
INTEGRAL OPERATORS WITH OPERATOR-VALUED KERNELS

MARIA GIRARDI AND LUTZ WEIS

Abstract. Under fairly mild measurability and integrability conditions on operator-valued kernels,
boundedness results for integral operators on Bochner spaces Lp (X) are given. In particular, these
results are applied to convolutions operators.

1. INTRODUCTION

One of the most commonly used boundedness criterion for integral operators states that, for
1 ≤ p ≤ ∞ and σ-finite measure spaces (T, ΣT , µ) and (S, ΣS , ν), a measurable kernel k : T ×S → C

defines a bounded linear operator

K : Lp (S, C) → Lp (T, C) via (Kf) (·) :=
∫

S
k (·, s) f (s) dν (s)

provided

sup
s∈S

∫
T
|k (t, s)| dµ (t) ≤ C and sup

t∈T

∫
S
|k (t, s)| dν(s) ≤ C (1.1)

(see, e.g. [5, Theorem 6.18]). In the theory of evolution equations one frequently uses operator-
valued analogs of this situation, where the kernel k maps T ×S into the space B (X, Y ) of bounded
linear operators from a Banach space X into a Banach space Y and then one desires the boundedness
of the corresponding integral operator

K : Lp (S, X) → Lp (T, Y ) .

Such integral operators appear, for example, in solution formulas for inhomogeneous Cauchy prob-
lems (see, e.g. [10]) and for Volterra integral equations (see, e.g. [11]) as well as in control theory (see,
e.g. [2]); furthermore, the stability of such solutions is often expressed in terms of the boundedness
of these operators.

However, difficulties can easily arise since in many situations the kernel k is not measurable
with respect to the operator norm because the range of k is not (essentially) valued in a separable
subspace of B (X, Y ). This paper presents boundedness results for integral operators with operator-
valued kernels under relatively mild measurability and integrability conditions on the kernels.
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The first step is to place a mild measurability condition on a kernel k : T × S → B (X, Y ) to
guarantee that if f is in the space E (S, X) of finitely-valued finitely-supported measurable functions
then the Bochner integrals

(Kf) (·) :=
∫

S
k (·, s) [f (s)] dν (s) (1.2)

define a measurable function from T into Y , thus defining a mapping

K : E (S, X) → L0 (T, Y ) .

Then, to ensure that K linearly extends to a desired superspace, one adds integability conditions,
which replace (1.1) in the scalar case and, roughly speaking, take the form

sup
s∈S

∫
T
‖k (t, s) x‖Y dµ (t) ≤ C ‖x‖X for each x ∈ X (1.3)

sup
t∈T

∫
S
‖k∗ (t, s) y∗‖X∗ dν(s) ≤ C ‖y∗‖Y ∗ for each y∗ ∈ Y ∗ (1.4)

along with appropriate measurability conditions (see Section 3 for the precise formulations). As-
sume k has the appropriate measurability conditions. Theorem 3.4 shows that if k satisfies (1.3)
then K extends to a bounded linear operator from L1 (S, X) into L1 (T, Y ); Theorem 3.6 shows
that if k satisfies (1.4) then K extends to a bounded linear operator from the closure of E (S, X) in
the L∞-norm into L∞ (T, Y ). Then Theorem 3.8 uses an interpolation argument to show that if k

satisfies (1.3) and (1.4) then K extends to a bounded linear operator from Lp (S, X) into Lp (T, Y )
for 1 < p < ∞. The case p = ∞ is more delicate since E (S, X) is not necessarily dense in L∞ (S, X).
Theorem 3.11 shows that if k satisfies (1.4) then K can be extended to a bounded linear operator
from L∞ (S, X) into the space of w∗-measurable µ-essentially bounded functions from T into Y ∗∗

where the integrals in (1.2) exists (a.e) as Dunford integrals for each f ∈ L∞ (S, X); also, sufficient
conditions are given to guarantee that K maps L∞ (S, X) into L∞ (T, Y ). Using ideas from the
Geometry of Banach Spaces, Example 3.13 shows that, without further assumptions, it is necessary
to pass to Y ∗∗ in Theorem 3.11.

As an immediate consequence of these results, Corollary 5.1 gives boundedness results for con-
volution operators with operator-valued kernels. A similar result, which inspired this paper, was
used to obtain operator-valued Fourier multiplier results [8, 7].

2. NOTATION and BASICS

Throughout this paper, X, Y , and Z are Banach spaces over the field K of R or C. Also, X∗ is
the (topological) dual of X and B(X) is the (closed) unit ball of X. The space B (X, Y ) of bounded
linear operators from X into Y is endowed with the usual uniform operator topology.

A subspace Z of Y ∗ τ -norms Y , where τ ≥ 1, provided
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If Z τ -norms Y , then the natural mapping

j : Y → Z∗ given by 〈 z, jy 〉 := 〈 y, z 〉 for z ∈ Z

is an isomorphic embedding with
1
τ
‖y‖Y ≤ ‖j(y)‖Z∗ ≤ ‖y‖Y ,

in which case Y is identified as a subspace of Z∗.
(T, ΣT , µ) and (S, ΣS , ν) are σ-finite (positive) measure spaces;

Σfinite
S := {A ∈ ΣS : ν(A) < ∞}
Σfull

S := {A ∈ ΣS : ν (S \ A) = 0} ,

with similar notation for the corresponding subsets of ΣT .
E (S, X) is the space of finitely-valued finitely-supported measurable functions from S into X, i.e.

E (S, X) =

{
n∑

i=1

xi1Ai : xi ∈ X, Ai ∈ Σfinite
S , n ∈ N

}
.

Let Γ be a subspace of X∗. A function f : S → X is

• measurable provided there is a sequence (fn)∞n=1 from E (S, X) so that
limn→∞ ‖f(s) − fn(s)‖X = 0 for ν-a.e. s

• σ (X, Γ)-measurable provided 〈 f (·) , x∗ 〉 : S → K is measurable for each x∗ ∈ Γ .

The following fact will be used (c.f., e.g., [3, Corollary II.1.4]).

