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Abstract. This paper gives the optimal order l of smoothness in the Mihlin and Hörmander
conditions for operator-valued Fourier multiplier theorems. This optimal order l is determined by
the geometry of the underlying Banach spaces (e.g. Fourier type). This requires a new approach to
such multiplier theorems, which in turn leads to rather weak assumptions formulated in terms of
Besov norms.

1. INTRODUCTION

In recent years, operator-valued multiplier theorems have had many applications in the theory

of evolutions equations, in particular in connection with: maximal regularity of parabolic equa-

tions [4, 7, 11, 23, 37, 38], stability theory [17, 26, 36], elliptic operators on infinite dimensional

state spaces [3], and pseudo differential operators on manifolds with singularities [31]. In these

applications one often has a multiplier function m, from RN into the space B (X) of bounded

operators on a Banach space X, such that Mihlin’s condition holds, that is, the set

τl :=
{
|t||α| Dαm (t) : t ∈ R

N \ {0} , |α| ≤ l
}

(1.1)

is norm bounded in B (X) and then one wants to conclude that the operator

Tm : S (RN , X
)→ S ′ (

R
N , X

)
given by Tmf :=

[
mf̂
]∨

,

defined on the Schwartz class, extends to a bounded operator on Lq

(
R

N , X
)

for 1 < q <∞.

It is a classical result of J. Schwartz (cf. [6, Section 6.1]) that such an extension exists if X is

a Hilbert space and l = [N/2] + 1. Furthermore, Pisier showed that Hilbert spaces are the only

Banach spaces for which the boundedness of τl is sufficient for the Mihlin theorem to hold; he

showed that such spaces must have type 2 and cotype 2. Bourgain [10] showed that, for a scalar-

valued multiplier function m and N = 1, Mihlin’s theorem holds if and only if X is a UMD Banach

space. This result was extended to higher dimensions in [27, 40] with l = N . For operator-valued
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multiplier functions, it was first shown in [35, 38] that for a UMD Banach space X and l = N ,

R-boundedness of τl is sufficient for Mihlin’s theorem to hold. Recall that τl is R-bounded if there

is a constant C so that for each n ∈ N, subset {Tj}n
j=1 of τl, and subset {xj}n

j=1 of X one has that

E

∥∥∥∥∥∥
n∑

j=1

rj (·)Tj(xj)

∥∥∥∥∥∥ ≤ C E

∥∥∥∥∥∥
n∑

j=1

rj (·)xj

∥∥∥∥∥∥
where {rj}j are the Rademacher functions. For variants of these multiplier theorems, see [4, 11, 16].

This paper presents a new method of proof which allows for the determination of the optimal

smoothness of the multiplier function; indeed, the best exponent l in (1.1) for a given Banach

space X depends on the geometry of X, specifically, on its Fourier type. Recall that a Banach

space X has Fourier type p ∈ [1, 2] provided the Fourier transform defines a bounded operator

from Lp (X) into Lp′ (X), i.e. the Hausdorff Young inequality holds for the exponent p.

Corollary 4.4 shows that Mihlin’s theorem holds with l = [N/p] + 1 if X is a UMD space with

Fourier type p. Since a Hilbert space has Fourier type 2, one recovers Schwartz’s result. Since

each UMD space has Fourier type p for some p > 1, one obtains the results in [35, 38] with l = N .

If X is a subspace of an Lq(Ω) space, then X has Fourier type p = min(q, q′) and so one may

use l = [N/p] + 1; hence, the l in (1.1) improves (i.e. decreases) as q tends towards 2. Furthermore,

the exponent l = [N/p] + 1 is best possible for Lp spaces.

The main result of this paper, Theorem 4.1, is a general multiplier theorem. This theorem’s

assumption, which uses vector-valued Besov spaces, may not look very attractive at first sight;

indeed, the assumption is stated in a rather general form. However, this formulation allows as

fairly easy corollaries (see Corollaries 4.4, 4.10, 4.11) vector-valued generalizations of several clas-

sical multiplier theorems conditions (à la Mihlin, Hörmander, or Lipschitz estimates); the latter

corollary gives, for scalar-valued multiplier functions, an improvement of Bourgain’s original result

in [10]. Theorem 4.1 also gives multiplier theorems in Sobolev spaces, H1 (X), and BMO(X); see

Corollaries 4.6 and 4.9.

