INTEGRAL OPERATORS WITH OPERATOR-VALUED KERNELS

MARIA GIRARDI AND LUTZ WEIS

ABSTRACT. Under fairly mild measurability and integrability conditions on operator-valued kernels,
boundedness results for integral operators on Bochner spaces L, (X) are given. In particular, these
results are applied to convolutions operators.

1. INTRODUCTION

One of the most commonly used boundedness criterion for integral operators states that, for
1 < p < oo and o-finite measure spaces (T, X7, 1) and (S, Xg, ), a measurable kernel k: T'x S — C
defines a bounded linear operator
K:L,(SC)—L,(T,C)  via  (Kf)()= / k() f(s) dv(s)
S

provided

sup/ |k (t,s)] du(t) < C and sup/ |k (t,s)] dv(s) < C (1.1)

seS JT teT JS
(see, e.g. [5, Theorem 6.18]). In the theory of evolution equations one frequently uses operator-
valued analogs of this situation, where the kernel k¥ maps 7" x S into the space B (X,Y") of bounded
linear operators from a Banach space X into a Banach space Y and then one desires the boundedness

of the corresponding integral operator
K:L,(SX)—L,(T.Y) .

Such integral operators appear, for example, in solution formulas for inhomogeneous Cauchy prob-
lems (see, e.g. [10]) and for Volterra integral equations (see, e.g. [11]) as well as in control theory (see,
e.g. [2]); furthermore, the stability of such solutions is often expressed in terms of the boundedness
of these operators.

However, difficulties can easily arise since in many situations the kernel k is not measurable
with respect to the operator norm because the range of k is not (essentially) valued in a separable
subspace of B (X,Y). This paper presents boundedness results for integral operators with operator-

valued kernels under relatively mild measurability and integrability conditions on the kernels.
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2 GIRARDI AND WEIS

The first step is to place a mild measurability condition on a kernel k: T'x S — B(X,Y) to
guarantee that if f is in the space £ (S, X) of finitely-valued finitely-supported measurable functions
then the Bochner integrals

KN = [k6) @) v (12)

define a measurable function from 7" into Y, thus defining a mapping
K:E(5,X)—Ly(T,Y) .

Then, to ensure that K linearly extends to a desired superspace, one adds integability conditions,

which replace (1.1) in the scalar case and, roughly speaking, take the form

sup / |k (t,s) x|y du(t) < Cllz|x for each x € X (1.3)
seS JT
sup / k" (t,8) y™ || x» dv(s) < Clly"|ly« for each y* € Y* (1.4)
teT JS

along with appropriate measurability conditions (see Section 3 for the precise formulations). As-
sume k has the appropriate measurability conditions. Theorem 3.4 shows that if k satisfies (1.3)
then K extends to a bounded linear operator from L (S, X) into L; (T,Y); Theorem 3.6 shows
that if & satisfies (1.4) then K extends to a bounded linear operator from the closure of £ (5, X) in
the Loo-norm into Ly (7,Y). Then Theorem 3.8 uses an interpolation argument to show that if k
satisfies (1.3) and (1.4) then K extends to a bounded linear operator from L, (S, X) into L, (T7,Y)
for 1 < p < oo. The case p = oo is more delicate since £ (.S, X) is not necessarily dense in L, (S, X).
Theorem 3.11 shows that if k satisfies (1.4) then K can be extended to a bounded linear operator
from Lo (S, X) into the space of w*-measurable u-essentially bounded functions from 7" into Y™**
where the integrals in (1.2) exists (a.e) as Dunford integrals for each f € Lo (.S, X); also, sufficient
conditions are given to guarantee that K maps L (S, X) into Lo (T,Y). Using ideas from the
Geometry of Banach Spaces, Example 3.13 shows that, without further assumptions, it is necessary
to pass to Y** in Theorem 3.11.

As an immediate consequence of these results, Corollary 5.1 gives boundedness results for con-
volution operators with operator-valued kernels. A similar result, which inspired this paper, was

used to obtain operator-valued Fourier multiplier results [8, 7].

2. NOTATION anp BASICS

Throughout this paper, X, Y, and Z are Banach spaces over the field K of R or C. Also, X* is
the (topological) dual of X and B(X) is the (closed) unit ball of X. The space B (X,Y") of bounded
linear operators from X into Y is endowed with the usual uniform operator topology.

A subspace Z of Y* 7-norms Y, where 7 > 1, provided
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If Z 7-norms Y, then the natural mapping
j:Y = Z* givenby (z,jy) := (y,z) for z€ Z

is an isomorphic embedding with

1 .
Clyly < i@Wlz- < lylly

in which case Y is identified as a subspace of Z*.

(T, X7, u) and (S, Xg,v) are o-finite (positive) measure spaces;
yiinite . — {4 € Ng: v(A) < o0}
sl .— fAeng:v(S\A) =0},

with similar notation for the corresponding subsets of 7.