Fact 2.1 (Pettis’s Measurability Theorem). A function f : S → X is measurable if and only if

(i) f is essentially separably valued
(ii) f is σ (X, Γ)-measurable for some subspace Γ of X∗ that 1-norms X. �

L0 (S, X) is the space of (equivalence classes of) measurable functions from S into X. The Bochner-
Lebesgue space Lp (S, X), where 1 ≤ p ≤ ∞, is endowed with its usual norm topology. The space
Lw∗
∞ (T, Z∗) of µ-essentially bounded σ (Z∗, Z)-measurable functions from T into Z∗ is endowed

with the µ-essential supremum norm, under which it becomes a Banach space.
E (S, X) is norm dense in Lp (S, X) for 1 ≤ p < ∞. Let L0∞ (S, X) be the closure of E (S, X)

in the L∞ (S, X)-norm. If X is infinite-dimensional, then L0∞ (S, X) 6= L∞ (S, X) (provided ΣS

contains a countable number of pairwise disjoint sets of strictly positive measure). L0∞ (S, X) can
be described as follows.

Proposition 2.2. Let f ∈ L0 (S, X). Then f ∈ L0∞ (S, X) if and only if

(1) inf
{∥∥f1S\A

∥∥
L∞(S,X)

: A ∈ Σfinite
S

}
= 0

(2) there is B ∈ Σfull
S so that the set {f (s) : s ∈ B} is relatively compact in X.
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Conversely, for ε > 0, conditions (1) and (2) give a set G (:= A ∩ B) ∈ Σfinite
S so that∥∥f1S\G

∥∥
L∞(S,X)

< ε and {f (s) : s ∈ G} is relatively compact ;

thus allowing one to find, via a finite covering of the set f (G) by ε-balls, a function fε ∈ E (S, X),
with support in G, so that ‖f − fε‖L∞(S,X) < ε. �

Lemma 2.3 will help to deal with the fact that E (S, X) is (usually) not norm dense in L∞ (S, X).

Lemma 2.3. Let f ∈ L∞ (S, X) and ε > 0. There is a sequence {gn}∞n=1 from E (S, X) so that

f (s) =
∞∑

n=1

gn (s)

∞∑
n=1

‖gn (s)‖X ≤ (1 + ε) ‖f‖L∞(S,X)

for a.e. s ∈ S.

Proof. Fix a sequence {εj}∞j=1 of positive numbers so that ε1 = 1 and
∑∞

j=1 εj < 1 + ε.
Choose a sequence {fj}∞j=1 from E (S, X) so that, for a.e. s ∈ S,

fj (s) → f (s) as j → ∞
‖fj (s)‖X ≤ ‖f (s)‖X for each j ∈ N .

Find a sequence {Sk}∞k=1 of pairwise disjoint sets from Σfinite
S so that ν (S \ ∪∞

k=1Sk) = 0 and, for
each Sk,

fj → f uniformly on Sk

‖fj (s)‖X ≤ ‖f (s)‖X for each s ∈ Sk and j ∈ N .

Hence, on each Sk, there is a sequence {gk
j }∞j=1 from E (Sk, X) so that

f (s) =
∞∑

j=1

gk
j (s) for each s ∈ Sk∥∥∥gk

j

∥∥∥
L∞(Sk,X)

≤ εj ‖f‖L∞(S,X) for each j ∈ N .

For n ∈ N, let

gn :=
∑
k<n

(
gk
n1Sk

)
+

 n∑
j=1

gn
j

 1Sn .

Thus

g1 = g1
1 1S1

g2 = g1
2 1S1 + (g2

1 + g2
2) 1S2

g3 = g1
3 1S + g2

3 1S + (g3
1 + g3

2 + g3
3) 1S
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Note that if s ∈ Sk then
∞∑

n=1

gn (s) =
∞∑

j=1

gk
j (s)

and, by the triangle inequality,
∞∑

n=1

‖gn (s)‖X ≤
∞∑

j=1

∥∥∥gk
j (s)

∥∥∥
X

.

So clearly the gn’s do as they should. �

Let 1 ≤ p ≤ ∞ and 1
p + 1

p′ = 1. There is a natural isometric embedding of Lp′ (T, Z∗) into
[Lp (T, Z)]∗ given by

〈 f, g 〉 :=
∫

T
〈 f (t) , g (t) 〉 dµ (t) for g ∈ Lp′ (T, Z∗) , f ∈ Lp (T, Z) .

There also is a natural isometric embedding of L1 (T, Y ∗) into
[
Lw∗
∞ (T, Y ∗∗)

]∗; indeed, for g =∑n
i=1 y∗i 1Bi ∈ L1 (T, Y ∗) and f ∈ Lw∗

∞ (T, Y ∗∗) let

〈 f, g 〉 :=
∫

T
〈 g (t) , f (t) 〉 dµ (t) =

n∑
i=1

∫
Bi

〈 y∗i , f (t) 〉 dµ (t)

and observe that ‖g‖[Lw∗
∞ (T,Y ∗∗)]∗ = ‖g‖L1(T,Y ∗).

For a mapping

k : T × S → B (X, Y )

the mapping

k∗ : T × S → B (Y ∗, X∗)

is defined by k∗ (t, s) := [k (t, s)]∗.
Non-numerical subscripts on constants indicate dependency. All other notation and terminology,

not otherwise explained, are as in [3, 9].

3. MAIN RESULTS

Several conditions on a kernel k : T × S → B (X, Y ) will be considered. The first one is a mild
measurability condition.

Definition 3.1. k : T × S → B (X, Y ) satisfies condition (C0) provided that for each A ∈ Σfinite
S

and each x ∈ X

• there is TA,x ∈ Σfull
T so that if t ∈ TA,x then the Bochner integral∫

A
k (t, s) x dν (s)

exists
• the mapping

T 3 t →
∫

k (t s) x dν (s) ∈ Y
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Remark 3.2. Let k : T × S → B (X, Y ) satisfy condition (C0). Then

for each f ∈ E (S, X) there is Tf ∈ Σfull
T so that

if t ∈ Tf then the Bochner integral (Kf) (t) :=
∫

S
k (t, s) [f (s)] dν (s) exists

(3.1)

and (3.1) defines a linear mapping

K : E (S, X) → L0 (T, Y ) . (3.2)

Next integrability conditions on k are added to ensure that the mapping K in (3.2) extends to the
desired superspaces. �

Condition (C1) will be used for the L1-case in Theorem 3.4.

Definition 3.3. k : T × S → B (X, Y ) satisfies condition (C1) provided there is a constant C1 so
that for each x ∈ X

• the mapping T × S 3 (t, s) → ‖k (t, s) x‖Y ∈ R is product measurable
• there is Sx ∈ Σfull

S so that∫
T
‖k (t, s) x‖Y dµ (t) ≤ C1 ‖x‖X

for each s ∈ Sx. �

Note that the first condition guarantees that the mapping T 3 t → ‖k (t, s) x‖Y ∈ R is measurable
for ν-a.e. s. Also, the first condition is often satisfied even though the mapping T × S 3 (t, s) →
k (t, s) x ∈ Y may not be product measurable.