Section 3 prepares for the proof of the main result of this paper. Bourgain’s work [10] leads to a

variant of the Littlewood-Paley decomposition (Corollary 3.3) and some precise norm estimates for

scalar multiplier functions (Proposition 3.6). Also needed is a sharping, Corollaries 3.10 and 3.11,

of results in [14] on Fourier estimates on Besov spaces. Section 2 collects necessary definitions (such

as UMD and Fourier type) and some basic properties of these classes of Banach spaces.

Analogous results for multiplier theorems on Besov spaces Bs
q,r

(
R

N , X
)

are contained in [14]. In

this setting, the proofs are much more elementary and the UMD assumption and R-boundedness are

not necessary. The new technique developed in this paper can also be used to prove boundedness

results for singular integral operators (see [19]).
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2. DEFINITIONS and NOTATION

Notation is standard. Throughout this paper X, Y , Z are Banach spaces over the field C

and X∗ is the (topological) dual space of X. The space B (X,Y ) of bounded linear operators

from X to Y is endowed with the usual uniform operator topology, unless otherwise stated. The

Bochner-Lebesgue space Lp

(
R

N , X
)
, where 1 ≤ p ≤ ∞, is endowed with its usual norm topology.

The space C l
(
R

N \ {0} , X) of functions f : R
N \{0} → X so that Dαf is continuous and bounded

for |α| ≤ l ∈ N0 is endowed with the usual supremum norm of f . If convenient and confusion seems

unlikely, the various function spaces E
(
R

N , X
)

in this paper are denoted simply by just E (X)

or E, with the exception of the Schwartz class function space. N = {1, 2, . . .} is the set of natural

numbers while N0 = {0} ∪ N. If s is a positive real number, then [s] := max {n ∈ N0 : n ≤ s}. The

conjugate exponent p′ of p ∈ [1,∞] is given by 1
p + 1

p′ = 1. Non-numerical subscripts on constants

indicate dependency.

The Schwartz class S (RN , X
)
, or simply S (X), is the space of X-valued rapidly decreasing

smooth functions ϕ on R
N , equipped with its usual topology generated by seminorms. As custom-

ary, S (RN ,C
)

is often denoted by just S. Recall S (X) is norm dense in Lq (X) when 1 ≤ q <∞.

The space of X-valued tempered distributions S ′ (
R

N , X
)

is the space of continuous linear op-

erators L : S → X, equipped with the bounded convergence topology. Each m ∈ Lq

(
R

N , X
)
,

where 1 ≤ q ≤ ∞, defines an Lm ∈ S ′ (
R

N , X
)

by Lm(ϕ) :=
∫

RN ϕ(t)m(t) dt; when convenient and

confusion seems unlikely, such a function m is identified with Lm.

It is well-known that the Fourier transform F : S (X) → S (X) defined by

(Fϕ) (t) ≡ ϕ̂ (t) :=
∫

RN

e−it·sϕ (s) ds

is an isomorphism whose inverse is given by(F−1ϕ
)
(t) ≡ ϕ̌ (t) = (2π)−N

∫
RN

eit·sϕ (s) ds ,

where ϕ ∈ S (X) and t ∈ R
N . Also, the Fourier transform F : S ′ (X) → S ′ (X) defined by

(FL) (ϕ) ≡ L̂ (ϕ) := L (ϕ̂) where L ∈ S ′ (X) , ϕ ∈ S

is an isomorphism whose inverse is given by
(F−1L

)
(ϕ) ≡ Ľ (ϕ) := L (ϕ̌). The set

So (X) := {ϕ ∈ S (X) : supp ϕ̂ is compact , 0 6∈ supp ϕ̂}

is norm dense in Lp (X) for each 1 < p <∞ (cf. [40, Lemma 2.3]).

For completeness a proof of the following fact is included.

Fact 2.1. Let f ∈ L1

(
R

N , X
)

with N > 1. Define F ∈ L1

(
R, L1

(
R

N−1, X
))

by

F (t) (u) = f (t, u) for u ∈ R
N−1 and a.e. t ∈ R .
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If the (N -dimensional) Fourier transform f̂ of f has support in

KN (r) :=
{
(v1, . . . , vN ) ∈ R

N : |vj | ≤ r
}
,

then the (1-dimensional) Fourier transform F̂ of F has support in [−r, r].

Proof. It suffices to show Fact 2.1 for the case X = C; indeed, just consider functions of the

form x∗ ◦ f for x∗ ∈ X∗.

