INTEGRAL OPERATORS WITH OPERATOR-VALUED KERNELS

MARIA GIRARDI AND LUTZ WEIS

Abstract. Under fairly mild measurability and integrability conditions on operator-valued kernels, boundedness results for integral operators on Bochner spaces $L^p(X)$ are given. In particular, these results are applied to convolutions operators.

1. INTRODUCTION

One of the most commonly used boundedness criterion for integral operators states that, for $1 \leq p \leq \infty$ and σ-finite measure spaces (T, Σ_T, μ) and (S, Σ_S, ν), a measurable kernel $k : T \times S \to \mathbb{C}$ defines a bounded linear operator

$$K : L^p(S, \mathbb{C}) \to L^p(T, \mathbb{C}) \quad \text{via} \quad (Kf)(\cdot) := \int_S k(\cdot, s) f(s) \, d\nu(s)$$

provided

$$\sup_{s \in S} \int_T |k(t, s)| \, d\mu(t) \leq C \quad \text{and} \quad \sup_{t \in T} \int_S |k(t, s)| \, d\nu(s) \leq C \quad (1.1)$$

(see, e.g. [5, Theorem 6.18]). In the theory of evolution equations one frequently uses operator-valued analogs of this situation, where the kernel k maps $T \times S$ into the space $B(X, Y)$ of bounded linear operators from a Banach space X into a Banach space Y and then one desires the boundedness of the corresponding integral operator

$$K : L_p(S, X) \to L_p(T, Y) \ .$$

Such integral operators appear, for example, in solution formulas for inhomogeneous Cauchy problems (see, e.g. [10]) and for Volterra integral equations (see, e.g. [11]) as well as in control theory (see, e.g. [2]); furthermore, the stability of such solutions is often expressed in terms of the boundedness of these operators.

However, difficulties can easily arise since in many situations the kernel k is not measurable with respect to the operator norm because the range of k is not (essentially) valued in a separable subspace of $B(X, Y)$. This paper presents boundedness results for integral operators with operator-valued kernels under relatively mild measurability and integrability conditions on the kernels.
The first step is to place a mild measurability condition on a kernel $k: T \times S \to B(X, Y)$ to guarantee that if f is in the space $\mathcal{E}(S, X)$ of finitely-valued finitely-supported measurable functions then the Bochner integrals

$$(Kf)(\cdot) := \int_S k(\cdot, s) [f(s)] \, d\nu(s)$$

(1.2)

define a measurable function from T into Y, thus defining a mapping

$K: \mathcal{E}(S, X) \to L_0(T, Y).$

Then, to ensure that K linearly extends to a desired superspace, one adds integrability conditions, which replace (1.1) in the scalar case and, roughly speaking, take the form

$$\sup_{s \in S} \int_T \|k(t, s)x\|_Y \, d\mu(t) \leq C \|x\|_X \quad \text{for each } x \in X$$

(1.3)

$$\sup_{t \in T} \int_S \|k^*(t, s)y^*\|_{X^*} \, d\nu(s) \leq C \|y^*\|_{Y^*} \quad \text{for each } y^* \in Y^*$$

(1.4)

along with appropriate measurability conditions (see Section 3 for the precise formulations). Assume k has the appropriate measurability conditions. Theorem 3.4 shows that if k satisfies (1.3) then K extends to a bounded linear operator from $L_1(S, X)$ into $L_1(T, Y)$; Theorem 3.6 shows that if k satisfies (1.4) then K extends to a bounded linear operator from the closure of $\mathcal{E}(S, X)$ in the L_∞-norm into $L_\infty(T, Y)$. Then Theorem 3.8 uses an interpolation argument to show that if k satisfies (1.3) and (1.4) then K extends to a bounded linear operator from $L_p(S, X)$ into $L_p(T, Y)$ for $1 < p < \infty$. The case $p = \infty$ is more delicate since $\mathcal{E}(S, X)$ is not necessarily dense in $L_\infty(S, X)$.

Theorem 3.11 shows that if k satisfies (1.4) then K can be extended to a bounded linear operator from $L_\infty(S, X)$ into the space of w^*-measurable μ-essentially bounded functions from T into Y^{**} where the integrals in (1.2) exists (a.e) as Dunford integrals for each $f \in L_\infty(S, X)$; also, sufficient conditions are given to guarantee that K maps $L_\infty(S, X)$ into $L_\infty(T, Y)$. Using ideas from the Geometry of Banach Spaces, Example 3.13 shows that, without further assumptions, it is necessary to pass to Y^{**} in Theorem 3.11.

As an immediate consequence of these results, Corollary 5.1 gives boundedness results for convolution operators with operator-valued kernels. A similar result, which inspired this paper, was used to obtain operator-valued Fourier multiplier results [8, 7].

2. NOTATION AND BASICS

Throughout this paper, X, Y, and Z are Banach spaces over the field \mathbb{K} of \mathbb{R} or \mathbb{C}. Also, X^* is the (topological) dual of X and $B(X)$ is the (closed) unit ball of X. The space $B(X, Y)$ of bounded linear operators from X into Y is endowed with the usual uniform operator topology.

A subspace Z of $Y^* \tau$-norms Y, where $\tau \geq 1$, provided
If \(Z \) \(\tau \)-norms \(Y \), then the natural mapping
\[j : Y \to Z^* \]
given by \(\langle z, jy \rangle := \langle y, z \rangle \) for \(z \in Z \)
is an isomorphic embedding with
\[\frac{1}{\tau} \|y\|_Y \leq \|j(y)\|_{Z^*} \leq \|y\|_Y, \]
in which case \(Y \) is identified as a subspace of \(Z^* \).

\((T, \Sigma_T, \mu)\) and \((S, \Sigma_S, \nu)\) are \(\sigma \)-finite (positive) measure spaces;
\[\Sigma_S^\text{finite} := \{ A \in \Sigma_S : \nu(A) < \infty \} \]
\[\Sigma_S^\text{full} := \{ A \in \Sigma_S : \nu(S \setminus A) = 0 \}, \]
with similar notation for the corresponding subsets of \(\Sigma_T \).

\(E(S, X) \) is the space of finitely-valued finitely-supported measurable functions from \(S \) into \(X \), i.e.
\[E(S, X) = \left\{ \sum_{i=1}^n x_i 1_{A_i} : x_i \in X, A_i \in \Sigma_S^\text{finite}, n \in \mathbb{N} \right\}. \]

Let \(\Gamma \) be a subspace of \(X^* \). A function \(f : S \to X \) is
- \emph{measurable} provided there is a sequence \((f_n)_{n=1}^\infty \) from \(E(S, X) \) so that
 \[\lim_{n \to \infty} \|f(s) - f_n(s)\|_X = 0 \text{ for } \nu\text{-a.e. } s \]
- \emph{\(\sigma(S, \Gamma) \)-measurable} provided \((f(\cdot), x^*) : S \to K \) is measurable for each \(x^* \in \Gamma \).

The following fact will be used (c.f., e.g., [3, Corollary II.1.4]).

\textbf{Fact 2.1 (Pettis’s Measurability Theorem).} A function \(f : S \to X \) is measurable if and only if

(i) \(f \) is essentially separably valued

(ii) \(f \) is \(\sigma(S, \Gamma) \)-measurable for some subspace \(\Gamma \) of \(X^* \) that 1-norms \(X \).

\(L_0(S, X) \) is the space of (equivalence classes of) measurable functions from \(S \) into \(X \). The Bochner-Lebesgue space \(L_p(S, X) \), where \(1 \leq p \leq \infty \), is endowed with its usual norm topology. The space \(L_{p\infty}^w(T, Z^*) \) of \(\mu \)-essentially bounded \(\sigma(Z^*, Z) \)-measurable functions from \(T \) into \(Z^* \) is endowed with the \(\mu \)-essential supremum norm, under which it becomes a Banach space.