The L1-case is a straightforward extension of the scalar-valued situation.

Theorem 3.4. Let k : T × S → B (X, Y ) satisfy conditions (C0) and (C1). Then the integral
operator

(Kf) (·) :=
∫

S
k (·, s) f (s) dν (s) for f ∈ E (S, X)

extends to a bounded linear operator

K : L1 (S, X) → L1 (T, Y )

of norm at most the constant C1 from Definition 3.3 .

Proof. Fix f =
∑n

i=1 xi1Ai ∈ E (S, X) with the Ai’s disjoint. By condition (C1), for each i,∫
T

∫
S
‖k (t, s) xi1Ai (s)‖Y dν (s) dµ (t) =

∫
S

[∫
T
‖k (t, s) xi‖Y dµ (t)

]
1Ai (s) dν (s)

≤
∫

C1 ‖xi‖X 1Ai (s) dν (s) (3.3)
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Condition (C0) gives that Kf ∈ L0 (T, Y ) and also, combined with (3.3), that

‖Kf‖L1(T,Y ) =
∫

T

∥∥∥∥∥
n∑

i=1

∫
S

k (t, s) xi1Ai (s) dν (s)

∥∥∥∥∥
Y

dµ (t)

≤
n∑

i=1

∫
T

∫
S
‖k (t, s) xi1Ai (s)‖Y dν (s) dµ (t)

≤
n∑

i=1

C1 ‖xi‖X ν (Ai) = C1 ‖f‖L1(S,X) .

This completes the proof. �

Condition (C0∞) will be used for the L0∞-case in Theorem 3.6.

Definition 3.5. Let Z be a subspace of Y ∗. Then k : T × S → B (X, Y ) satisfies condition (C0∞),
with respect to Z, provided there is a constant C0∞ so that for each y∗ ∈ Z there is Ty∗ ∈ Σfull

T so
that for each t ∈ Ty∗

• the mapping S 3 s → ‖k∗ (t, s) y∗‖X∗ ∈ R is measurable
• ∫S ‖k∗ (t, s) y∗‖X∗ dν (s) ≤ C0∞ ‖y∗‖Y ∗ . �

Theorem 3.6. Let Z be a subspace of Y ∗ that τ -norms Y . Let k : T × S → B (X, Y ) satisfy
conditions (C0) and (C0∞) with respect to Z. Then the integral operator

(Kf) (·) :=
∫

S
k (·, s) f (s) dν (s) for f ∈ E (S, X)

extends to a bounded linear operator

K : L0
∞ (S, X) → L∞ (T, Y )

of norm at most τ · C0∞ where the constant C0∞ is from Definition 3.5.

Proof. Fix f ∈ E (S, X). Fix y∗ ∈ Z. Find the corresponding sets Tf , Ty∗ ∈ Σfull
T from the definitions

of conditions (C0) and (C0∞). If t ∈ Tf ∩ Ty∗ then

|〈 (Kf) (t) , y∗ 〉| =
∣∣∣∣〈 ∫

S
k (t, s) f (s) dν (s) , y∗

〉∣∣∣∣
≤
∫

S
|〈 f (s) , k∗ (t, s) y∗ 〉| dν (s)

≤
∫

S
‖k∗ (t, s) y∗‖X∗ ‖f (s)‖X dν (s)

≤ ‖f‖L∞(S,X) C0
∞ ‖y∗‖Y ∗ .

Since Tf ∩ Ty∗ ∈ Σfull
T and Z τ -norms Y ,

‖Kf‖L (T Y ) ≤ τ C0
∞ ‖f‖L (S X) .
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Remark 3.7 (on Theorem 3.6). Note that K maps L0∞ (S, X) into L0∞ (T, Y ) provided that for each
x ∈ X and A ∈ Σfinite

S

Tf 3 t →
∫

A
k (t, s) x dν (s) ∈ Y (3.4)

defines a function in L0∞ (T, Y ). This will be the case, for example, if µ is a Radon measure on a
locally compact Hausdorff space T (e.g., T is a Borel subset of RN , endowed with the Lebesgue
measure) and (3.4) defines a function in

C0 (T, Y ) :=
{

g : T → Y | g is continuous and inf
{∥∥g1T\B

∥∥
L∞

: B is compact
}

= 0
}

;

indeed, conditions (1) and (2) of Proposition 2.2 are then fulfilled. �

Interpolating between Theorems 3.4 and 3.6 gives the Lp-case for 1 < p < ∞.

Theorem 3.8. Let Z be a subspace of Y ∗ that τ -norms Y and 1 < p < ∞. Let k : T×S → B (X, Y )
satisfy conditions (C0), (C1), and (C0∞) with respect to Z. Then the integral operator

(Kf) (·) :=
∫

S
k (·, s) f (s) dν (s) for f ∈ E (S, X)

extends to a bounded linear operator

K : Lp (S, X) → Lp (T, Y )

of norm at most (C1)1/p (τ · C0∞
)1/p′ where the constants C1 and C0∞ are from Definitions 3.3

and 3.5.

Proof. The proof follows directly from Theorems 3.4 and 3.6 and Lemma 3.9. �

The below interpolation lemma is a slight improvement on [1, Thm. 5.1.2].

Lemma 3.9. Let the linear mapping

K : E (S, X) → L1 (T, Y ) + L∞ (T, Y )

satisfy, for each f ∈ E (S, X),

‖Kf‖L1(T,Y ) ≤ c1 ‖f‖L1(S,X) < ∞
‖Kf‖L∞(T,Y ) ≤ c∞ ‖f‖L∞(S,X) < ∞ .

Then, for each 1 < p < ∞, the mapping K extends to a bounded linear operator

K : Lp (S, X) → Lp (T, Y )

of norm at most (c1)1/p (c∞)1/p′.