€ (S, X) is the space of finitely-valued finitely-supported measurable functions from S into X, i.e.

(S, X) = {inlAi:xieX, A; € yhinite neN} .

i=1
Let T" be a subspace of X*. A function f: S — X is
e measurable provided there is a sequence (f,)r-; from & (S, X) so that
limy, oo || f(5) = fn(s)]| x = O for v-a.e. s
e 0 (X,I')-measurable provided ( f (-),x*): S — K is measurable for each z* € T" .
The following fact will be used (c.f., e.g., [3, Corollary II1.1.4]).

Fact 2.1 (Pettis’s Measurability Theorem). A function f: S — X is measurable if and only if

(i) f is essentially separably valued
(ii) f is o (X, I')-measurable for some subspace I of X* that 1-norms X. O

Ly (S, X) is the space of (equivalence classes of ) measurable functions from S into X. The Bochner-
Lebesgue space Ly (S, X), where 1 < p < 00, is endowed with its usual norm topology. The space
LY (T,Z*) of p-essentially bounded o (Z*, Z)-measurable functions from 7 into Z* is endowed
with the p-essential supremum norm, under which it becomes a Banach space.

£ (S, X) is norm dense in L, (S, X) for 1 < p < oco. Let LY (S, X) be the closure of &€ (S, X)
in the Lo (S, X)-norm. If X is infinite-dimensional, then LY (S, X) # Lo (S, X) (provided Xg
contains a countable number of pairwise disjoint sets of strictly positive measure). LI (S, X) can

be described as follows.

Proposition 2.2. Let f € Lo (S, X). Then f € LY (S, X) if and only if

. . finite —
(1) inf {[| Flsvall, sy A€ SR} = 0
(2) there is B € SW so that the set {f (s) : s € B} is relatively compact in X.
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Conversely, for € > 0, conditions (1) and (2) give a set G (:= AN B) € Xnite 5o that
HflS\GHL (5.x) <€ and  {f(s):s € G} is relatively compact ;

thus allowing one to find, via a finite covering of the set f (G) by e-balls, a function f. € £ (S, X),
with support in G, so that || f — fEHLOO(&X) <e. O

Lemma 2.3 will help to deal with the fact that £ (S, X) is (usually) not norm dense in Lo (S, X).

Lemma 2.3. Let f € Lo (S,X) and € > 0. There is a sequence {gn},-, from & (S, X) so that

F&) = S guls)
n=1

Dlgnlx < A+e) Ifllnsx)
n=1

for a.e. s € S.

Proof. Fix a sequence {e;}72, of positive numbers so that e =1 and 3 7%, ¢; <1+-e.
Choose a sequence {fj};.’il from £ (S, X) so that, for a.e. s € S,
[i(s) = f(s) as j — 0o
15 ()llx < 17 (s)llx for each j € N .
Find a sequence {Si}7, of pairwise disjoint sets from St 5o that v (S\ U2 Sk) = 0 and, for
each Sj,

fi—f uniformly on S

Ifi Ol < IfFG)lx for each s € S, and j € N .

Hence, on each Si, there is a sequence {géc 52, from € (Sk, X) so that

[o.¢]
f(s) = Zg;g (s) for each s € S,
j=1
k .
For n € N, let
n
gn = Z (gﬁlsk> + ng ls, -
k<n j=1
Thus
g = gils

g2 = g% 151 + (g% +g%) 152

I‘In—fll‘lr‘f—l— ng 1 . —l—{n?’—l—ﬂ;—l—l‘l?\‘lm
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Note that if s € Si then
D 9n(s) = 3 0 (3)
n=1 j=1

and, by the triangle inequality,

Sl @lx < 3], -
n=1 j=1

So clearly the g,’s do as they should. ([l

Let 1 < p < o0 and ]l) + 2% = 1. There is a natural isometric embedding of L, (T, Z*) into
[L, (T, Z)]" given by

(f,9) = /T<f<t>,g<t>>du<t> for g€ Ly (T,2%) , [ € Ly(T.Z) .

There also is a natural isometric embedding of Ly (T,Y™) into [LY (T, Y**)}*; indeed, for g =
Syl € Ly (T,Y*) and f € LY (T,Y**) let

(o) = [ {o@ . Fe) dn(t) = 3 [ o r @) duo
i=1 "7 Bi

and observe that HgH[L&* @y = 191l Ly (v
For a mapping

k:TxS—B(X,Y)
the mapping
E*:TxS—B(Y* X"
is defined by k* (t,s) := [k (¢, s)]".
Non-numerical subscripts on constants indicate dependency. All other notation and terminology,

not otherwise explained, are as in [3, 9].

3. MAIN RESULTS

Several conditions on a kernel k: T'x S — B (X,Y) will be considered. The first one is a mild

measurability condition.