\(E(S, X) \) is norm dense in \(L_p(S, X) \) for \(1 \leq p < \infty \). Let \(L_0^\infty(S, X) \) be the closure of \(E(S, X) \) in the \(L_\infty(S, X) \)-norm. If \(X \) is infinite-dimensional, then \(L_0^\infty(S, X) \neq L_\infty(S, X) \) (provided \(\Sigma_S \) contains a countable number of pairwise disjoint sets of strictly positive measure). \(L_0^\infty(S, X) \) can be described as follows.

\textbf{Proposition 2.2.} Let \(f \in L_0(S, X) \). Then \(f \in L_0^\infty(S, X) \) if and only if

(1) \(\inf \left\{ \|f 1_{S \setminus A}\|_{L_\infty(S, X)} : A \in \Sigma_S^\text{finite} \right\} = 0 \)

(2) there is \(B \in \Sigma_S^\text{full} \) so that the set \(\{ f(s) : s \in B \} \) is relatively compact in \(X \).
Conversely, for \(\varepsilon > 0 \), conditions (1) and (2) give a set \(G := A \cap B \in \Sigma_S^{\text{finite}} \) so that

\[
\|f 1_{S \setminus G}\|_{L_\infty(S,X)} < \varepsilon \quad \text{and} \quad \{f(s) : s \in G\} \text{ is relatively compact ;}
\]

thus allowing one to find, via a finite covering of the set \(f(G) \) by \(\varepsilon \)-balls, a function \(f_\varepsilon \in \mathcal{E}(S,X) \), with support in \(G \), so that \(\|f - f_\varepsilon\|_{L_\infty(S,X)} < \varepsilon \).

Lemma 2.3 will help to deal with the fact that \(\mathcal{E}(S,X) \) is (usually) not norm dense in \(L_\infty(S,X) \).

Lemma 2.3. Let \(f \in L_\infty(S,X) \) and \(\varepsilon > 0 \). There is a sequence \(\{g_n\}_{n=1}^\infty \) from \(\mathcal{E}(S,X) \) so that

\[
f(s) = \sum_{n=1}^\infty g_n(s)
\]

\[
\sum_{n=1}^\infty \|g_n(s)\|_X \leq (1 + \varepsilon) \|f\|_{L_\infty(S,X)}
\]

for a.e. \(s \in S \).

Proof. Fix a sequence \(\{\varepsilon_j\}_{j=1}^\infty \) of positive numbers so that \(\varepsilon_1 = 1 \) and \(\sum_{j=1}^\infty \varepsilon_j < 1 + \varepsilon \).

Choose a sequence \(\{f_j\}_{j=1}^\infty \) from \(\mathcal{E}(S,X) \) so that, for a.e. \(s \in S \),

\[
f_j(s) \to f(s) \quad \text{as } j \to \infty
\]

\[
\|f_j(s)\|_X \leq \|f(s)\|_X
\]

for each \(j \in \mathbb{N} \).

Find a sequence \(\{S_k\}_{k=1}^\infty \) of pairwise disjoint sets from \(\Sigma_S^{\text{finite}} \) so that \(\nu(S \setminus \bigcup_{k=1}^\infty S_k) = 0 \) and, for each \(S_k \),

\[
f_j \to f \quad \text{uniformly on } S_k
\]

\[
\|f_j(s)\|_X \leq \|f(s)\|_X
\]

for each \(s \in S_k \) and \(j \in \mathbb{N} \).

Hence, on each \(S_k \), there is a sequence \(\{g_{kj}\}_{j=1}^\infty \) from \(\mathcal{E}(S_k,X) \) so that

\[
f(s) = \sum_{j=1}^\infty g_{kj}(s)
\]

\[
\left\|g_{kj}\right\|_{L_\infty(S_k,X)} \leq \varepsilon_j \|f\|_{L_\infty(S,X)}
\]

for each \(j \in \mathbb{N} \).

For \(n \in \mathbb{N} \), let

\[
g_n := \sum_{k<n} \left(g_{nk}^1 1_{S_k} \right) + \left(\sum_{j=1}^n g_{j,n}^2 \right) 1_{S_n}.
\]

Thus

\[
g_1 = g_1^1 1_{S_1}
\]

\[
g_2 = g_2^1 1_{S_1} + (g_2^2 + g_2^3) 1_{S_2}
\]

\[
g_3 = g_3^1 1_{S_1} + g_3^2 1_{S_2} + (g_3^3 + g_3^4 + g_3^5) 1_{S_3}
\]
Note that if \(s \in S_k \) then
\[
\sum_{n=1}^{\infty} g_n (s) = \sum_{j=1}^{\infty} g_j^k (s)
\]
and, by the triangle inequality,
\[
\sum_{n=1}^{\infty} \| g_n (s) \|_X \leq \sum_{j=1}^{\infty} \| g_j^k (s) \|_X.
\]
So clearly the \(g_n \)'s do as they should. \(\Box \)

Let \(1 \leq p \leq \infty \) and \(\frac{1}{p} + \frac{1}{p'} = 1 \). There is a natural isometric embedding of \(L_{p'} (T, Z^*) \) into \([L_p (T, Z)]^\ast\) given by
\[
\langle f, g \rangle := \int_T \langle f (t), g (t) \rangle \, d\mu (t) \quad \text{for} \quad g \in L_{p'} (T, Z^*) , \, f \in L_p (T, Z).
\]
There also is a natural isometric embedding of \(L_1 (T, Y^*) \) into \([L^w_\infty (T, Y^{**})]^\ast\); indeed, for \(g = \sum_{i=1}^{n} y_i^* 1_{B_i} \in L_1 (T, Y^*) \) and \(f \in L^w_\infty (T, Y^{**}) \) let
\[
\langle f, g \rangle := \int_T \langle g (t), f (t) \rangle \, d\mu (t) = \sum_{i=1}^{n} \int_{B_i} \langle y_i^*, f (t) \rangle \, d\mu (t)
\]
and observe that \(\| g \|_{[L^w_\infty (T, Y^{**})]^\ast} = \| g \|_{L_1 (T, Y^*)} \).

For a mapping
\[
k: T \times S \to \mathcal{B} (X, Y)
\]
the mapping
\[
k^*: T \times S \to \mathcal{B} (Y^*, X^*)
\]
is defined by \(k^* (t, s) := [k (t, s)]^\ast \).

Non-numerical subscripts on constants indicate dependency. All other notation and terminology, not otherwise explained, are as in [3, 9].

3. MAIN RESULTS

Several conditions on a kernel \(k: T \times S \to \mathcal{B} (X, Y) \) will be considered. The first one is a mild measurability condition.

Definition 3.1. \(k: T \times S \to \mathcal{B} (X, Y) \) satisfies condition \((C_0)\) provided that for each \(A \in \Sigma^\text{finite}_S \) and each \(x \in X \)
- there is \(T_{A,x} \in \Sigma^\text{null}_T \) so that if \(t \in T_{A,x} \) then the Bochner integral
 \[
 \int_A k (t, s) \, x \, d\nu (s)
 \]
exists
- the mapping
 \[
 T_{A,x} \ni t \mapsto \int_A k (t, s) \, x \, d\nu (s) \in X
 \]
Remark 3.2. Let $k: T \times S \to B(X, Y)$ satisfy condition (C$_0$). Then

for each $f \in E(S, X)$ there is $T_f \in \Sigma^\text{full}_T$ so that

\[
\text{if } t \in T_f \text{ then the Bochner integral } (Kf)(t) := \int_S k(t, s) [f(s)] \, d\nu(s) \text{ exists}
\]

(3.1)

and (3.1) defines a linear mapping

\[
K: E(S, X) \to L_0(T, Y)
\]

(3.2)

Next integrability conditions on k are added to ensure that the mapping K in (3.2) extends to the desired superspaces. \hfill \Box

Condition (C$_1$) will be used for the L_1-case in Theorem 3.4.