Proof. Fix B ∈ Σfinite
T and a finite measurable partition π of B. Let Σ0 := σB (π) be the σ-algebra

of subsets of B that is generated by π Then the linear mapping
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given by K0f := E ((Kf) 1B | Σ0) where E (· | Σ0) is the conditional expectation operator relative
to Σ0, satisfies

‖K0f‖L1(T,Y ) ≤ c1 ‖f‖L1(S,X) < ∞
‖K0f‖L∞(T,Y ) ≤ c∞ ‖f‖L∞(S,X) < ∞

for each f ∈ E (S, X). Furthermore, K0 : L0∞ (S, X) → L0∞ (T, Y ). Thus, by [1, Thm. 5.1.2], for
each p ∈ (1,∞), the linear mapping K0 extends to a bounded linear operator from Lp (S, X) to
Lp (T, Y ) of norm at most (c1)1/p (c∞)1/p′ .

Next, fix f ∈ E (S, X) and p ∈ (1,∞). By assumption, Kf ∈ L1 (T, Y ) ∩ L∞ (T, Y ); thus,
Kf ∈ Lp (T, Y ). Fix B ∈ Σfinite

T . Since T is σ-finite, it suffices to show

‖(Kf) 1B‖Lp(T,Y ) ≤ (c1)1/p (c∞)1/p′ ‖f‖Lp(S,X) . (3.5)

Find a sequence {gn}∞n=1 of functions from E (T, Y ) that are supported on B and, for µ-a.e. t,

gn → (Kf) (t) 1B (t)

‖gn (t)‖Y ≤ ‖(Kf) (t) 1B (t)‖Y .
(3.6)

Let Σn := σB (g1, . . . gn) be the σ-algebra of subsets of B that is generated by {g1, . . . , gn}. Note
that (Kf) 1B is the limit in Lp (T, Y ) of {gn}∞n=1 (by (3.6)) and thus also of {E ((Kf) 1B | Σn)}∞n=1

since

‖(Kf) 1B − E ((Kf) 1B | Σn)‖Lp(T,Y )

≤ ‖(Kf) 1B − gn‖Lp(T,Y ) + ‖E (gn − (Kf) 1B | Σn)‖Lp(T,Y ) .

But by the previous paragraph, for each n ∈ N,

‖E ((Kf) 1B | Σn)‖Lp(T,Y ) ≤ (c1)1/p (c∞)1/p′ ‖f‖Lp(S,X) .

Thus (3.5) holds. �

Condition (C∞), a strengthening of condition (C0∞), will be used for the L∞-case in Theorem 3.11.

Definition 3.10. Let Z be a subspace of Y ∗. Then k : T ×S → B (X, Y ) satisfies condition (C∞),
with respect to Z, provided there is a constant C∞ and T0 ∈ Σfull

T so that for each t ∈ T0 and y∗ ∈ Z

• the mapping S 3 s → k∗ (t, s) y∗ ∈ X∗ is measurable
• ∫S ‖k∗ (t, s) y∗‖X∗ dν (s) ≤ C∞ ‖y∗‖Y ∗ . �

The L∞-case is more delicate since, in general, E (S, X) is not norm dense in L∞ (S, X).

Theorem 3.11. Let Z be a subspace of Y ∗ that τ -norms Y . Let k : T × S → B (X, Y ) satisfy
conditions (C0) and (C∞) with respect to Z. In particular, (C∞) gives that for each t ∈ T0 ∈ Σfull

T

and each y∗ ∈ Z ∫
S
‖k∗ (t, s) y∗‖X∗ dν (s) ≤ C∞ ‖y∗‖Y ∗ .
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defined by

(Kf) (·) :=
∫

S
k (·, s) f (s) dν (s) for f ∈ E (S, X) (3.7)

extends (identifying Y as a subspace of Z∗) to a bounded (of norm at most C∞) linear operator

K : L∞ (S, X) → Lw∗
∞ (T, Z∗) (3.8)

that is given by

〈 y∗, (Kf) (t) 〉 :=
∫

S
〈 k (t, s) f (s) , y∗ 〉 dν (s)

for f ∈ L∞ (S, X) and t ∈ T0 and y∗ ∈ Z .

(3.9)

Furthermore, the K of (3.8) maps L∞ (S, X) into L∞ (T, Y ) provided either

(i) Y does not (isomorphically) contain c0

or

(ii) for each t ∈ T0 the subset {‖k∗ (t, ·) y∗‖X∗ : y∗ ∈ B(Z)} of L0 (S, R) is equi-integrable.

Recall that the subset in (ii) is equi-integrable provided if {An}∞n=1 is a sequence from ΣS with
An ⊇ An+1 and ν (∩∞

n=1An) = 0 then

lim
n→∞ sup

y∗∈B(Z)

∫
An

‖k∗ (t, s) y∗‖X∗ dν (s) = 0 . (3.10)

Remark 3.12 (on Theorem 3.11).
(a) There can be advantages in taking a proper norming subspace Z ( Y ∗ over taking Z = Y ∗.

First, it eases the assumptions of k. Second, Z∗ may be much smaller than Y ∗∗ and so the
conclusion K (L∞ (S, X)) ⊂ Lw∗

∞ (T, Z∗) may be more useful than K (L∞ (S, X)) ⊂ Lw∗
∞ (T, Y ∗∗).

For example, if Y = C [0, 1] then Z := L1 [0, 1] ( Y ∗ 1-norms Y ; furthermore, Z∗ ' L∞ [0, 1] is
nicer than Y ∗∗ ' (M [0, 1])∗, which is very large.

(b) If Y = (Y∗)∗ is a separable dual space, then Z := Y∗ ⊂ Y ∗ 1-norms Y and, by Pettis’s
measurability theorem (Fact 2.1), one has that Lw∗

∞ (T, Z∗) = L∞ (T, Y ).
(c) If ν (S) < ∞ and for each t ∈ T0 there exists qt ∈ (1,∞] and Ct ∈ (0,∞) such that

sup
y∗∈B(Z)

‖k∗ (t, ·) y∗‖Lqt (S,X) ≤ Ct ,

then the equi-integrability condition in (ii) holds; indeed, just apply Hölder’s inequality.
(d) Remark 3.7 is valid in this setting also. �

Proof of Theorem 3.11. Fix f ∈ L∞ (S, X). Fix t ∈ T0. For each y∗ ∈ Z the function

〈 k (t, ·) f (·) , y∗ 〉 : S → K

i b diti (C )
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(b) in L1 (S, K) with∫
S
|〈 k (t, s) f (s) , y∗ 〉| dν (s) ≤

∫
S
‖k∗ (t, s) y∗‖X∗ ‖f (s)‖X dν (s)

≤ C∞ ‖y∗‖Z ‖f‖L∞(S,X) .
(3.11)

Thus by the Closed Graph Theorem, applied to the mapping

Z 3 y∗ → 〈 k (t, ·) f (·) , y∗ 〉 ∈ L1 (S, K) ,

the mapping

Z 3 y∗ →
∫

S
〈 k (t, s) f (s) , y∗ 〉 dν (s) ∈ K

defines an element (Kf) (t) of Z∗ that satisfies (3.9).
Let f ∈ E (S, X). By condition (C0), there is Tf ∈ Σfull

T such that if t ∈ Tf then k (t, ·) f (·) ∈
L1 (S, Y ). For each t ∈ Tf ∩ T0 ∈ Σfull

T and each y∗ ∈ Z〈∫
S

k (t, s) f (s) dν (s) , y∗
〉

=
∫

S
〈 k (t, s) f (s) , y∗ 〉 dν (s) = 〈 y∗, (Kf) (t) 〉 .