Definition 3.1. k: T x S — B(X,Y) satisfies condition (Cy) provided that for each A € Egmte
and each x € X

e thereis Ty, € ZfT“H so that if t € T4, then the Bochner integral

/Ak(t, §) dv (s)

exists

e the mapping

e ml — /1,/4 N 71 A N - X7
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Remark 3.2. Let k: T x S — B(X,Y) satisfy condition (Cy). Then
for each f € E(S,X) thereis Tp e XM so that
(3.1)

if te€ Ty then the Bochner integral (K f)(t) := / k(t,s)[f (s)] dv(s) exists
S

and (3.1) defines a linear mapping
K:E(S,X) = Lo (T,Y) . (3.2)

Next integrability conditions on k are added to ensure that the mapping K in (3.2) extends to the

desired superspaces. ]
Condition (Cy) will be used for the L;-case in Theorem 3.4.

Definition 3.3. k: T'x S — B(X,Y) satisfies condition (C;) provided there is a constant C so
that for each x € X

e the mapping 7' x S > (t,5) — ||k (¢, 5) z||y- € R is product measurable
e there is S, € Egﬂl so that

/% Ik (t, ) 2lly du(t) < C1 |lzllx

for each s € S,. O

Note that the first condition guarantees that the mapping 7' > t — ||k (¢, s) ||y € R is measurable
for v-a.e. s. Also, the first condition is often satisfied even though the mapping 7' x S 3 (¢,s) —
k (t,s)x € Y may not be product measurable.

The Li-case is a straightforward extension of the scalar-valued situation.

Theorem 3.4. Let k: T x S — B(X,Y) satisfy conditions (Co) and (C1). Then the integral

operator
(KD = [FC16) () for feE(SX)
extends to a bounded linear operator
K:Li(SX)— L1 (T,Y)

of norm at most the constant Cy from Definition 3.3 .
Proof. Fix f =" x;la, € £(S,X) with the A;’s disjoint. By condition (Cy), for each 4,
[ ks sia @l avs) aut) = [ | [1es)aly de] a0 are)

< [ Oillelle 1a (5) dv (s) (3.3)



INTEGRAL OPERATORS WITH OPERATOR-VALUED KERNELS 7

Condition (Cy) gives that K f € Lo (T,Y) and also, combined with (3.3), that

1K s,y = [, > [ ktts)aita, () v ()] dute)

Y

<> [ ks mtn @y d s duo
i=1 /T 78
< Cilwillx v (A4) = Cullfllpysx) -
i=1
This completes the proof. O

Condition (CY%,) will be used for the LY -case in Theorem 3.6.

Definition 3.5. Let Z be a subspace of Y*. Then k: T x S — B(X,Y) satisfies condition (CY),
with respect to Z, provided there is a constant C, so that for each y* € Z there is T, y* € Zfﬁ“ SO
that for each t € T

e the mapping S > s — ||k* (¢, 5) y*|| y« € R is measurable
o [sllF (£ 5)y"llx- dv (s) < C Mly"lly- - O

Theorem 3.6. Let Z be a subspace of Y* that T-norms Y. Let k: T x S — B(X,Y) satisfy
conditions (Co) and (C%) with respect to Z. Then the integral operator

(KD = [FC16) () for feE(SX)
extends to a bounded linear operator
K: L% (58,X) — Lo (T,Y)

of norm at most T - CO, where the constant C2, is from Definition 3.5.

Proof. Fix f € £(5,X). Fixy* € Z. Find the corresponding sets Ty, Ty« € Sl from the definitions
of conditions (Co) and (C%). If t € Ty N T}~ then

( [re91e du<s>,y*>‘
< /S|<f<s>,k*<t,s>y*>|du<s>
L €597 1 )l a9

HfHLOO(S,X) Cgo 1y My« -

[((KS) ), y7)] =

IN

IN

Since Ty N Ty € E%H and Z 7-norms Y,

N FIl. < 9 IFIl.
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Remark 3.7 (on Theorem 3.6). Note that K maps L2, (S, X) into L2, (T,Y’) provided that for each
re X and A € Zgnite

Tfata/k(t,s)xdu(s)eY (3.4)
A

defines a function in L2 (7,Y). This will be the case, for example, if ; is a Radon measure on a
locally compact Hausdorff space T' (e.g., T is a Borel subset of RY, endowed with the Lebesgue

measure) and (3.4) defines a function in
Co(T,Y) = {g: T — Y | g is continuous and inf{Hng\BHL : Bis compact} = 0} ;
indeed, conditions (1) and (2) of Proposition 2.2 are then fulfilled. O

Interpolating between Theorems 3.4 and 3.6 gives the Lj-case for 1 < p < oo.

Theorem 3.8. Let Z be a subspace of Y* that T-normsY and1 < p < co. Letk: TxS — B(X,Y)
satisfy conditions (Cy), (C1), and (C%) with respect to Z. Then the integral operator

(KD = [FC16) () for feE(SX)
extends to a bounded linear operator

K:L,(S,X)— L,(T,Y)

of norm at most (C’l)l/p (- Cgo)l/p/ where the constants Cy1 and CO, are from Definitions 3.3
and 3.5.