Definition 3.3. Let $k: T \times S \to B(X, Y)$ satisfies condition (C$_1$) provided there is a constant C_1 so that for each $x \in X$

- the mapping $T \times S \ni (t, s) \to \|k(t, s)x\|_Y \in \mathbb{R}$ is product measurable
- there is $S_x \in \Sigma^\text{full}_S$ so that

\[
\int_T \|k(t, s)x\|_Y \, d\mu(t) \leq C_1 \|x\|_X
\]

for each $s \in S_x$. \hfill \Box

Note that the first condition guarantees that the mapping $T \ni t \to \|k(t, s)x\|_Y \in \mathbb{R}$ is measurable for ν-a.e. s. Also, the first condition is often satisfied even though the mapping $T \times S \ni (t, s) \to k(t, s)x \in Y$ may not be product measurable.

The L_1-case is a straightforward extension of the scalar-valued situation.

Theorem 3.4. Let $k: T \times S \to B(X, Y)$ satisfy conditions (C$_0$) and (C$_1$). Then the integral operator

\[
(Kf)(\cdot) := \int_S k(\cdot, s)f(s) \, d\nu(s) \quad \text{for } f \in E(S, X)
\]

extends to a bounded linear operator

\[
K: L_1(S, X) \to L_1(T, Y)
\]

of norm at most the constant C_1 from Definition 3.3.

Proof. Fix $f = \sum_{i=1}^n x_i 1_{A_i} \in E(S, X)$ with the A_i’s disjoint. By condition (C$_1$), for each i,

\[
\int_T \int_S \|k(t, s)x_i 1_{A_i}(s)\|_Y \, d\nu(s) \, d\mu(t) = \int_S \int_T \|k(t, s)x_i\|_Y \, d\mu(t) \, 1_{A_i}(s) \, d\nu(s)
\]

\[
\leq \int C_1 \|x_i\|_Y 1_{A_i}(s) \, d\nu(s)
\]

(3.3)
Condition \((C_0)\) gives that \(Kf \in L_0(T,Y)\) and also, combined with \((3.3)\), that
\[
\|Kf\|_{L^1(T,Y)} = \int_T \left\| \sum_{i=1}^n \int_S k(t,s) x_i 1_{A_i}(s) \, d\nu(s) \right\|_Y d\mu(t)
\leq \sum_{i=1}^n \int_T \int_S \|k(t,s) x_i 1_{A_i}(s)\|_Y \, d\nu(s) \, d\mu(t)
\leq \sum_{i=1}^n C_1 \|x_i\|_X \nu(A_i) = C_1 \|f\|_{L^1(S,X)}.
\]
This completes the proof. \(\Box\)

Condition \((C_0)\) will be used for the \(L_0^0\)-case in Theorem 3.6.

Definition 3.5. Let \(Z\) be a subspace of \(Y^*\). Then \(k: T \times S \to \mathcal{B}(X,Y)\) satisfies condition \((C_0)\), with respect to \(Z\), provided there is a constant \(C_0^0\) so that for each \(y^* \in Z\) there is \(T_{y^*} \in \Sigma_T^{\text{full}}\) so that for each \(t \in T_{y^*}\),

- the mapping \(S \ni s \mapsto \|k^* (t,s) y^*\|_{X^*} \in \mathbb{R}\) is measurable
- \(\int_S \|k^* (t,s) y^*\|_{X^*} \, d\nu(s) \leq C_0^0 \|y^*\|_{Y^*} \). \(\Box\)

Theorem 3.6. Let \(Z\) be a subspace of \(Y^*\) that \(\tau\)-norms \(Y\). Let \(k: T \times S \to \mathcal{B}(X,Y)\) satisfy conditions \((C_0)\) and \((C_0^0)\) with respect to \(Z\). Then the integral operator
\[
(Kf)(\cdot) := \int_S k(\cdot,s) f(s) \, d\nu(s) \quad \text{for } f \in \mathcal{E}(S,X)
\]
extends to a bounded linear operator
\[
K: L_0^0(S,X) \to L_0^\infty(T,Y)
\]
of norm at most \(\tau \cdot C_0^0\) where the constant \(C_0^0\) is from Definition 3.5.

Proof. Fix \(f \in \mathcal{E}(S,X)\). Fix \(y^* \in Z\). Find the corresponding sets \(T_f, T_{y^*} \in \Sigma_T^{\text{full}}\) from the definitions of conditions \((C_0)\) and \((C_0^0)\). If \(t \in T_f \cap T_{y^*}\) then
\[
|\langle (Kf)(t), y^* \rangle| = \left| \left\langle \int_S k(t,s) f(s) \, d\nu(s), y^* \right\rangle \right|
\leq \int_S \left| \langle f(s), k^*(t,s) y^* \rangle \right| \, d\nu(s)
\leq \int_S \|k^*(t,s) y^*\|_{X^*} \|f(s)\|_X \, d\nu(s)
\leq \|f\|_{L_0^\infty(S,X)} C_0^0 \|y^*\|_{Y^*}.
\]
Since \(T_f \cap T_{y^*} \in \Sigma_T^{\text{full}}\) and \(Z \tau\)-norms \(Y\),
\[
\|Kf\|_{L_0^\infty(T,Y)} \leq \tau C_0^0 \|f\|_{L_0^\infty(S,X)}.
\]
Remark 3.7 (on Theorem 3.6). Note that K maps $L^0_\infty (S, X)$ into $L^0_\infty (T, Y)$ provided that for each $x \in X$ and $A \in \Sigma_S^{\text{finite}}$
\begin{equation}
T_f \ni t \mapsto \int_A k(t, s) x \, d\nu(s) \in Y
\end{equation}
defines a function in $L^0_\infty (T, Y)$. This will be the case, for example, if μ is a Radon measure on a locally compact Hausdorff space T (e.g., T is a Borel subset of \mathbb{R}^N, endowed with the Lebesgue measure) and (3.4) defines a function in $C^0_0 (T, Y)$: =
\begin{equation*}
\sup_{B \in \mathcal{B} \cap \text{finite}} \mathcal{B} \ni g \mapsto \inf \left\{ \|g 1_{T \setminus B}\|_{L^\infty} : B \text{ is compact} \right\} = 0
\end{equation*}
indeed, conditions (1) and (2) of Proposition 2.2 are then fulfilled.
\end{proof}
Interpolating between Theorems 3.4 and 3.6 gives the L^p-case for $1 < p < \infty$.

\begin{theorem}
Let Z be a subspace of Y^* that τ-norms Y and $1 < p < \infty$. Let $k : T \times S \to \mathcal{B} (X, Y)$ satisfy conditions (C_0), (C_1), and (C^0_∞) with respect to Z. Then the integral operator
\begin{equation*}
(Kf)(\cdot) := \int_S k(\cdot, s) f(s) \, d\nu (s) \quad \text{for } f \in \mathcal{E} (S, X)
\end{equation*}
extends to a bounded linear operator
\begin{equation*}
K : L^p (S, X) \to L^p (T, Y)
\end{equation*}
of norm at most $(C_1)^{1/p} (\tau : C^0_\infty)^{1/p'}$ where the constants C_1 and C^0_∞ are from Definitions 3.3 and 3.5.
\begin{proof}
The proof follows directly from Theorems 3.4 and 3.6 and Lemma 3.9.
\end{proof}

The below interpolation lemma is a slight improvement on [1, Thm. 5.1.2].

\begin{lemma}
Let the linear mapping
\begin{equation*}
K : \mathcal{E} (S, X) \to L^1 (T, Y) + L^\infty (T, Y)
\end{equation*}
satisfy, for each $f \in \mathcal{E} (S, X)$,
\begin{align*}
\|Kf\|_{L^1 (T, Y)} & \leq c_1 \|f\|_{L^1 (S, X)} < \infty \\
\|Kf\|_{L^\infty (T, Y)} & \leq c_\infty \|f\|_{L^\infty (S, X)} < \infty .
\end{align*}
Then, for each $1 < p < \infty$, the mapping K extends to a bounded linear operator
\begin{equation*}
K : L^p (S, X) \to L^p (T, Y)
\end{equation*}
of norm at most $(c_1)^{1/p} (c_\infty)^{1/p'}$.
\begin{proof}
Fix $B \in \Sigma_T^{\text{finite}}$ and a finite measurable partition π of B. Let $\Sigma_0 := \sigma_B (\pi)$ be the σ-algebra of subsets of B that is generated by π. Then the linear mapping
given by $K_0 f := \mathbb{E} ((K f) 1_B \mid \Sigma_0)$ where $\mathbb{E} (\cdot \mid \Sigma_0)$ is the conditional expectation operator relative to Σ_0, satisfies

$$\|K_0 f\|_{L_1(T,Y)} \leq c_1 \|f\|_{L_1(S,X)} < \infty$$

$$\|K_0 f\|_{L_\infty(T,Y)} \leq c_\infty \|f\|_{L_\infty(S,X)} < \infty$$

for each $f \in \mathcal{E}(S,X)$. Furthermore, $K_0 : L^0_\infty(S,X) \to L^0_\infty(T,Y)$. Thus, by [1, Thm. 5.1.2], for each $p \in (1,\infty)$, the linear mapping K_0 extends to a bounded linear operator from $L_p(S,X)$ to $L_p(T,Y)$ of norm at most $(c_1)^{1/p} (c_\infty)^{1/p'}$.