Hence (3.7) holds. Thus, by Theorem 3.6, K maps E (S, X) into L∞ (T, Y ).
Fix f ∈ L∞ (S, X). To see that Kf is σ (Z∗, Z)-measurable, fix a sequence {fn}n∈N

from E (S, X)
that converges a.e. to f and ‖fn‖L∞(S,X) ≤ ‖f‖L∞(S,X) for each n ∈ N. Then, by the Lebesgue
Dominated Convergence Theorem, for each y∗ ∈ Z and for a.e. t ∈ T ,

〈 y∗, (Kf) (t) 〉 =
∫

S
〈 f (s) , k∗ (t, s) y∗ 〉 dν (s)

= lim
n→∞

∫
S
〈 fn (s) , k∗ (t, s) y∗ 〉 dν (s) = lim

n→∞ 〈 y∗, (Kfn) (t) 〉

and the latter functions 〈 y∗, (Kfn) (·) 〉 are µ-measurable functions by condition (C0). Furthermore,
by (3.11)

sup
t∈T0

‖(Kf) (t)‖Z∗ = sup
t∈T0

sup
y∗∈B(Z)

∣∣∣∣∫
S
〈 k (t, s) f (s) , y∗ 〉 dν (s)

∣∣∣∣ ≤ C∞ ‖f‖L∞(S,X) ;

thus, Kf ∈ Lw∗
∞ (T, Z∗) and the K of (3.8) is of norm at most C∞

Proof of (i) Assume that c0 does not isomorphically embed into Y .
Fix f ∈ L∞ (S, X). By Lemma 2.3, there is a sequence {fn}∞n=1 from E (S, X) so that

f (s) =
∞∑

n=1

fn (s)

∞∑
n=1

‖fn (s)‖X ≤ 2 ‖f‖L∞(S,X)

for a.e. s ∈ S. Since each fn is in E (S, X), by (3.7) and condition (C0), there is T1 ∈ Σfull
T , with

T1 ⊆ T0, so that for each t ∈ T1 and each n ∈ N

(Kfn) (t) =
∫

k (t, s) fn (s) dν (s) ∈ Y
( )
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Fix t ∈ T1. By the Lebesgue Dominated Convergence Theorem,

(Kf) (t) = lim
m→∞

m∑
n=1

(Kfn) (t) in the σ (Z∗, Z) -topology (3.13)

since, for each y∗ ∈ Z,

〈 y∗, (Kf) (t) 〉 =
∫

S
〈 f (s) , k∗ (t, s) y∗ 〉 dν (s)

= lim
m→∞

∫
S

〈
m∑

n=1

fn (s) , k∗ (t, s) y∗
〉

dν (s) = lim
m→∞

〈
m∑

n=1

(Kfn) (t) , y∗
〉

.

It suffices to show that the series in (3.13) converges also in the Z∗-norm topology; thus, since Y

does not contain c0, it suffices to show that
∞∑

n=1

|〈 (Kfn) (t) , y∗ 〉| < ∞ for each y∗ ∈ Y ∗ (3.14)

by a theorem of Bessaga and Pe lczyński (cf., e.g., [4, Thm. V.8]).
For each y∗ ∈ Z,

∞∑
n=1

|〈 (Kfn) (t) , y∗ 〉| =
∞∑

n=1

∣∣∣∣∫
S
〈 k (t, s) fn (s) , y∗ 〉 dν (s)

∣∣∣∣
≤

∞∑
n=1

∫
S
|〈 fn (s) , k∗ (t, s) y∗ 〉| dν (s)

≤
∞∑

n=1

∫
S
‖k∗ (t, s) y∗‖X∗ ‖fn (s)‖X dν (s)

≤
∫

S
‖k∗ (t, s) y∗‖X∗

( ∞∑
n=1

‖fn (s)‖X

)
dν (s)

≤ 2 ‖f‖L∞(S,X) C∞ ‖y∗‖Y ∗ .

Thus the mapping

Z 3 y∗ U−→ {〈 (Kfn) (t) , y∗ 〉}∞n=1 ∈ `1

is a bounded linear operator. Fix {αn}∞n=1 ∈ B (`∞) and m ∈ N. If y∗ ∈ B (Z) then∣∣∣∣∣
〈

m∑
n=1

αn (Kfn) (t) , y∗
〉∣∣∣∣∣ =

∣∣∣∣∣
m∑

n=1

αn 〈 (Kfn) (t) , y∗ 〉
∣∣∣∣∣ ≤ ‖U‖B(Z,`1)

and so ∥∥∥∥∥
m∑

n=1

αn (Kfn) (t)

∥∥∥∥∥
Y

≤ τ ‖U‖B(Z,`1) .
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Fix f ∈ L∞ (S, X). Choose a sequence {fn}∞n=1 from E (S, X) such that

lim
n→∞ fn (s) = f (s) for a.e. s ∈ S

‖fn‖L∞(S,X) ≤ ‖f‖L∞(S,X) for each n ∈ N .

As in the proof of (i), since the fn’s are in E (S, X), there is T1 ∈ Σfull
T , with T1 ⊆ T0, so that (3.12)

holds for each t ∈ T1 and each n ∈ N. It suffices to show that {(Kfn) (t)}∞n=1 converges in Z∗-norm
to (Kf) (t) for each t ∈ T1.