If f̂ : R × R
N−1 → C has the special form

g (t, u) =
m∑

j=1

hj (t) kj (u)

hj ≡ hj |K1(r) ∈ S (R,C) and kj ≡ kj |KN−1(r) ∈ S (RN−1,C
)
,

(2.1)

then f =
∑m

j=1 ȟj ǩj and F̂ (t) (u) =
∑m

j=1 hj (t) ǩj (u); so, supp F̂ ⊂ [−r, r].
For a general f ∈ L1

(
R

N ,C
)

with supp f̂ ⊂ KN (r), approximate f̂ by functions gn of the

special form in (2.1) in the L2

(
R

N ,C
)
-norm. It then follows from Plancherel’s Theorem, first

applied in L2

(
R

N ,C
)

and then applied in L2

(
R, L2

(
R

N−1,C
))

, that F̂ can be approximated in

the L2

(
R, L2

(
R

N−1,C
))

-norm by functions with support in [−r, r]. Hence supp F̂ ⊂ [−r, r]. �

The derivative, translation, and dilation properties of F and F−1 that hold in the scalar-valued

case also hold in the vector-valued case. However, the Hausdorff-Young inequality need not hold;

thus, one has to consider the following class of Banach spaces that was introduced by Peetre [28].

Definition 2.2. Let 1 ≤ p ≤ 2. A Banach space X has Fourier type p provided the Fourier

transform F defines a bounded linear operator from Lp

(
R

N , X
)

to Lp′
(
R

N , X
)

for some (and thus

then, by [22], for each) N ∈ N. The Fourier type constant Fp,N (X) of X is then the norm of

F ∈ B (Lp

(
R

N , X
)
, Lp′

(
R

N , X
))

.

Remark 2.3. The simple estimate ‖Ff(t)‖X ≤ ‖f‖L1(X) shows that each Banach space X has

Fourier type 1 with F1,N (X) = 1. The notion becomes more restrictive as p increases to 2.

A Banach space has Fourier type 2 if and only if it is isomorphic to a Hilbert space [24]. A

space Lq ((Ω,Σ, µ) ,R) has Fourier type p = min(q, q′) [28]. If X has Fourier type p ∈ [1, 2]

and p ≤ q ≤ p′, then Fp,N (X) = Fp,N (X∗) = Fp,N

(
Lq

(
R

N , X
))

for each N ∈ N (cf. [14]). Each

closed subspace (by definition) and each quotient space (by duality) of a Banach space X has

the same Fourier type as X. Each uniformly convex Banach space has some non-trivial Fourier

type p > 1.

Definition 2.4. Let 1 < q <∞ and m : R
N \ {0} → B (X,Y ) be a bounded measurable function.

Consider the L∞
(
R

N , Y
)

functions

Tmf :=
[
mf̂

]∨ ∈ L∞
(
R

N , Y
)

for f ∈ S (RN , X
)
. (2.2)
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Then m is a Fourier multiplier from Lq

(
R

N , X
)

to Lq

(
R

N , Y
)

provided there is a constant C so

that

‖Tmf‖Lq(RN ,Y ) ≤ C ‖f‖Lq(RN ,X) for each f ∈ S (RN , X
)

;

in which case, the operator Tm ∈ B (Lq

(
R

N , X
)
, Lq

(
R

N , Y
))

uniquely determined by (2.2) is the

Fourier multiplier operator induced by m.

Since multiplier theorems need not, in general, extend from the scalar case to the Banach space

case, the class of UMD Banach spaces is considered. There are several (equivalent) formulations of

this geometric property of a Banach space; below is one which is pertinent to the setting here.

Definition 2.5. A Banach space X is a UMD space if and only if the Hilbert transform

Hf(t) = PV −
∫

f(s)
t− s

ds , f ∈ S (X)

extends to a bounded operator on Lp (R, X) for some (and thus then for each) p ∈ (1,∞).

Thus X is a UMD space if and only if m : R \ {0} → B (X,X) given by m(t) = sign (t) IX is a

Fourier multiplier on Lp (R, X) for some (and thus then for each) p ∈ (1,∞).

