gm) ‖zn0‖p
Z

≤
[

µ (A)
µ (Gm)

− 1
]

Mp

∫
Gm

∥∥∥∥∥
m∑

n=1

dn (ω) znrn

∥∥∥∥∥
p

Lp([0,1],Z)

dµ (ω)

≤ ε Mp

∫
Gm

∥∥∥∥∥
m∑

n=1

dn (ω) znrn

∥∥∥∥∥
p

Lp([0,1],Z)

dµ (ω) .

So (5) of Lemma 4.3 holds. �
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