Fix t ∈ T1. Fix δ > 0 and let Bn := {s ∈ S : ‖f (s) − fn (s)‖X > δ} and An := ∪∞
k=nBk. Then

‖(Kf) (t) − (Kfn) (t)‖Z∗ = sup
y∗∈B(Z)

∣∣∣∣∫
S
〈 k (t, s) (f (s) − fn (s)) , y∗ 〉 dν (s)

∣∣∣∣
≤ sup

y∗∈B(Z)

∫
S
‖k∗ (t, s) y∗‖X∗ ‖f (s) − fn (s)‖X dν (s)

≤ sup
y∗∈B(Z)

[
δ

∫
BC

n

‖k∗ (t, s) y∗‖X∗ dν (s) + 2 ‖f‖L∞(S,X)

∫
Bn

‖k∗ (t, s) y∗‖X∗ dν (s)

]

≤ δ C∞ + 2 ‖f‖L∞(S,X)

[
sup

y∗∈B(Z)

∫
An

‖k∗ (t, s) y∗‖X∗ dν (s)

]
.

Note that ∩∞
n=1An ⊆ {s ∈ S : fn (s) does not converge to f (s)}. Thus, by the equi-integrability

assumption, {(Kfn) (t)}∞n=1 converges in Z∗-norm to (Kf) (t). �

The following example illustrates the limitations on the conclusions in Theorems 3.6 and 3.11.

Example 3.13. Let X = C and Y = c0. Thus

B (X, Y ) ' c0 and B (Y ∗, X∗) ' `∞ .

Let S = T = R. Define

k0 : R → c0 k0 (·) :=
∞∑

n=1

en1In (·)

k : T × S → B (X, Y ) k (t, s) := k0 (t − s)

where {en}∞n=1 is the standard unit vector basis of c0 and In = [n − 1, n).
Since k0 ∈ L∞ (R, c0), for each f ∈ L1 (S, X) the Bochner integral

(Kf) (t) :=
∫

S
k (t, s) f (s) ds =

∫
R

k0 (t − s) f (s) ds = (k0 ∗ f) (t)

exists for each t ∈ T ; furthermore, Kf ∈ L∞ (T, Y ) and Kf is uniformly continuous. From this it
follows that k satisfies condition (C0). The kernel k also satisfies condition (C∞) with Z = Y ∗ and
T0 = T since for each y∗ ∈ Y ∗ ' `1 and t ∈ T

k∗ (t, s) y∗ =
∞∑

n=1

y∗ (en) 1In (t − s) for each s ∈ S

∫ ∞



14 GIRARDI AND WEIS

Theorem 3.6 gives that K
(
L0∞ (S, X)

) ⊆ L∞ (T, Y ). However, K (E (S, X)) * L0∞ (T, Y ). In-
deed, (K1I1) (n) = en for each n ∈ N and so, since K1I1 is uniformly continuous, K1I1 does not
satisfy (2) of Proposition 2.2 and so K1I1 /∈ L0∞ (T, Y ).

Theorem 3.11 gives that K (L∞ (S, X)) ⊆ Lw∗
∞ (T, Y ∗∗). However, K (L∞ (S, X)) * L∞ (T, Y ).

Indeed, consider f = 1(−∞,0) ∈ L∞ (S, X). If n ∈ N and 0 < δ ≤ 1 then

(Kf) (n − δ) = δen +
∑
j∈N

en+j ∈ Y ∗∗ \ Y .

Thus Kf /∈ L∞ (T, Y ). �

4. REMARKS ON DUALITY AND WEAK CONTINUITY

The remarks in this section explore the duality and weak continuity of K. For this, dual versions
of the four conditions in Section 3 are needed.

Definition 4.1. Let (C) (possibly with respect to a subspace Z of Y ∗) be one of the four conditions
in Section 3 on a kernel

k : T × S → B (X, Y ) .

Then k satisfies condition (C∗) (possibly with respect to a subspace Z of X∗∗) provided the mapping

k̃ : S × T → B (Y ∗, X∗)

k̃ (s, t) := [k (t, s)]∗

satisfies condition (C) (possibly with respect to a subspace Z of X∗∗).
For example, k : T ×S → B (X, Y ) satisfies condition (C∗

0) provided that for each B ∈ Σfinite
T and

each y∗ ∈ Y ∗

• there is SB,y∗ ∈ Σfull
S so that if s ∈ SB,y∗ then the Bochner integral∫

B
k∗ (t, s) y∗ dµ (t)

exists
• the mapping

SB,y∗ 3 s →
∫

B
k∗ (t, s) y∗ dµ (t) ∈ X∗

defines a measurable function from S into X∗. �

Remark 4.2. Let 1 < p < ∞ and 1
p + 1

p′ = 1. Let k : T × S → B (X, Y ) be so that

(i) k satisfies conditions (C0), (C1), (C0∞) with respect to Z = Y ∗, and (C∗
0)

(ii) for each y∗ ∈ Y ∗ and each x ∈ X, the mapping T × S 3 (t, s) → 〈 k (t, s) x, y∗ 〉 ∈ K is
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By Theorem 3.8 (with Z = Y ∗), there is a bounded linear operator

K : Lp (S, X) → Lp (T, Y ) (4.1)

defined by

(Kf) (·) =
∫

S
k (·, s) f (s) dν (s) ∈ Lp (T, Y ) for f ∈ E (S, X) .

Note that k satisfies

(iv) (C∗
1) by (iii) and the fact that k satisfies (C0∞) with respect to Z = Y ∗

(v) (C0∗∞) with respect to Z = X since k satisfies (C1).

So by Theorem 3.8 (with Z = X), there is a bounded linear operator

K̃ : Lp′ (T, Y ∗) → Lp′ (S, X∗)

defined by (
K̃g
)

(·) =
∫

T
k∗ (t, ·) g (t) dµ (t) ∈ Lp′ (S, X∗) for g ∈ E (T, Y ∗) .