Remark 2.6. a) Lq ((Ω,Σ, µ) ,R) spaces, where 1 < q < ∞, are examples of UMD spaces. Closed

subspaces of, the dual of, and quotient spaces of a UMD space are UMD spaces. If X has UMD

and 1 < q <∞, then Lq(RN , X) has UMD. (cf., e.g., [1, Thm. 4.5.2]).

b) A UMD space has a uniformly convex renorming. A space with a uniformly convex renorming

is reflexive and B-convex. Bourgain [8, 10] has shown that each B-convex Banach space has some

non-trivial Fourier type p > 1.

The notion (cf. [38]) of R-boundedness, which provides a vector-valued substitute for Kahane’s

contraction principle, is needed to extend scalar-valued multiplier theorems to operator-valued

multiplier theorems.

Notation 2.7. Let {εk}k∈Z be a sequence of {−1,+1}–valued, independent, symmetric random

variables on some probability space (Ω,Σ, µ). For example, one can take an enumeration of the se-

quence {rn}n∈N of Rademacher functions where rn(u) = sign sin(2nπu) on [0, 1]. Let {εk} and {ε′k}
be independent copies of {−1,+1, }–valued, independent, symmetric random variables.

Definition 2.8. Let τ ⊂ B (X,Y ) and p ∈ [1,∞). The number Rp (τ) is the smallest of the con-

stants R ∈ [0,∞] with the property that, for each n ∈ N and subset {Tj}n
j=1 of τ and subset {xj}n

j=1

of X, ∥∥∥∥∥∥
n∑

j=1

εj (·)Tj(xj)

∥∥∥∥∥∥
Lp(Ω,Y )

≤ R

∥∥∥∥∥∥
n∑

j=1

εj (·)xj

∥∥∥∥∥∥
Lp(Ω,X)

.
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The set τ is R-bounded provided Rp(τ) is finite for some (and thus then, by Kahane’s inequality,

for each) p ∈ [1,∞). In this case, Rp(τ) is called the Rp-bound of τ .

The Banach space notion of Rad (X) provides a convenient way to view R-boundedness.

Definition 2.9. Let X be a Banach space. Then

Rad (X) := { {xj}j∈Z ∈ XZ :
∑n

j=−n
εj (·)xj : Ω → X is convergent in L2(Ω, X) }.

When equipped with one of the following equivalent norms, where 1 ≤ p <∞:

‖{xj}j∈Z‖Radp(X) :=
∥∥∥∑

j∈Z
εj (·)xj

∥∥∥
Lp(Ω,X)

,

Radp (X) is a Banach space. When confusion seems unlikely, Radp (X) is denoted by just Rad (X).

Much can be found about Rad (X) in the literature (see, e.g. [12]).

Remark 2.10. a) A sequence {Tj}j∈Z from B (X,Y ) is R-bounded if and only if the mapping

Radp (X) 3 {xj}j∈Z

T̃−−−−−−→ {Tjxj}j∈Z
∈ Radp (Y )

defines an element in B (Radp(X),Radp(Y )) for some (or equivalently, for each) p ∈ [1,∞); in

which case, Rp ({Tj}j∈Z) = ‖T̃‖B(Radp(X),Radp(Y )).

b) If X has Fourier type p then so does Rad (X). If X has UMD then so does Rad (X). This

follows from Remark 2.3, Remark 2.6, and the fact that Rad (X) is a subspace of L2 (X).

c) Note that {xj}j∈Z
∈ Rad (X) if and only if the series

∑j=n
j=−n εj (·)xj converges almost surely. IfX

does not (isomorphically) contain c0 and supn

∥∥∥∑j=n
j=−n εj (·)xj

∥∥∥
Lp(X)

is finite for some p ∈ [1,∞),

then {xj}j∈Z
∈ Rad (X).

Besov spaces serve as a tool in this paper (see [15] for further details). Among the many equivalent

descriptions of Besov spaces, the most useful one in this context is given in terms of the so-called

Littlewood-Paley decomposition. Roughly speaking this means that one considers f ∈ S ′ (X) as a

distributional sum f =
∑

k fk of analytic functions fk := ϕ̌k ∗ f whose Fourier transforms have

support in dyadic-like intervals {suppϕk}k and then defines the Besov norm in terms of the fk’s.

Here, {ϕk}k∈N0 is a partition of unity chosen as follows.

Notation 2.11. Take a nonnegative function ψ ∈ S (R,R) that has support in [2−1, 2] and satisfies∑
k∈Z

ψ(2−ks) = 1 for each s ∈ R\{0}. Let ϕk(t) := ψ
(
2−k|t|) if k ∈ N and ϕ0(t) := 1−∑k∈N

ϕk(t).