Proof. The proof follows directly from Theorems 3.4 and 3.6 and Lemma 3.9. O
The below interpolation lemma is a slight improvement on [1, Thm. 5.1.2].

Lemma 3.9. Let the linear mapping
K:E(8,X)— L1 (T\Y)+ L (T,Y)
satisfy, for each f € £(S,X),
1K fllyryy < allfllpsx) < o
IKfllLory)y < collflliosx) < o0
Then, for each 1 < p < oo, the mapping K extends to a bounded linear operator
K:L,(S,X)—L,(T,Y)

of norm at most (c1)"? (co0) /P’

Proof. Fix B € Z%“ite and a finite measurable partition m of B. Let ¥ := op (7) be the o-algebra

L vty A~ D Ll at e o ovmrmmmetead Ter o~ T A 214 10 A v 2 e v v s e o
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given by Kof :=E ((Kf)1p | ¥9) where E (- | ¥) is the conditional expectation operator relative
to X, satisfies

1Ko fll Ly ryy < allfllp,sx) < o©
IKoflloryy < Coollfllsx)y < o0
for each f € £(S,X). Furthermore, Ko: LY (S, X) — L% (T,Y). Thus, by [1, Thm. 5.1.2], for
each p € (1,00), the linear mapping Ky extends to a bounded linear operator from L, (S, X) to
L, (T,Y) of norm at most ()P (coo) M.
Next, fix f € £(5,X) and p € (1,00). By assumption, Kf € L1 (T,Y) N Ly (T,Y); thus,
KfeL,(T,Y). Fix B € Xfinite, Since T is o-finite, it suffices to show
WK 1Bl 0y < ()P (eo) " I F 1, sx) - (3.5)
Find a sequence {g,},-, of functions from £ (T,Y) that are supported on B and, for p-a.e. t,
gn — (Kf) () 1B (1)

lgn @y < [[(KF) @) 16 @)y -
Let X, := 05 (g1,--.9n) be the o-algebra of subsets of B that is generated by {g1,...,9n}. Note
that (K f) 1p is the limit in L, (T,Y") of {gn },—; (by (3.6)) and thus also of {E (K f)1p | Xn)}ooy

since

(3.6)

(K f)1p —E (Kf) 1 | Zn)llp, 1)
< [[(Kf)1s —Qn”Lp(T,Y) + ||E (g0 — (Kf) 15 | En)”Lp(T,Y) .
But by the previous paragraph, for each n € N,
I (K15 | Sl myy < ()P (co) P 1 £, 05.x) -
Thus (3.5) holds. O

Condition (Cs ), a strengthening of condition (CY,), will be used for the L..-case in Theorem 3.11.

Definition 3.10. Let Z be a subspace of Y*. Then k: T'x S — B (X,Y) satisfies condition (Cs),
with respect to Z, provided there is a constant C,, and Ty € Efﬁn so that for each t € Ty and y* € Z

e the mapping S > s — k* (t,s) y* € X* is measurable
o Jollk* (£ 8)y*llxs dv(s) < Coolly*lly- - 0

The Loo-case is more delicate since, in general, £ (S, X) is not norm dense in L (S, X).

Theorem 3.11. Let Z be a subspace of Y* that T-norms Y. Let k: T x S — B(X,Y) satisfy
conditions (Co) and (Co) with respect to Z. In particular, (Coo) gives that for each t € Ty € LI
and each y* € Z

/S 1" (&, 8) e dv(s) < Coo "]

Y*
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defined by
(Kf)() = / k(as)f(s)dv(s)  for f€E(S,X) (3.7)

S
extends (identifying Y as a subspace of Z*) to a bounded (of norm at most Cx ) linear operator

K: Ly (S,X)— LY (T, 2% (3.8)

that is given by

W KD O) = [ k(s £ do ()
for f € Loo (S, X) andt € Ty andy* € Z .
Furthermore, the K of (3.8) maps Lo (S, X) into Lo (T,Y) provided either
(i) Y does not (isomorphically) contain coy
or

(ii) for each t € Ty the subset {||k* (t,-)y*||x+ : y* € B(Z)} of Lo (S,R) is equi-integrable.

Recall that the subset in (ii) is equi-integrable provided if {A,},7; is a sequence from Yg with
Ap D Ay and v (M52, Ay) = 0 then

lim  sup / |E* (t,8)y™| - dv(s) = 0. (3.10)
N0 wxeB(Z) JA,

Remark 3.12 (on Theorem 3.11).

(a) There can be advantages in taking a proper norming subspace Z C Y* over taking Z = Y™*.
First, it eases the assumptions of k. Second, Z* may be much smaller than Y** and so the
conclusion K (Lo (S, X)) € LY (T, Z*) may be more useful than K (L (S, X)) C LY (T, Y**).