Note that

K∗g = K̃g for each g ∈ Lp′ (T, Y ∗)

since if g = y∗1B ∈ E (T, Y ∗) ⊂ Lp′ (T, Y ∗) and f = x1A ∈ E (S, X) ⊂ Lp (S, X)

〈 f , K∗g 〉 = 〈Kf , g 〉

=
∫

T

〈∫
S

k (t, s) x1A (s) dν (s) , y∗1B (t)
〉

dµ (t)

=
∫

T

∫
S
〈 k (t, s) x1A (s) , y∗1B (t) 〉 dν (s) dµ (t)

=
∫

S

∫
T
〈x1A (s) , k∗ (t, s) y∗1B (t) 〉 dµ (t) dν (s)

=
∫

S

〈
x1A (s) ,

∫
T

k∗ (t, s) y∗1B (t) dµ (t)
〉

dν (s)

=
〈

f , K̃g
〉

(4.2)

where assumption (ii) helps justify the use of Fubini’s theorem. Thus

(K∗g) (·) =
∫

T
k∗ (t, ·) g (t) dµ (t) ∈ Lp′ (S, X∗) for g ∈ E (T, Y ∗)

and K∗ maps Lp′ (T, Y ∗) into Lp′ (S, X∗). Thus the K in (4.1) is

σ
(
Lp (S, X) , Lp′ (S, X∗)

)
–to–σ

(
Lp (T, Y ) , Lp′ (T, Y ∗)

)
continuous. �

Remark 4.3. Let k : T × S → B (X, Y ) be so that
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By Theorem 3.4, there is a bounded linear operator

K : L1 (S, X) → L1 (T, Y ) (4.3)

defined by

(Kf) (·) =
∫

S
k (·, s) f (s) dν (s) ∈ L1 (T, Y ) for f ∈ E (S, X) .

Since k satisfies condition (C1), it satisfies condition (C0∗∞) with respect to Z = X; thus, by
Theorem 3.6, there is a bounded linear operator

K̃ : L0
∞ (T, Y ∗) → L∞ (S, X∗)

defined by (
K̃g
)

(·) =
∫

T
k∗ (t, ·) g (t) dµ (t) ∈ L∞ (S, X∗) for g ∈ E (T, Y ∗) .

Note that

K∗g = K̃g for each g ∈ L0
∞ (T, Y ∗)

since if g = y∗1B ∈ E (T, Y ∗) ⊂ L0∞ (T, Y ∗) and f = x1A ∈ E (S, X) ⊂ L1 (S, X) then the
calculation in (4.2) shows that 〈 f, K∗g 〉 =

〈
f, K̃g

〉
. Thus

(K∗g) (·) =
∫

T
k∗ (t, ·) g (t) dµ (t) ∈ L∞ (S, X∗) for g ∈ E (T, Y ∗)

and K∗ maps L0∞ (T, Y ∗) into L∞ (S, X∗). Thus the K in (4.3) is

σ (L1 (S, X) , L∞ (S, X∗)) –to–σ
(
L1 (T, Y ) , L0

∞ (T, Y ∗)
)

continuous. �

Remark 4.4. Let k : T × S → B (X, Y ) be so that

• k satisfies conditions (C0), (C1), (C∗
0), and (C∗∞) with respect to Z = X

• condition (ii) of Remark 4.2 holds
• X∗ does not contain c0.

By Theorem 3.4, there is a bounded linear operator

K : L1 (S, X) → L1 (T, Y ) (4.4)

defined by

(Kf) (·) =
∫

S
k (·, s) f (s) dν (s) ∈ L1 (T, Y ) for f ∈ E (S, X) .

By Theorem 3.11, there is a bounded linear operator

K̃ : L∞ (T, Y ∗) → L∞ (S, X∗)

defined by, for some S0 ∈ Σfull
S ,〈
x,
(
K̃g
)

(s)
〉

=
∫

〈x, k∗ (t, s) g (t) 〉 dµ (t)
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Note that

K∗g = K̃g for each g ∈ L∞ (T, Y ∗)

since if g ∈ L∞ (T, Y ∗) and f = x1A ∈ E (S, X) ⊂ L1 (S, X) then

〈 f , K∗g 〉 = 〈Kf , g 〉

=
∫

T

〈∫
S

k (t, s) x1A (s) dν (s) , g (t)
〉

dµ (t)

=
∫

T

∫
S
〈 k (t, s) x , g (t) 〉 1A (s) dν (s) dµ (t)

=
∫

S

∫
T
〈x , k∗ (t, s) g (t) 〉 1A (s) dµ (t) dν (s)

=
∫

S

〈
x ,

(
K̃g
)

(s)
〉

1A (s) dν (s)

=
〈

f , K̃g
〉

where assumption (ii) helps justify the use of Fubini’s theorem. Thus, by (3.7),

(K∗g) (·) =
∫

T
k∗ (t, ·) g (t) dµ (t) ∈ L∞ (S, X∗) for g ∈ E (T, Y ∗)

and K∗ maps L∞ (T, Y ∗) into L∞ (S, X∗). Thus the K in (4.4) is

σ (L1 (S, X) , L∞ (S, X∗)) –to–σ (L1 (T, Y ) , L∞ (T, Y ∗))

continuous. �

Remark 4.5. Let k : T × S → B (X, Y ) be so that

• k satisfies conditions (C0), (C∞) with respect to Z = Y ∗, and (C∗
0)

• conditions (ii) and (iii) of Remark 4.2 hold.

Then (3.9) of Theorem 3.11, with Z = Y ∗, defines a bounded linear operator

K : L∞ (S, X) → Lw∗
∞ (T, Y ∗∗) . (4.5)

Note that k satisfies condition (C∗
1) by (iii) and the fact that k satisfies condition (C∞) with respect

to Z = Y ∗. So by Theorem 3.4(
K̃g
)

(·) :=
∫

T
k∗ (t, ·) g (t) dµ (t) ∈ L1 (S, X∗) for g ∈ E (T, Y ∗)

defines a bounded linear operator

K̃ : L1 (T, Y ∗) → L1 (S, X∗) .

Note that

K̃g = K∗g for each g ∈ L1 (T, Y ∗)

since for g = y∗1B ∈ E (T, Y ∗) ⊂ L1 (T, Y ∗) and f ∈ L∞ (S, X)

〈 f , K∗g 〉 = 〈Kf , g 〉
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=
∫

T

[∫
S
〈 k (t, s) f (s) , y∗ 〉 dν (s)

]
1B (t) dµ (t)

=
∫

S

∫
T
〈 f (s) , k∗ (t, s) y∗1B (t) 〉 dµ (t) dν (s)

=
∫

S

〈
f (s) ,

∫
T

k∗ (t, s) y∗1B (t) dµ (t)
〉

dν (s)

=
∫

S

〈
f (s) ,

(
K̃g
)

(s)
〉

dν (s)

=
〈

f , K̃g
〉

where assumption (ii) helps justify the use of Fubini’s theorem. Thus

(K∗g) (·) =
∫

T
k∗ (t, ·) g (t) dµ (t) ∈ L1 (S, X∗) for each g ∈ E (T, Y ∗)

and K∗ maps L1 (T, Y ∗) into L1 (S, X∗). So the K of (4.5) is

σ (L∞ (S, X) , L1 (S, X∗)) –to–σ
(
Lw∗
∞ (T, Y ∗∗) , L1 (T, Y ∗)

)
continuous. Thus, since E (S, X) (resp. the Schwartz class S (RN , X

)
in the case S = RN ) is

σ (L∞ (S, X) , L1 (S, X∗))-dense in L∞ (S, X), many of the properties of K are determined by its
restriction to E (S, X) (resp. S (RN , X

)
).