Next, fix $f \in \mathcal{E}(S,X)$ and $p \in (1,\infty)$. By assumption, $Kf \in L_1(T,Y) \cap L_\infty(T,Y)$; thus, $Kf \in L_p(T,Y)$. Fix $B \in \Sigma^\text{finite}_T$. Since T is σ-finite, it suffices to show

$$\|(Kf) 1_B\|_{L_p(T,Y)} \leq (c_1)^{1/p} (c_\infty)^{1/p'} \|f\|_{L_p(S,X)} \tag{3.5}$$

Find a sequence $\{g_n\}_{n=1}^\infty$ of functions from $\mathcal{E}(T,Y)$ that are supported on B and, for μ-a.e. t,

$$g_n \rightarrow (Kf)(t) \quad 1_B(t)$$

$$\|g_n(t)\|_Y \leq \|(Kf)(t)\|_{1_B} \tag{3.6}$$

Let $\Sigma_n := \sigma(g_1, \ldots, g_n)$ be the σ-algebra of subsets of B that is generated by $\{g_1, \ldots, g_n\}$. Note that $(Kf) 1_B$ is the limit in $L_p(T,Y)$ of $\{g_n\}_{n=1}^\infty$ (by (3.6)) and thus also of $\{\mathbb{E}((Kf) 1_B \mid \Sigma_n)\}_{n=1}^\infty$ since

$$\|(Kf) 1_B - \mathbb{E}((Kf) 1_B \mid \Sigma_n)\|_{L_p(T,Y)} \leq \|(Kf) 1_B - g_n\|_{L_p(T,Y)} + \|\mathbb{E}(g_n - (Kf) 1_B \mid \Sigma_n)\|_{L_p(T,Y)} .$$

But by the previous paragraph, for each $n \in \mathbb{N}$,

$$\|\mathbb{E}((Kf) 1_B \mid \Sigma_n)\|_{L_p(T,Y)} \leq (c_1)^{1/p} (c_\infty)^{1/p'} \|f\|_{L_p(S,X)} .$$

Thus (3.5) holds. \qed

Condition (C_∞), a strengthening of condition (C_∞^0), will be used for the L_∞-case in Theorem 3.11.

Definition 3.10. Let Z be a subspace of Y^\ast. Then $k : T \times S \rightarrow \mathcal{B}(X,Y)$ satisfies condition (C_∞), with respect to Z, provided there is a constant C_∞ and $T_0 \in \Sigma^\text{full}_T$ so that for each $t \in T_0$ and $y^\ast \in Z$

- the mapping $S \ni s \rightarrow k^\ast(t,s)y^\ast \in X^\ast$ is measurable
- $\int_S \|k^\ast(t,s)y^\ast\|_{X^\ast} \, d\nu(s) \leq C_\infty \|y^\ast\|_{Y^\ast}$ \hfill \qed

The L_∞-case is more delicate since, in general, $\mathcal{E}(S,X)$ is not norm dense in $L_\infty(S,X)$.

Theorem 3.11. Let Z be a subspace of Y^\ast that τ-norms Y. Let $k : T \times S \rightarrow \mathcal{B}(X,Y)$ satisfy conditions (C_0) and (C_∞) with respect to Z. In particular, (C_∞) gives that for each $t \in T_0 \in \Sigma^\text{full}_T$ and each $y^\ast \in Z$

$$\int_S \|k^\ast(t,s)y^\ast\|_{X^\ast} \, d\nu(s) \leq C_\infty \|y^\ast\|_{Y^\ast} .$$
defined by
\[(Kf)(\cdot) := \int_S k(\cdot, s) f(s) \, dv(s) \quad \text{for } f \in \mathcal{E}(S, X)\] (3.7)
extends (identifying \(Y\) as a subspace of \(Z^*\)) to a bounded (of norm at most \(C_1\)) linear operator
\[K : L_\infty(S, X) \to L_\infty^w(T, Z^*)\] (3.8)
that is given by
\[\langle y^*, (Kf)(t) \rangle := \int_S \langle k(t, s) f(s), y^* \rangle \, dv(s) \quad \text{for } f \in L_\infty(S, X) \text{ and } t \in T_0 \text{ and } y^* \in Z.\] (3.9)
Furthermore, the \(K\) of (3.8) maps \(L_1(S, X)\) into \(L_w^1(T, Z)\) provided either
(i) \(Y\) does not (isomorphically) contain \(c_0\)

or
(ii) for each \(t \in T_0\) the subset \(\{\|k^*(t, \cdot) y^*\|_{X^*} : y^* \in B(Z)\}\) of \(L_0(S, \mathbb{R})\) is equi-integrable.

Recall that the subset in (ii) is equi-integrable provided if \(\{A_n\}_{n=1}^\infty\) is a sequence from \(\Sigma_S\) with \(A_n \supseteq A_{n+1}\) and \(\nu(\cap_{n=1}^\infty A_n) = 0\) then
\[\lim_{n \to \infty} \sup_{y^* \in B(Z)} \int_{A_n} \|k^*(t, s) y^*\|_{X^*} \, dv(s) = 0.\] (3.10)

Remark 3.12 (on Theorem 3.11).

(a) There can be advantages in taking a proper norming subspace \(Z \subseteq Y^*\) over taking \(Z = Y^*\).

First, it eases the assumptions of \(K\). Second, \(Z^*\) may be much smaller than \(Y^{**}\) and so the conclusion \(K(L_\infty(S, X)) \subseteq L_\infty^w(T, Z^*)\) may be more useful than \(K(L_\infty(S, X)) \subseteq L_\infty^w(T, Y^{**})\).

For example, if \(Y = C[0, 1]\) then \(Z := L_1[0, 1] \subseteq Y^*\) 1-norms \(Y\); furthermore, \(Z^* \simeq L_\infty[0, 1]\) is nicer than \(Y^{**} \simeq (M[0, 1])^*\), which is very large.

(b) If \(Y = (Y_*)^*\) is a separable dual space, then \(Z := Y_* \subseteq Y^*\) 1-norms \(Y\) and, by Pettis’s measurability theorem (Fact 2.1), one has that \(L_\infty^w(T, Z^*) = L_\infty(T, Y)\).

(c) If \(\nu(S) < \infty\) and for each \(t \in T_0\) there exists \(q_t \in (1, \infty]\) and \(C_t \in (0, \infty)\) such that
\[\sup_{y^* \in B(Z)} \|k^*(t, \cdot) y^*\|_{L_{q_t}(S, X)} \leq C_t,\]
then the equi-integrability condition in (ii) holds; indeed, just apply Hölder’s inequality.

(d) Remark 3.7 is valid in this setting also.