Note that ϕk ∈ S (RN ,R
)

for each k ∈ N0.

Definition 2.12. Let 1 ≤ q, r ≤ ∞ and the smoothness index s ∈ R. The Besov space Bs
q,r

(
R

N , X
)

is the space of all f ∈ S ′ (
R

N , X
)

for which

‖f‖Bs
q,r(RN ,X) :=

∥∥∥{2ks (ϕ̌k ∗ f)
}∞

k=0

∥∥∥
`r(Lq(X))

(2.3)
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is finite. Bs
q,r

(
R

N , X
)
, together with the norm in (2.3), is a Banach space.

Different choices of {ϕk}’s lead to equivalent norms on Bs
q,r

(
R

N , X
)

(cf. [29, Lemma 3.2]).

Weighted Besov spaces will give a precise estimate for the Fourier transform on Besov spaces.

Definition 2.13. Let 1 ≤ q ≤ ∞ and A = {ak}k∈N0 be a sequence of non-negative real numbers.

Then BA
q

(
R

N , X
)

is the space of all f ∈ S ′ (
R

N , X
)

for which ϕ̌k ∗ f ∈ Lq

(
R

N , X
)

for each k ∈ N0

and

‖f‖BA
q (RN ,X) :=

∑
k∈N0

ak ‖ϕ̌k ∗ f‖Lq(RN ,X) (2.4)

is finite. BA
q

(
R

N , X
)
, endowed with the norm in (2.4), is normed linear space.

Other function spaces are also considered in this paper.

Definition 2.14. Let 1 ≤ q ≤ ∞ and m ∈ N0. The Sobolev space Wm
q

(
R

N , X
)

is

Wm
q

(
R

N , X
)

:=
{
f ∈ S ′ (

R
N , X

)
: Dαf ∈ Lq

(
R

N , X
)

for each α ∈ N
N
0 with |α| ≤ m

}
,

equipped with the norm

‖f‖W m
q (RN ,X) :=

∑
0≤|α|≤m

‖Dαf‖Lq(RN ,X) .

It is well-known that the Sobolev spaces are Banach spaces. For more information regarding

Besov and Sobolev spaces, see [2, 14, 29, 30].

Definition 2.15. Let 1 < q <∞ and s ∈ R. The Bessel potential J s : S (RN , X
)→ S (RN , X

)
is

given by J sf :=
[(

1 + |·|2
)s/2

f̂ (·)
]∨

. The fractional Sobolev space Hs
q

(
R

N , X
)

is the completion

of S (RN , X
)

with respect to the norm ‖f‖Hs
q (RN ,X) := ‖J sf‖Lq(RN ,X).

The Banach spaces Hs
q

(
R

N , X
)

are also called Liouville spaces and Bessel potential spaces. If X

has UMD then Hn
q

(
R

N , X
)

= Wn
q

(
R

N , X
)

for q ∈ (1,∞) and n ∈ N (see [34, (15.55)]).

Definition 2.16. Let X be a Banach space.

a) For a locally integrable function f : R
N → X let

‖f‖BMO(X) := sup
1
|Q|

∫
Q
‖f(t) − fQ‖X dt (2.5)

where the sup is taken over all cubes of R
N and fQ = |Q|−1 ∫

Q f (t) dt. BMO (X) is the space of

such functions f for which ‖f‖BMO(X) is finite, endowed with the seminorm given by (2.5).

b) A function a ∈ L∞
(
R

N , X
)

is an atom if a is supported in a cube Q and
∫
a (t) dt = 0

and ‖a‖L∞ ≤ |Q|−1. The Hardy space H1

(
R

N , X
)

is the space of all f ∈ L1

(
R

N , X
)

which can

be represented as f =
∑

n λnan where {λn}n ∈ `1 and each an is an atom. The norm ‖f‖H1
is the
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infimum of
∑

n |λn| over all such representations.

c) The weak-L1 space Lwk
1

(
R

N , X
)

consists of all measurable functions f : R
N → X that satisfy

‖f‖Lwk
1 (RN ,X) := sup

λ>0
λ µ

({
t ∈ R

N : ‖f (t)‖X > λ
})

< ∞ . (2.6)

It is well-known that the expression ‖·‖Lwk
1

in (2.6) is a quasi-norm on Lwk
1

(
R

N , X
)

with

‖f + g‖Lwk
1 (RN ,X) ≤ 2

[
‖f‖Lwk

1 (RN ,X) + ‖g‖Lwk
1 (RN ,X)

]
.