If furthermore Y does not contain c0, then (3.9) of Theorem 3.11, with Z = Y ∗, defines a bounded
linear operator

K : L∞ (S, X) → L∞ (T, Y )

that is σ (L∞ (S, X) , L1 (S, X∗)) –to–σ (L∞ (T, Y ) , L1 (T, Y ∗)) continuous. �

5. CONVOLUTION OPERATORS

The results thus far are now applied to convolution operators on T = S = RN (endowed with
the Lebesgue measure).

Corollary 5.1. Let Z be a subspace of Y ∗ that τ -norms Y . Let k : RN → B (X, Y ) be strongly
measurable on X and k∗ : RN → B (Y ∗, X∗) be strongly measurable on Z and∫

RN

‖k (s) x‖Y ds ≤ C1 ‖x‖X < ∞ for each x ∈ X (5.1)∫
RN

‖k∗ (s) y∗‖X∗ ds ≤ C∞ ‖y∗‖Y ∗ < ∞ for each y∗ ∈ Z . (5.2)

Then the convolution operator

K : E (RN , X
)→ L0

(
RN , Y

)
defined by

(Kf) (t) :=
∫

RN

k (t − s) f (s) ds for f ∈ E (RN , X
)

(5.3)

t d t b d d li t
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• K0∞ : L0∞
(
RN , X

)→ L0∞
(
RN , Y

)
,

• and, if Y does not contain c0, then to K∞ : L∞
(
RN , X

)→ L∞
(
RN , Y

)
satisfying

〈 y∗, (K∞f) (t) 〉 =
∫

RN

〈 k (t − s) f (s) , y∗ 〉 dν (s)

for f ∈ L∞
(
RN , X

)
and t ∈ RN and y∗ ∈ Z .

Furthermore,

‖Kp‖Lp→Lp
≤ (C1)

1
p (τC∞)

1
p′

for 1 ≤ p ≤ ∞ and
∥∥K0∞

∥∥
L0∞→L0∞

≤ τC∞.

Remark 5.2. In Corollary 5.1, if Z = Y ∗ and either

• 1 < p < ∞
• p = 1 and X∗ does not contain c0

• p = ∞ and Y does not contain c0,

then the dual operator

K∗
p :
[
Lp

(
RN , Y

)]∗ → [
Lp

(
RN , X

)]∗
has the form (

K∗
pg
)

(s) =
∫

RN

k∗ (t − s) g (t) dt ∈ Lp′
(
RN , X∗) for g ∈ E (RN , Y ∗)

and K∗
p maps Lp′

(
RN , Y ∗) into Lp′

(
RN , X∗) and thus Kp is

σ
(
Lp

(
RN , X

)
, Lp′

(
RN , X∗)) –to–σ

(
Lp

(
RN , Y

)
, Lp′

(
RN , Y ∗))

continuous.

Proof of Corollary 5.1 and Remark 5.2. If f = x1A ∈ E (RN , X
)
, then Kf = [k (·) x] ∗ 1A with

k (·) x ∈ L1

(
RN , Y

)
and 1A ∈ L∞

(
RN , R

)
. Thus for each f ∈ E (RN , X

)
: the Bochner integral

in (5.3) exists for each t in RN , Kf is a uniformly continuous function from RN to Y , and Kf

vanishes at infinity. Thus K
(E (RN , X

)) ⊂ L0∞
(
RN , Y

)
.

It is straightforward to verify that the kernel

k0 : RN × RN → B (X, Y )

k0 (t, s) := k (t − s)

satisfies conditions: (C0), (C1), (C∞) with respect to Z with T0 = RN , (C∗
0), (C∗∞) with respect to

Z = X, and (ii) and (iii) of Remark 4.2.
The corollary now follows from: Theorems 3.4, 3.6, 3.8, 3.11 and Remarks 4.2, 4.4, 4.5. �

Remark 5.3 (on Corollary 5.1).
(a) The proof shows that if k is strongly measurable on X and (5.1) holds, then one has the
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(b) Under the stronger assumption that k ∈ L1

(
RN ,B (X, Y )

)
, for 1 ≤ p ≤ ∞ the Bochner

integrals

(Kpf) (t) :=
∫

RN

k (t − s) f (s) ds

f ∈ Lp

(
RN , X

) ∩ L∞
(
RN , X

)
and t ∈ RN

exist and define a bounded linear operator

Kp : Lp

(
RN , X

)→ Lp

(
RN , Y

)
.

This fact is well-known and easy to show; indeed, for f ∈ Lp

(
RN , X

) ∩ L∞
(
RN , X

)
and fs (t) :=

f (t − s),∫
RN

‖k (t − s) f (s)‖Y ds =
∫

RN

‖k (s) fs (t)‖Y ds ≤ ‖k‖L1(RN ,B(X,Y )) ‖f‖L∞(RN ,X)

for each t ∈ RN and

‖(Kf) (·)‖Lp(RN ,Y ) ≤
∫

RN

‖k (s) fs (·)‖Lp(RN ,Y ) ds

≤
∫

RN

‖k (s)‖B(X,Y ) ‖fs (·)‖Lp(RN ,X) ds

= ‖k‖L1(RN ,B(X,Y )) ‖f‖Lp(RN ,X) ;

thus, ‖Kp‖Lp→Lp
≤ ‖k‖L1(RN ,B(X,Y )).

If, in addition, k satisfies (5.1) and k∗ satisfies (5.2) with Z = Y ∗, then it was shown in [8,

Lemma 4.5] that ‖Kp‖Lp→Lp
≤ (C1)

1
p (C∞)

1
p′ . �
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INTEGRAL OPERATORS WITH OPERATOR-VALUED KERNELS 21

Mathematisches Institut I, Universität Karlsruhe, Englerstraße 2, 76128 Karlsruhe, Germany

E-mail address: Lutz.Weis@math.uni-karlsruhe.de