Proof of Theorem 3.11. Fix \(f \in L_\infty(S, X)\). Fix \(t \in T_0\). For each \(y^* \in Z\) the function
\[\langle k(t, \cdot) f(\cdot), y^* \rangle : S \to \mathbb{K}\] is the condition (3.8).
(b) in $L_1(S, \mathbb{K})$ with
\[
\int_S |\langle k(t, s) f(s), y^* \rangle| \, d\nu(s) \leq \int_S \|k^*(t, s) y^*\|_{X^*} \|f(s)\|_X \, d\nu(s)
\leq C_\infty \|y^*\|_Z \|f\|_{L_\infty(S, X)} .
\] (3.11)

Thus by the Closed Graph Theorem, applied to the mapping
\[
Z \ni y^* \mapsto \langle k(t, \cdot) f(\cdot), y^* \rangle \in L_1(S, \mathbb{K}) ,
\]
the mapping
\[
Z \ni y^* \mapsto \int_S \langle k(t, s) f(s), y^* \rangle \, d\nu(s) \in \mathbb{K}
\]
defines an element $(Kf)(t)$ of Z^* that satisfies (3.9).

Let $f \in \mathcal{E}(S, X)$. By condition (C_0), there is $T_f \in \Sigma_T^{\text{full}}$ such that if $t \in T_f$ then $k(t, \cdot) f(\cdot) \in L_1(S, Y)$. For each $t \in T_f \cap T_0 \in \Sigma_T^{\text{full}}$ and each $y^* \in Z$
\[
\left\langle \int_S k(t, s) f(s) \, d\nu(s), y^* \right\rangle = \int_S \langle k(t, s) f(s), y^* \rangle \, d\nu(s) = \langle y^*, (Kf)(t) \rangle .
\]

Hence (3.7) holds. Thus, by Theorem 3.6, K maps $\mathcal{E}(S, X)$ into $L_\infty(T, Y)$.

Fix $f \in L_\infty(S, X)$. To see that Kf is $\sigma(Z^*, Z)$-measurable, fix a sequence $\{f_n\}_{n \in \mathbb{N}}$ from $\mathcal{E}(S, X)$ that converges a.e. to f and $\|f_n\|_{L_\infty(S, X)} \leq \|f\|_{L_\infty(S, X)}$ for each $n \in \mathbb{N}$. Then, by the Lebesgue Dominated Convergence Theorem, for each $y^* \in Z$ and for a.e. $t \in T$
\[
\langle y^*, (Kf)(t) \rangle = \int_S \langle f(s), k^*(t, s) y^* \rangle \, d\nu(s)
= \lim_{n \to \infty} \int_S \langle f_n(s), k^*(t, s) y^* \rangle \, d\nu(s) = \lim_{n \to \infty} \langle y^*, (Kf_n)(t) \rangle
\]
and the latter functions $\{\langle y^*, (Kf_n)(\cdot) \rangle\}$ are μ-measurable functions by condition (C_0). Furthermore, by (3.11)
\[
\left| \sup_{t \in T_0} \| (Kf)(t) \|_{Z^*} = \sup_{t \in T_0} \sup_{y^* \in B(Z)} \left| \int_S \langle k(t, s) f(s), y^* \rangle \, d\nu(s) \right| \right| \leq C_\infty \|f\|_{L_\infty(S, X)}
\]
thus, $Kf \in L_\infty^w(T, Z^*)$ and the K of (3.8) is of norm at most C_∞.

Proof of (i) Assume that c_0 does not isomorphically embed into Y.

Fix $f \in L_\infty(S, X)$. By Lemma 2.3, there is a sequence $\{f_n\}_{n=1}^\infty$ from $\mathcal{E}(S, X)$ so that
\[
f(s) = \sum_{n=1}^\infty f_n(s)
\]
for a.e. $s \in S$. Since each f_n is in $\mathcal{E}(S, X)$, by (3.7) and condition (C_0), there is $T_1 \in \Sigma_T^{\text{full}}$, with $T_1 \subseteq T_0$, so that for each $t \in T_1$ and each $n \in \mathbb{N}$
\[
(Kf_n)(t) = \int k(t, s) f_n(s) \, d\nu(s) \in Y,
\]
Fix \(t \in T_1 \). By the Lebesgue Dominated Convergence Theorem,
\[
(Kf)(t) = \lim_{m \to \infty} \sum_{n=1}^{m} (Kf_n)(t) \quad \text{in the } \sigma(Z^*,Z)\text{-topology (3.13)}
\]
since, for each \(y^* \in Z \),
\[
\langle y^*, (Kf)(t) \rangle = \int_{S} \langle f(s), k^*(t,s) y^* \rangle \, d\nu(s)
\]
\[
= \lim_{m \to \infty} \int_{S} \left(\sum_{n=1}^{m} f_n(s), k^*(t,s) y^* \right) \, d\nu(s) = \lim_{m \to \infty} \left(\sum_{n=1}^{m} (Kf_n)(t), y^* \right).
\]
It suffices to show that the series in (3.13) converges also in the \(Z^*\)-norm topology; thus, since \(Y \) does not contain \(c_0 \), it suffices to show that
\[
\sum_{n=1}^{\infty} \langle (Kf_n)(t), y^* \rangle < \infty \quad \text{for each } y^* \in Y^* \quad (3.14)
\]
by a theorem of Bessaga and Pełczyński (cf., e.g., [4, Thm. V.8]).

For each \(y^* \in Z \),
\[
\sum_{n=1}^{\infty} \langle (Kf_n)(t), y^* \rangle = \sum_{n=1}^{\infty} \left| \int_{S} \langle k(t,s) f_n(s), y^* \rangle \, d\nu(s) \right|
\]
\[
\leq \sum_{n=1}^{\infty} \int_{S} \left| \langle f_n(s), k^*(t,s) y^* \rangle \right| \, d\nu(s)
\]
\[
\leq \sum_{n=1}^{\infty} \int_{S} \| k^*(t,s) y^* \|_{X^*} \| f_n(s) \|_{X} \, d\nu(s)
\]
\[
\leq \int_{S} \| k^*(t,s) y^* \|_{X^*} \left(\sum_{n=1}^{\infty} \| f_n(s) \|_{X} \right) \, d\nu(s)
\]
\[
\leq 2 \| f \|_{L_\infty(S,X)} C_{\infty} \| y^* \|_{Y^*}.
\]
Thus the mapping
\[
Z \ni y^* \overset{U}{\longrightarrow} \{ \langle (Kf_n)(t), y^* \rangle \}_{n=1}^{\infty} \in \ell_1
\]
is a bounded linear operator. Fix \(\{ \alpha_n \}_{n=1}^{\infty} \in B(\ell_\infty) \) and \(m \in \mathbb{N} \). If \(y^* \in B(Z) \) then
\[
\left| \langle \sum_{n=1}^{m} \alpha_n (Kf_n)(t), y^* \rangle \right| = \sum_{n=1}^{m} \alpha_n \langle (Kf_n)(t), y^* \rangle \leq \| U \|_{B(Z,\ell_1)}
\]
and so
\[
\left\| \sum_{n=1}^{m} \alpha_n (Kf_n)(t) \right\|_{Y} \leq \tau \| U \|_{B(Z,\ell_1)}.
\]
Fix \(f \in L_\infty(S, X) \). Choose a sequence \(\{f_n\}_{n=1}^\infty \) from \(\mathcal{E}(S, X) \) such that
\[
\lim_{n \to \infty} f_n(s) = f(s) \quad \text{for a.e. } s \in S
\]
\[
\|f_n\|_{L_\infty(S, X)} \leq \|f\|_{L_\infty(S, X)} \quad \text{for each } n \in \mathbb{N}.
\]
As in the proof of (i), since the \(f_n \)'s are in \(\mathcal{E}(S, X) \), there is \(T_1 \in \Sigma_T^{\text{full}} \), with \(T_1 \subseteq T_0 \), so that (3.12) holds for each \(t \in T_1 \) and each \(n \in \mathbb{N} \). It suffices to show that \(\{(Kf_n)(t)\}_{n=1}^\infty \) converges in \(Z^* \)-norm to \((Kf)(t)\) for each \(t \in T_1 \).