For example, if Y = C'[0,1] then Z := L1 [0,1] € Y* 1-norms Y; furthermore, Z* ~ L [0,1] is
nicer than Y** ~ (M [0,1])", which is very large.

(b) If Y = (Y,)" is a separable dual space, then Z := Y, C Y* l-norms Y and, by Pettis’s
measurability theorem (Fact 2.1), one has that LY (T, Z*) = Lo (T,Y).

(¢) If v (S) < oo and for each t € Ty there exists ¢ € (1,00] and C; € (0,00) such that

sup K (4 )y g, sy < Cr
y*eB(2)

then the equi-integrability condition in (ii) holds; indeed, just apply Holder’s inequality.
(d) Remark 3.7 is valid in this setting also. O

Proof of Theorem 3.11. Fix f € Lo (S, X). Fix t € Ty. For each y* € Z the function

(k@) f()y"): =K

o~ N
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(b) in L; (S,K) with
/\ () £ (s) 5" )] dv ()

Thus by the Closed Graph Theorem, applied to the mapping
Z By* - <k(t7)f()7y*> € Ll (SaK) )

IN

/S\k* (&, 8) y"[lx 1 ()]l x dv (s)

Coo "I 2 I1f1l L (5,x) -

(3.11)

IN

the mapping
23y~ [ k(s 1(6).07) do(s) € X
S
defines an element (K f) () of Z* that satisfies (3.9).

Let f € £(S,X). By condition (Cp), there is Ty € S such that if t € Ty then k(¢,-) f () €
L1 (S,Y). For each t € Ty N Ty € 2 and each y* € Z

</k(t78)f(5) dV(S),y*> = /<k(ta8)f(8),y*>dV(S) = (¥, (Kf) (1)) -
S S

Hence (3.7) holds. Thus, by Theorem 3.6, K maps £ (S, X) into L (T,Y).
Fix f € Lo (5, X). Tosee that K f is o (Z*, Z)-measurable, fix a sequence { f, },,cy from & (S, X)
that converges a.e. to f and [|full,_(sx) < [fllr.(sx) for each n € N. Then, by the Lebesgue

Dominated Convergence Theorem, for each y* € Z and for a.e. t € T,
WAEDO) = [((F6). K @957 dv(s)
S
= lim [ (fu(s),k"(t,5)y") dv(s) = lim (y* (Kfy)(t))

n—oo S n—oo

and the latter functions (y*, (K f,,) () ) are u-measurable functions by condition (Cp). Furthermore,
by (3.11)

sup [|(Kf) (t)[z- = sup  sup
teTy telTo y*€B(Z)

thus, Kf € LY (T, Z*) and the K of (3.8) is of norm at most C,
PROOF OF (i) Assume that ¢y does not isomorphically embed into Y.
Fix f € Lo (S, X). By Lemma 2.3, there is a sequence { f,,},—; from & (S, X) so that

= Z fa (s)
n=1

lefn Nx < 20flloesx)

for a.e. s € S. Since each f, is in £ (S, X), by (3.7) and condition (Cp), there is 77 € 2 with
Ty C Ty, so that for each t € T7 and each n € N

[ r(es) £ 957 dr ()] < CoxlF sy

(KENE = [ Bt F (8) dy(s) € V
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Fix t € T1. By the Lebesgue Dominated Convergence Theorem,
m
(Kf)(t) = lim Y (Kfy)(t) inthe o(Z*, Z)-topology (3.13)
m—0o0 1

since, for each y* € Z,

<ﬂmmm=AU@wwmww$
Jim <an ), k" (t,8)y >du( :nlgloo<ZKfn >

It suffices to show that the series in (3.13) converges also in the Z*-norm topology; thus, since Y

does not contain c¢g, it suffices to show that
o0
S (K fa) (t),y*)| < oo for each y* € Y* (3.14)

by a theorem of Bessaga and Pelczynski (cf., e.g., [4, Thm. V.§]).
For each y* € Z,

SR ®.5)] = ) /<k<t,s>fn<s>,y*>dv<s>

n=1 n=1 S
< ;/gwfn(s),k*(t,s)ywdu(s)
< /S 18" (£ 8) 5 L [ ()] (5)
< /S Ik (6, ) 5" |- (;Ilfn <s>||X> dv (s)
< 2 fllpe(s.x) Coo

Thus the mapping

Z 3y L (K f) (1), ")), € 4

is a bounded linear operator. Fix {ay} 2| € B ({s) and m € N. If y* € B(Z) then

'<Zan (K fn) (t),y*>

m

Z (K f) (

(K fa) @)y < Uz

and so

< 7Ullsza) -
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Fix f € Lo (S, X). Choose a sequence { f, },—; from & (S, X) such that
lim f,(s) = f(s) forae. se€S
Iflleesx)y < Iflle(sx) foreach neN.