Fix \(t \in T_1 \). Fix \(\delta > 0 \) and let \(B_n := \{s \in S : \|f(s) - f_n(s)\|_X > \delta\} \) and \(A_n := \bigcup_{k=n}^\infty B_k \). Then
\[
\|(Kf)(t) - (Kf_n)(t)\|_{Z^*} = \sup_{y^* \in B(Z)} \left| \int_S \langle k(t, s)(f(s) - f_n(s)), y^* \rangle \, d\nu(s) \right|
\]
\[
\leq \sup_{y^* \in B(Z)} \int_S \|k^*(t, s)y^*\|_{X^*} \|f(s) - f_n(s)\|_X \, d\nu(s)
\]
\[
\leq \sup_{y^* \in B(Z)} \left[\delta \int_{B_n^c} \|k^*(t, s)y^*\|_{X^*} \, d\nu(s) + 2 \|f\|_{L_\infty(S, X)} \int_{B_n} \|k^*(t, s)y^*\|_{X^*} \, d\nu(s) \right]
\]
\[
\leq \delta C_\infty + 2 \|f\|_{L_\infty(S, X)} \sup_{y^* \in B(Z)} \int_{A_n} \|k^*(t, s)y^*\|_{X^*} \, d\nu(s).\]
Note that \(\cap_{n=1}^\infty A_n \subseteq \{s \in S : f_n(s) \text{ does not converge to } f(s)\} \). Thus, by the equi-integrability assumption, \(\{(Kf_n)(t)\}_{n=1}^\infty \) converges in \(Z^* \)-norm to \((Kf)(t)\).

\[\square\]

The following example illustrates the limitations on the conclusions in Theorems 3.6 and 3.11.

Example 3.13. Let \(X = \mathbb{C} \) and \(Y = c_0 \). Thus
\[\mathcal{B}(X, Y) \simeq c_0 \quad \text{and} \quad \mathcal{B}(Y^*, X^*) \simeq \ell_\infty.\]

Let \(S = T = \mathbb{R} \). Define
\[
k_0 : \mathbb{R} \to c_0 \quad \quad k_0(\cdot) := \sum_{n=1}^\infty e_n 1_{I_n}(\cdot)
\]
\[
k : T \times S \to \mathcal{B}(X, Y) \quad \quad k(t, s) := k_0(t - s)
\]
where \(\{e_n\}_{n=1}^\infty \) is the standard unit vector basis of \(c_0 \) and \(I_n = [n - 1, n) \).

Since \(k_0 \in L_\infty(\mathbb{R}, c_0) \), for each \(f \in L_1(S, X) \) the Bochner integral
\[
(Kf)(t) := \int_S k(t, s)f(s) \, ds = \int_\mathbb{R} k_0(t - s)f(s) \, ds = (k_0 * f)(t)
\]
eexists for each \(t \in T \); furthermore, \(Kf \in L_\infty(T, Y) \) and \(Kf \) is uniformly continuous. From this it follows that \(k \) satisfies condition (C_0). The kernel \(k \) also satisfies condition (C_\infty) with \(Z = Y^* \) and \(T_0 = T \) since for each \(y^* \in Y^* \simeq \ell_1 \) and \(t \in T \)
\[
k^*(t, s)y^* = \sum_{n=1}^\infty y^*(e_n)1_{I_n}(t - s) \quad \text{for each } s \in S
\]
Theorem 3.6 gives that $K(L^0_\infty(S,X)) \subseteq L_\infty(T,Y)$. However, $K(E(S,X)) \not\subseteq L^0_\infty(T,Y)$. Indeed, $(K1_{I_1})(n) = e_n$ for each $n \in \mathbb{N}$ and so, since $K1_{I_1}$ is uniformly continuous, $K1_{I_1}$ does not satisfy (2) of Proposition 2.2 and so $K1_{I_1} \not\subseteq L^0_\infty(T,Y)$.

Theorem 3.11 gives that $K(L^1_\infty(S,X)) \subseteq L^{w^*_1}(T,Y^{**})$. However, $K(L^\infty(S,X)) \not\subseteq L_\infty(T,Y)$. Indeed, consider $f = 1_{(-\infty,0)} \in L_\infty(S,X)$. If $n \in \mathbb{N}$ and $0 < \delta \leq 1$ then

$$(Kf)(n-\delta) = \delta e_n + \sum_{j \in \mathbb{N}} e_{n+j} \in Y^{**} \setminus Y.$$

Thus $Kf \not\subseteq L_\infty(T,Y)$. \hfill \Box

4. REMARKS ON DUALITY AND WEAK CONTINUITY

The remarks in this section explore the duality and weak continuity of K. For this, dual versions of the four conditions in Section 3 are needed.

Definition 4.1. Let (C) (possibly with respect to a subspace Z of Y^*) be one of the four conditions in Section 3 on a kernel

$$k : T \times S \to B(X,Y).$$

Then k satisfies condition (C^*) (possibly with respect to a subspace Z of X^{**}) provided the mapping

$$\tilde{k} : S \times T \to B(Y^*,X^*)$$

$$\tilde{k}(s,t) := [k(t,s)]^*$$

satisfies condition (C) (possibly with respect to a subspace Z of X^{**}).

For example, $k : T \times S \to B(X,Y)$ satisfies condition (C^*_0) provided that for each $B \in \Sigma^\text{finite}_T$ and each $y^* \in Y^*$

- there is $S_{B,y^*} \in \Sigma^\text{full}_S$ so that if $s \in S_{B,y^*}$ then the Bochner integral
 $$\int_B k^*(t,s) y^* \, d\mu(t)$$

 exists

- the mapping
 $$S_{B,y^*} \ni s \to \int_B k^*(t,s) y^* \, d\mu(t) \in X^*$$

 defines a measurable function from S into X^*.

\hfill \Box

Remark 4.2. Let $1 < p < \infty$ and $\frac{1}{p} + \frac{1}{p'} = 1$. Let $k : T \times S \to B(X,Y)$ be so that

(i) k satisfies conditions (C_0), (C_1), (C^*_0) with respect to $Z = Y^*$, and (C^*_0)

(ii) for each $y^* \in Y^*$ and each $x \in X$, the mapping $T \times S \ni (t,s) \to \langle k(t,s)x, y^* \rangle \in \mathbb{K}$ is
By Theorem 3.8 (with $Z = Y^*$), there is a bounded linear operator
\[K : L_p(S, X) \to L_p(T, Y) \]
defined by
\[(Kf)(\cdot) = \int_S k(\cdot, s) f(s) \, d\nu(s) \in L_p(T, Y) \quad \text{for } f \in \mathcal{E}(S, X). \]
Note that k satisfies
(iv) (C^*_T) by (iii) and the fact that k satisfies (C^*_0) with respect to $Z = Y^*$
(v) (C^*_0) with respect to $Z = X$ since k satisfies (C_1).
So by Theorem 3.8 (with $Z = X$), there is a bounded linear operator
\[\tilde{K} : L_{p'}(T, Y^*) \to L_{p'}(S, X^*) \]
defined by
\[(\tilde{K}g)(\cdot) = \int_T k^*(t, \cdot) g(t) \, d\mu(t) \in L_{p'}(S, X^*) \quad \text{for } g \in \mathcal{E}(T, Y^*). \]
Note that
\[K^*g = \tilde{K}g \quad \text{for each } g \in L_{p'}(T, Y^*) \]
since if $g = y^*1_B \in \mathcal{E}(T, Y^*) \subset L_{p'}(T, Y^*)$ and $f = x1_A \in \mathcal{E}(S, X) \subset L_p(S, X)$
\[\langle f, K^*g \rangle = \langle Kf, g \rangle = \int_T \left(\int_S k(t, s) x1_A(s) \, d\nu(s), y^*1_B(t) \right) \, d\mu(t) = \int_T \left(\int_S \langle k(t, s) x1_A(s), y^*1_B(t) \rangle \, d\mu(t) \right) d\nu(s) \]
\[= \int_S \left(\int_T k^*(t, s) y^*1_B(t) \, d\mu(t) \right) \, d\nu(s) = \langle f, \tilde{K}g \rangle \]
where assumption (ii) helps justify the use of Fubini’s theorem. Thus
\[(K^*g)(\cdot) = \int_T k^*(t, \cdot) g(t) \, d\mu(t) \in L_{p'}(S, X^*) \quad \text{for } g \in \mathcal{E}(T, Y^*) \]
and K^* maps $L_{p'}(T, Y^*)$ into $L_{p'}(S, X^*)$. Thus the K in (4.1) is
\[\sigma\left(L_p(S, X), L_{p'}(S, X^*)\right) \to \sigma\left(L_p(T, Y), L_{p'}(T, Y^*)\right) \]
continuous. \qed

Remark 4.3. Let $k : T \times S \to \mathcal{B}(X, Y)$ be so that
By Theorem 3.4, there is a bounded linear operator
\[K : L_1(S, X) \to L_1(T, Y) \] (4.3)
defined by
\[(Kf)(\cdot) = \int_S k(\cdot, s) f(s) \, d\nu(s) \in L_1(T, Y) \quad \text{for } f \in \mathcal{E}(S, X). \]
Since \(k \) satisfies condition (C_1), it satisfies condition (C_0) with respect to \(Z = X \); thus, by Theorem 3.6, there is a bounded linear operator
\[\tilde{K} : L_0^0(T, Y^*) \to L_\infty(S, X^*) \]
defined by
\[\left(\tilde{K}g\right)(\cdot) = \int_T k^*(t, \cdot) g(t) \, d\mu(t) \in L_\infty(S, X^*) \quad \text{for } g \in \mathcal{E}(T, Y^*). \]
Note that
\[K^*g = \tilde{K}g \quad \text{for each } g \in L_0^0(T, Y^*) \]
since if \(g = y^*1_B \in \mathcal{E}(T, Y^*) \subset L_0^0(T, Y^*) \) and \(f = x1_A \in \mathcal{E}(S, X) \subset L_1(S, X) \) then the calculation in (4.2) shows that \(\langle f, K^*g \rangle = \langle f, \tilde{K}g \rangle \).
Thus
\[(K^*g)(\cdot) = \int_T k^*(t, \cdot) g(t) \, d\mu(t) \in L_\infty(S, X^*) \quad \text{for } g \in \mathcal{E}(T, Y^*) \]
and \(K^* \) maps \(L_0^0(T, Y^*) \) into \(L_\infty(S, X^*) \). Thus the \(K \) in (4.3) is
\[\sigma(L_1(S, X), L_\infty(S, X^*)) - \text{to} - \sigma(L_1(T, Y), L_0^0(T, Y^*)) \]
continuous. \(\square \)

Remark 4.4. Let \(k : T \times S \to \mathcal{B}(X, Y) \) be so that
\begin{itemize}
 \item \(k \) satisfies conditions (C_0), (C_1), (C^*_0), and (C_\infty) with respect to \(Z = X \)
 \item condition (ii) of Remark 4.2 holds
 \item \(X^* \) does not contain \(c_0 \).
\end{itemize}

By Theorem 3.4, there is a bounded linear operator
\[K : L_1(S, X) \to L_1(T, Y) \] (4.4)
defined by
\[(Kf)(\cdot) = \int_S k(\cdot, s) f(s) \, d\nu(s) \in L_1(T, Y) \quad \text{for } f \in \mathcal{E}(S, X). \]
By Theorem 3.11, there is a bounded linear operator
\[\tilde{K} : L_\infty(T, Y^*) \to L_\infty(S, X^*) \]
defined by, for some \(S_0 \in \Sigma^\text{full}_S \),
\[\langle x, (\tilde{K}g)(s) \rangle = \int \langle x, k^*(t, s) g(t) \rangle \, d\mu(t) \]
Note that
\[K^* g = \overline{K} g \quad \text{for each } g \in L_\infty(T,Y^*) \]
since if \(g \in L_\infty(T,Y^*) \) and \(f = x 1_A \in \mathcal{E}(S,X) \subset L_1(S,X) \) then
\[
\langle f , K^* g \rangle = \langle K f , g \rangle = \\
\left(\int_T \int_S k(t,s) x 1_A(s) \, d\nu(s) , g(t) \right) \, d\mu(t) = \\
\left(\int_S \int_T \langle k(t,s) x , g(t) \rangle 1_A(s) \, d\nu(s) \, d\mu(t) \right) = \\
\left(\int_S \left(x , \mathcal{K}^*(t,s) g(t) \right) 1_A(s) \, d\nu(s) \right) = \\
\left(f , \mathcal{K} g \right)
\]
where assumption (ii) helps justify the use of Fubini’s theorem. Thus, by (3.7),
\[
(K^* g) (\cdot) = \int_T \mathcal{K}^*(t,\cdot) g(t) \, d\mu(t) \in L_\infty(S,X^*) \quad \text{for } g \in \mathcal{E}(T,Y^*)
\]
and \(K^* \) maps \(L_\infty(T,Y^*) \) into \(L_\infty(S,X^*) \). Thus the \(K \) in (4.4) is
\[
\sigma \left(L_1(S,X) , L_\infty(S,X^*) \right) \to \sigma \left(L_1(T,Y) , L_\infty(T,Y^*) \right)
\]
continuous. \(\square \)

Remark 4.5. Let \(k : T \times S \to \mathcal{B}(X,Y) \) be so that
- \(k \) satisfies conditions \((C_0)\), \((C_\infty)\) with respect to \(Z = Y^* \), and \((C_0^*)\)
- conditions (ii) and (iii) of Remark 4.2 hold.

Then (3.9) of Theorem 3.11, with \(Z = Y^* \), defines a bounded linear operator
\[
K : L_\infty(S,X) \to L_\infty^w(T,Y^{**}) \quad (4.5)
\]
Note that \(k \) satisfies condition \((C_1^*)\) by (iii) and the fact that \(k \) satisfies condition \((C_\infty)\) with respect to \(Z = Y^* \). So by Theorem 3.4
\[
\left(\overline{\mathcal{K}} g \right) (\cdot) := \int_T k^*(t,\cdot) g(t) \, d\mu(t) \in L_1(S,X^*) \quad \text{for } g \in \mathcal{E}(T,Y^*)
\]
defines a bounded linear operator
\[
\overline{K} : L_1(T,Y^*) \to L_1(S,X^*)
\]
Note that
\[
\overline{K} g = K^* g \quad \text{for each } g \in L_1(T,Y^*)
\]
since for \(g = y^*1_B \in \mathcal{E}(T,Y^*) \subset L_1(T,Y^*) \) and \(f \in L_\infty(S,X) \)
\[
\langle f , K^* g \rangle = \langle K f , g \rangle
\]
\[
\begin{align*}
&= \int_T \left[\int_S \langle k(t,s)f(s), y^* \rangle \, d\nu(s) \right] 1_B(t) \, d\mu(t) \\
&= \int_S \int_T \langle f(s), k^*(t,s)y^* 1_B(t) \rangle \, d\mu(t) \, d\nu(s) \\
&= \int_S \left[\int_T k^*(t,s)y^* 1_B(t) \, d\mu(t) \right] \, d\nu(s) \\
&= \int_S \left[f(s), \left(\tilde{K}g \right)(s) \right] \, d\nu(s) \\
&= \left\langle f, \tilde{K}g \right\rangle
\end{align*}
\]

where assumption (ii) helps justify the use of Fubini’s theorem. Thus

\[
\left(K^* g \right)(\cdot) = \int_T k^*(t,\cdot) g(t) \, d\mu(t) \in L_1(S,X^*) \quad \text{for each } g \in \mathcal{E}(T,Y^*)
\]

and \(K^* \) maps \(L_1(T,Y^*) \) into \(L_1(S,X^*) \). So the \(K \) of (4.5) is

\[
\sigma(L_\infty(S,X), L_1(S,X^*)) \rightarrow \sigma \left(L^w_\infty(T,Y^{**}), L_1(T,Y^*) \right)
\]

continuous. Thus, since \(\mathcal{E}(S,X) \) (resp. the Schwartz class \(\mathcal{S}(\mathbb{R}^N, X) \) in the case \(S = \mathbb{R}^N \)) is \(\sigma(L_\infty(S,X), L_1(S,X^*)) \)-dense in \(L_\infty(S,X) \), many of the properties of \(K \) are determined by its restriction to \(\mathcal{E}(S,X) \) (resp. \(\mathcal{S}(\mathbb{R}^N, X) \)).