As in the proof of (i), since the f,’s are in £ (S, X), there is Ty € 5 with Ty C Tp, so that (3.12)
holds for each ¢ € T} and each n € N. It suffices to show that {(K f,) (¢)},-, converges in Z*-norm
to (K f)(t) for each t € T7.

Fixte€T. Fix 6 >0 and let B, :={s € S: |[f(s) — fu(s)|[x > ¢} and A, := U2, Bi. Then

IGD O = ) Oz = sup | [ (15) (7)o ) v (9)
yre
< s[5 e 1 )~ fo (9l v (9
y*eB(2) Js
< s [5 L T 5 e ) + 2 Wl gsi [ )0 du<s>]

IN

0 Coo + 2 !f\Lm(s,X)[ s /A 1K™ (t,8) y" [ - dv (8)] :

y*€B(Z
Note that N9, A, C {s € S: f,(s) does not converge to f(s)}. Thus, by the equi-integrability
assumption, {(K f,) (t)}oo; converges in Z*-norm to (K f) (t). O

The following example illustrates the limitations on the conclusions in Theorems 3.6 and 3.11.
Example 3.13. Let X = C and Y = ¢p. Thus
B(X,Y) ~ ¢ and B(Y"X") ~ ls.
Let S =T = R. Define

ko: ]R—>C() ko () = Zen].]n ()
n=1
k:TxS—B(X,Y) k(t,s) := ko(t—s)
where {e,},~, is the standard unit vector basis of ¢y and I, = [n — 1,n).

Since kg € Loo (R, ¢p), for each f € Ly (S, X) the Bochner integral

(K[f) () = /Sk(t,S)f(S) ds = /Rko(t—«?)f(«?) ds = (ko f) ()

exists for each t € T'; furthermore, K f € Lo (T,Y) and K f is uniformly continuous. From this it
follows that k satisfies condition (Cp). The kernel k also satisfies condition (Coo) with Z = Y™ and
Tp = T since for each y* €e Y* ~ /¢y andt e T

E* (t,s)y" = Zy* (en) 1z, (t—s) foreach se€ S
n=1

PS 0
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Theorem 3.6 gives that K (L% (S, X)) C Lo (T,Y). However, K (€ (S, X)) € LY (T,Y). In-
deed, (K1p,) (n) = e, for each n € N and so, since K1y, is uniformly continuous, K1, does not
satisfy (2) of Proposition 2.2 and so K1y, ¢ LY (T,Y).

Theorem 3.11 gives that K (Loo (S, X)) € LY (T,Y**). However, K (Lo (S, X)) € Lo (T,Y).
Indeed, consider f = 1(_y ) € Loo (5, X). If n € Nand 0 < § <1 then

(Kf)(n—0)=bden+ > enrj €Y™\Y .
jeN

Thus Kf ¢ Lo (T,Y). O

4. REMARKS ON DUALITY AND WEAK CONTINUITY

The remarks in this section explore the duality and weak continuity of K. For this, dual versions

of the four conditions in Section 3 are needed.

Definition 4.1. Let (C) (possibly with respect to a subspace Z of Y*) be one of the four conditions

in Section 3 on a kernel
E:TxS—B(X,)Y) .
Then k satisfies condition (C*) (possibly with respect to a subspace Z of X**) provided the mapping

k: S xT — B(Y* X"

k(s,t) == [k(t,s)]"

satisfies condition (C) (possibly with respect to a subspace Z of X**).
For example, k: T x S — B(X,Y) satisfies condition (C}) provided that for each B € £inite and
each y* € Y*

e there is Sp € Egﬂl so that if s € Sp,+ then the Bochner integral

e
B
exists
e the mapping
Spy+ D s —>/ E*(t,s)y"du(t) € X*
B

defines a measurable function from S into X*. O

Remark 4.2. Let 1<p<ooand%+l%:1. Let k: T xS — B(X,Y) be so that

(i) k satisfies conditions (Cp), (C1), (C%) with respect to Z = Y*, and (C)
(ii) for each y* € Y* and each z € X, the mapping T'x S > (t,s) — (k(t,s)z,y") € K is
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By Theorem 3.8 (with Z = Y™), there is a bounded linear operator
K:L,(S,X)— L,(T,Y) (4.1)
defined by
(Kf)(-) = /k(-,s)f(s) dv(s) € L, (T,Y) for fe&(S,X) .

S
Note that k satisfies

(iv) (C?) by (iii) and the fact that k satisfies (CY,) with respect to Z = Y'*
(v) (C%) with respect to Z = X since k satisfies (C1).