If furthermore \(Y \) does not contain \(c_0 \), then (3.9) of Theorem 3.11, with \(Z = Y^* \), defines a bounded linear operator

\[
K : L_\infty(S,X) \rightarrow L_\infty(T,Y)
\]

that is \(\sigma(L_\infty(S,X), L_1(S,X^*)) \rightarrow \sigma(L_\infty(T,Y), L_1(T,Y^*)) \) continuous.

5. CONVOLUTION OPERATORS

The results thus far are now applied to convolution operators on \(T = S = \mathbb{R}^N \) (endowed with the Lebesgue measure).

Corollary 5.1. Let \(Z \) be a subspace of \(Y^* \) that \(\tau \)-norms \(Y \). Let \(k : \mathbb{R}^N \rightarrow \mathcal{B}(X,Y) \) be strongly measurable on \(X \) and \(k^* : \mathbb{R}^N \rightarrow \mathcal{B}(Y^*,X^*) \) be strongly measurable on \(Z \) and

\[
\begin{align*}
\int_{\mathbb{R}^N} \| k(s)x \|_Y \, ds &\leq C_1 \| x \|_X < \infty \quad \text{for each } x \in X \quad (5.1) \\
\int_{\mathbb{R}^N} \| k^*(s)y^* \|_{X^*} \, ds &\leq C_2 \| y^* \|_{Y^*} < \infty \quad \text{for each } y^* \in Z \quad (5.2)
\end{align*}
\]

Then the convolution operator

\[
K : \mathcal{E}(\mathbb{R}^N, X) \rightarrow L_0(\mathbb{R}^N, Y)
\]

defined by

\[
(Kf)(t) := \int_{\mathbb{R}^N} k(t-s)f(s) \, ds \quad \text{for } f \in \mathcal{E}(\mathbb{R}^N, X) \quad (5.3)
\]
INTEGRAL OPERATORS WITH OPERATOR-VALUED KERNELS

* K_0^0: L_0^0 (\mathbb{R}^N, X) \rightarrow L_0^0 (\mathbb{R}^N, Y),

and, if \(Y \) does not contain \(c_0 \), then to \(K_\infty: L_\infty (\mathbb{R}^N, X) \rightarrow L_\infty (\mathbb{R}^N, Y) \) satisfying

\[
\langle y^*, (K_\infty f) (t) \rangle = \int_{\mathbb{R}^N} \langle k(t-s) f(s), y^* \rangle \, dv(s)
\]

for \(f \in L_\infty (\mathbb{R}^N, X) \) and \(t \in \mathbb{R}^N \) and \(y^* \in Z \).

Furthermore,

\[
\|K_p\|_{L_p \rightarrow L_p} \leq (C_1)^{\frac{1}{p}} (\tau C_\infty)^{\frac{1}{p}}
\]

for \(1 \leq p \leq \infty \) and \(\|K_\infty^0\|_{L_0^0 \rightarrow L_0^0} \leq \tau C_\infty \).

Remark 5.2. In Corollary 5.1, if \(Z = Y^* \) and either

- \(1 < p < \infty \)
- \(p = 1 \) and \(X^* \) does not contain \(c_0 \)
- \(p = \infty \) and \(Y \) does not contain \(c_0 \),

then the dual operator

\[
K_p^*: [L_p (\mathbb{R}^N, Y)]^* \rightarrow [L_p (\mathbb{R}^N, X)]^*
\]

has the form

\[
(K_p^* \hat{g})(s) = \int_{\mathbb{R}^N} k^* (t-s) g(t) \, dt \in L_{p'} (\mathbb{R}^N, X^*)
\]

for \(g \in \mathcal{E} (\mathbb{R}^N, Y^*) \) and \(K_p^* \) maps \(L_{p'} (\mathbb{R}^N, Y^*) \) into \(L_{p'} (\mathbb{R}^N, X^*) \) and thus \(K_p \) is

\[
\sigma (L_p (\mathbb{R}^N, X), L_{p'} (\mathbb{R}^N, X^*)) \rightarrow \sigma (L_p (\mathbb{R}^N, Y), L_{p'} (\mathbb{R}^N, Y^*))
\]

continuous.

Proof of Corollary 5.1 and Remark 5.2. If \(f = x1_A \in \mathcal{E} (\mathbb{R}^N, X) \), then \(Kf = [k(\cdot) x] * 1_A \) with \(k(\cdot) x \in L_1 (\mathbb{R}^N, Y) \) and \(1_A \in L_\infty (\mathbb{R}^N, \mathbb{R}) \). Thus for each \(f \in \mathcal{E} (\mathbb{R}^N, X) \): the Bochner integral in (5.3) exists for each \(t \in \mathbb{R}^N \), \(Kf \) is a uniformly continuous function from \(\mathbb{R}^N \) to \(Y \), and \(Kf \) vanishes at infinity. Thus \(K (\mathcal{E} (\mathbb{R}^N, X)) \subset L_0^0 (\mathbb{R}^N, Y) \).

It is straightforward to verify that the kernel

\[
k_0: \mathbb{R}^N \times \mathbb{R}^N \rightarrow \mathcal{B} (X, Y)
\]

satisfies conditions: \((C_0), (C_1), (C_\infty) \) with respect to \(Z \) with \(T_0 = \mathbb{R}^N \), \((C_0^*), (C_\infty^*) \) with respect to \(Z = X \), and (ii) and (iii) of Remark 4.2.

The corollary now follows from: Theorems 3.4, 3.6, 3.8, 3.11 and Remarks 4.2, 4.4, 4.5. \(\square \)

Remark 5.3 (on Corollary 5.1).

(a) The proof shows that if \(k \) is strongly measurable on \(X \) and (5.1) holds, then one has the
(b) Under the stronger assumption that \(k \in L_1(\mathbb{R}^N, \mathcal{B}(X,Y)) \), for \(1 \leq p \leq \infty \) the Bochner integrals

\[
(K_p f)(t) := \int_{\mathbb{R}^N} k(t-s) f(s) \, ds
\]

exist and define a bounded linear operator

\[
K_p : L_p(\mathbb{R}^N, X) \to L_p(\mathbb{R}^N, Y)
\]

This fact is well-known and easy to show; indeed, for \(f \in L_p(\mathbb{R}^N, X) \cap L_\infty(\mathbb{R}^N, X) \) and \(f_s(t) := f(t-s) \),

\[
\int_{\mathbb{R}^N} \|k(t-s) f(s)\|_Y \, ds = \int_{\mathbb{R}^N} \|k(s) f_s(t)\|_Y \, ds \leq \|k\|_{L_1(\mathbb{R}^N, \mathcal{B}(X,Y))} \|f\|_{L_\infty(\mathbb{R}^N, X)}
\]

for each \(t \in \mathbb{R}^N \) and

\[
\|(Kf)(\cdot)\|_{L_p(\mathbb{R}^N,Y)} \leq \int_{\mathbb{R}^N} \|k(s) f_s(\cdot)\|_{L_p(\mathbb{R}^N,Y)} \, ds
\]

\[
\leq \int_{\mathbb{R}^N} \|k(s)\|_{\mathcal{B}(X,Y)} \|f_s(\cdot)\|_{L_p(\mathbb{R}^N,X)} \, ds
\]

\[
= \|k\|_{L_1(\mathbb{R}^N, \mathcal{B}(X,Y))} \|f\|_{L_p(\mathbb{R}^N,X)}
\]

thus, \(\|K_p\|_{L_p \to L_p} \leq \|k\|_{L_1(\mathbb{R}^N, \mathcal{B}(X,Y))} \).

If, in addition, \(k \) satisfies (5.1) and \(k^* \) satisfies (5.2) with \(Z = Y^* \), then it was shown in [8, Lemma 4.5] that \(\|K_p\|_{L_p \to L_p} \leq (C_1)^{\frac{1}{p}} (C_\infty)^{\frac{1}{p'}} \).

References