So by Theorem 3.8 (with Z = X)), there is a bounded linear operator
K: Ly (T,Y*) — Ly (S, X*)
defined by
(Re) () = [ K ()90 du( € Ly (S.X7) for ge£(TY") .
Note that
K*g = Kg for each g € Ly (T,Y™")
since if g=y*1p € E(T,Y*) C Ly (T,Y*) and f =214 € £(S,X) C L, (S, X)
(f, K'g) = (Kf,g)

- /T</Sl<:(t,s)x1A (s) dv(s) , y*lg (t)> dp (1)
= [ [ sa1a6) s 0) do(s) du

(4.2)
= [ [ o) K sy s @) du) dv (s
SJT
_ / <x1A (s) | / kK (t8) "1 () du (t)> dv (s)
S T
= <f : I~f9>
where assumption (ii) helps justify the use of Fubini’s theorem. Thus
(K*g) (1) = /Tk* (t,-) g (t) du(t) € Ly (S,X*) for g E(T,Y™)
and K* maps L,y (T,Y™) into Ly (S, X*). Thus the K in (4.1) is
o (Ly (S, X) , Ly (S,X*)) ~to-o (Lp (T,Y) , Ly (T,Y™))
continuous. g

Remark 4.3. Let k: T x S — B(X,Y) be so that
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By Theorem 3.4, there is a bounded linear operator
K:Li(SX)— L (T,Y) (4.3)
defined by
(Kf)() = /Sk(-,s)f(s) dv (s) € 1 (T,Y) for fe&(SX) .

Since k satisfies condition (Ci), it satisfies condition (C%) with respect to Z = X; thus, by

Theorem 3.6, there is a bounded linear operator
K: LY (T,Y*) — L (S, X*)

defined by

(Ea) () = /Tk (t,-) 9 (8) du (1) € Loo (S, X*) for g € £ (T,Y") .
Note that

K*g = Kg for each g € LS (T, Y™)

since if ¢ = y*1p € E(T,Y*) c LY (T,Y*) and f = 21y € £(S,X) C L1 (S,X) then the
calculation in (4.2) shows that ( f, K*g) = <f, Kg > Thus

(K9 () = [ 1 (£)a(0) du(t) € Lo (S.X7) for g€ €(T.Y")
and K* maps LY (T,Y*) into Lo (S, X*). Thus the K in (4.3) is

o (L1 (S,X) , Leo (S, X*))to-o (L1 (T,Y) , LY (T,Y*))

continuous. ]

Remark 4.4. Let k: T x S — B(X,Y) be so that

e k satisfies conditions (Cyp), (C1), (C§), and (C%,) with respect to Z = X
e condition (ii) of Remark 4.2 holds

e X™* does not contain cg.

By Theorem 3.4, there is a bounded linear operator
K:Li(5,X)— L1 (T,Y) (4.4)
defined by
(KP)() = / k(8) f(s) dv(s) € Ly (T.Y) for [ € E(S,X) .
By Theorem 3.11, there is a bgunded linear operator
K: Lo (T, Y*) = Lo (S, X*)
defined by, for some Sy € S

Lo (B () = [ (o b (h$)a (8 du(£)



INTEGRAL OPERATORS WITH OPERATOR-VALUED KERNELS 17

Note that
K*g = Kg foreach g € Lo (T,Y™)
since if g € Loo (T, Y*) and f =214 € £(5,X) C L1 (S, X) then

(f, K'g) = (Kf, g)

= [{ [resaa@ a0 ) due
_ /T/S<k(t,s)x, g (1)) 1a(s) dv (s) du ()

— [ [ e ¥ @99 0) 146 dut) dv (s
SJT

= /S<x , (Kg) (s) > 14 (s) dv(s)
(5.0
where assumption (ii) helps justify the use of Fubini’s theorem. Thus, by (3.7),
(K%9) () = /Tk* (t,) g (t) du(t) € Loo (S, X)) for g € E(T,Y7)
and K* maps Lo (T,Y™) into Lo (S, X*). Thus the K in (4.4) is
o(L1(S,X) , Loo (S, X"))to—o (L1 (T,Y) , Lo (T,Y™))
continuous. O

Remark 4.5. Let k: T x S — B(X,Y) be so that

e k satisfies conditions (Cp), (Cs) with respect to Z = Y™, and (Cf)
e conditions (ii) and (iii) of Remark 4.2 hold.

Then (3.9) of Theorem 3.11, with Z = Y™, defines a bounded linear operator
K: Lo (S, X) — LY (T, Y*) . (4.5)

Note that k satisfies condition (C7) by (iii) and the fact that k satisfies condition (Cs) with respect
to Z =Y"*. So by Theorem 3.4

(Kg) () = /Tk: (t,-) g (t) du(t) € L1 (S, X*) for g € £(T,Y")
defines a bounded linear operator
K: L (T,Y*) — Ly (8, X") .
Note that
f(g = K*g foreach ge Ly (T,Y™)
since for g =y*1p € E(T,Y*) C Ly (T,Y*) and f € L (S, X)

(f, K'qg) = (Kf, g)
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= [ [eo5e vy are| e o a0

f(s) k5 (t,s)y" 1 () du(t) dv(s)

I
o
S~

where assumption (ii) helps justify the use of Fubini’s theorem. Thus
(£9)() = [ K ()90 du(t) € Li(S.X7) for each g € £ (2,Y")
T
and K* maps Li (T,Y™) into L1 (S, X*). So the K of (4.5) is
0 (Loo (S, X) , L1 (S, X*)) too (Lg’o* (T,Y*) , Ly (T, Y*))

continuous. Thus, since € (9, X) (resp. the Schwartz class S (RY, X) in the case S = RY) is
0 (Loo (S,X), L1 (S, X*))-dense in Lo, (S, X), many of the properties of K are determined by its
restriction to £ (S, X) (resp. S (RY, X)).

If furthermore Y does not contain cp, then (3.9) of Theorem 3.11, with Z = Y™, defines a bounded
linear operator

K:Ly(S,X)— Lo (T,Y)

that is 0 (Leo (S, X), L1 (S, X™*)) —to—0 (Leo (T,Y), L1 (T, Y™)) continuous. O

5. CONVOLUTION OPERATORS

The results thus far are now applied to convolution operators on 7' = S = RY (endowed with

the Lebesgue measure).

Corollary 5.1. Let Z be a subspace of Y* that T-norms Y. Let k: RN — B(X,Y) be strongly
measurable on X and k*: RN — B(Y*, X*) be strongly measurable on Z and

/RN |k (s)z|ly ds < Cilz|ly < o0 for each v € X (5.1)

N

/RN IE* (s) Y[l x« ds < Coo|ly*|ly« < o for each y* € Z . (5.2)
Then the convolution operator
K: & (RN, X) — Ly (RY,Y)
defined by
(KF)(1) = /RN k(t—s)f(s)ds for f €& (RN, X) (5.3)



INTEGRAL OPERATORS WITH OPERATOR-VALUED KERNELS 19

o KO LY (RN, X) — LY (RY,)Y),
e and, if Y does not contain cy, then to Koo: Loo (RN, X) — Lo (RN,Y) satisfying

L Kd) (0) = [ (R =97 ) v (s
for f € Loo (RN, X) andt € RY andy* € Z .

Furthermore,
1
v

1
1Kl ., < (C))7 (70)7

for1 <p<oo and HK < 717C%.

0

OOHLgOHLgO

Remark 5.2. In Corollary 5.1, if Z = Y™ and either
o 1l <p<oo

e p=1and X* does not contain cg

e p =00 and Y does not contain cy,

then the dual operator
*

Ky [Ly (RY,Y)]" = [L, (RY, X)]

has the form
(Kjg) (s) = /RN E*(t—s)g(t) dt € Ly (RN, X*) for ge &(RY,Y¥)
and K maps Ly (RN, Y*) into Ly (RN, X*) and thus K, is
o (L, (BRY, X)Ly (RY, X7)) -to-o (L, (RY, V), Ly (RY,¥7))
continuous.

Proof of Corollary 5.1 and Remark 5.2. If f = z14 € &£ (RN,X), then Kf = [k(-)z] * 14 with
kE()x € Ly (RN,Y) and 14 € Lo (RN,R). Thus for each f € & (RN,X): the Bochner integral
in (5.3) exists for each ¢ in RY, K f is a uniformly continuous function from RY to Y, and K f
vanishes at infinity. Thus K (€ (RY, X)) c L% (RY,Y).

It is straightforward to verify that the kernel

ko: RN x RN — B(X,Y)
ko (t,s) := k(t—s)

satisfies conditions: (Cp), (C1), (Cuo) with respect to Z with Ty = RY, (C}), (C%,) with respect to
Z = X, and (ii) and (iii) of Remark 4.2.

The corollary now follows from: Theorems 3.4, 3.6, 3.8, 3.11 and Remarks 4.2, 4.4, 4.5. O

Remark 5.3 (on Corollary 5.1).
(a) The proof shows that if k is strongly measurable on X and (5.1) holds, then one has the
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(b) Under the stronger assumption that k € L; (]RN,B(X, Y)), for 1 < p < oo the Bochner

integrals
(Ku) () = [ k(=5 1(5) ds
RN
feLl, RV, X)NLe (RY,X) and teRY
exist and define a bounded linear operator
Kp: L, (RN, X) — L, (RN)Y)
This fact is well-known and easy to show; indeed, for f € L, (RN , X ) N Leo (]RN , X ) and f (t) :=
f (t - 5)7
Wt =) F@)lly ds = [ k) 5 Olly ds < 1l @y sy 1@
RN RN
for each t € RY and

ICES) Ol @~ vy

IN

/ I () £ (), v vy ds

RN

/ I () sy 1o ()l vy s
RN

= &l L, @~ sxyy 1L, @y x)

IN

thus, [[Kpll, ;. < Ikl @y s00y)):
If, in addition, k satisfies (5.1) and k* satisfies (5.2) with Z = Y™, then it was shown in [8,

Lemma 4.5] that HKPHLPHLP < (Cl)% (Coo)i, 0
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