The balls with respect to ‖·‖Lwk
1

define a linear topology on Lwk
1

(
R

N , X
)

and Lwk
1

(
R

N , X
)
, endowed

with this topology, is a quasi-Banach space.

3. STEPS TOWARDS MULTIPLIER THEOREMS

Bourgain [9, N=1], and in the higher dimensional case McConnell [27] and Zimmermann [40],

showed a generalization of the Mihlin’s multiplier theorem: Theorem 3.2. The following notation

simplifies the statements of their result and results to follow.

Notation 3.1. Let MN
l (X) be the set of all measurable functions m : R

N \ {0} → X whose dis-

tributional derivatives Dαm are represented by measurable functions for each α ∈ N
N
0 with |α| ≤ l

and

‖m‖MN
l (X) := sup

{
|t||α| ‖Dαm (t)‖X : t ∈ R

N \ {0} , α ∈ N
N
0 , |α| ≤ l

}
<∞

where l ∈ N0.

Theorem 3.2 ([9, 27, 40]). Let X be a UMD space and 1 < q <∞. If m ∈ MN
N (C) then m(·) IX

is a Fourier multiplier from Lq(RN , X) to Lq(RN , X) with ‖Tm‖ ≤ CX,N,q ‖m‖MN
N (C).

Multiplier theorems such as Theorem 3.2 imply Littlewood-Paley decompositions such as Corol-

lary 3.3. (Recall that {εk}k∈Z
was defined in Notation 2.7).

Corollary 3.3. Let X be a UMD space and 1 < q < ∞. Let ϑ0 ∈ S (RN ,R
)

be a nonnegative

function that satisfies, for some n ∈ N,

supp ϑ0 ⊂
{
t ∈ R

N : 2l ≤ |t| ≤ 2L
}

for some l, L ∈ Z∑
k∈Z

ϑk (t) = 1 for each t ∈ R
N \ {0} where ϑk (t) := ϑ0

(
2−nkt

)
.

Then there is a constant C = CX,N,q,ϑ0 so that

1
C

‖f‖Lq(RN ,X) ≤ E ε

∥∥∥∥∥∑
k∈Z

εk
(
ϑ̌k ∗ f)∥∥∥∥∥

Lq(RN ,X)

≤ C ‖f‖Lq(RN ,X) (3.1)

for each f ∈ Lq

(
R

N , X
)
.
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Proof. For K ∈ N and u ∈ Ω, let

mu,K (·) :=
K∑

k=−K

εk(u)ϑk (·) : R
N \ {0} → C . (3.2)

Note that, for a fixed · ∈ R
N \ {0}, there are at most L−l

n + 1 non-zero summands in (3.2).

Thus mu,K ∈ MN
N (C) with

‖mu,K‖MN
N (C) ≤

(
L− l

n
+ 1
)

‖ϑ0‖MN
N (C) .

So by Theorem 3.2, there is a constant CX,N,q so that

sup
u∈Ω
K∈N

∥∥∥∥∥
K∑

k=−K

εk (u)
(
ϑ̌k ∗ f)∥∥∥∥∥

Lq(X)

≤ CX,N,q

(
L− l

n
+ 1
)

‖ϑ0‖MN
N (C) ‖f‖Lq(X) (3.3)

for f ∈ S (X). This gives the desired upper estimate in (3.1).

As usual one obtains the lower estimate from (3.3) and the corresponding inequality for X∗.

Since supp ϑk and supp ϑk+j can overlap only for |j| < L−l
n , for each f ∈ So (X) and g ∈ So (X∗)

〈 g, f 〉Lq(X) =
∑

|j|< L−l
n

∑
k∈Z

〈
ϑ̌k+j ∗ g , ϑ̌k ∗ f 〉

Lq(X)

=
∑

|j|< L−l
n

E

 〈∑
m∈Z

εm
(
ϑ̌m+j ∗ g

)
,
∑
k∈Z

εk
(
ϑ̌k ∗ f)〉

Lq(X)



≤
∑

|j|< L−l
n

E

∥∥∥∥∥∑
m∈Z

εm
(
ϑ̌m+j ∗ g

)∥∥∥∥∥
2

Lq′(X∗)

1/2 E

∥∥∥∥∥∑
k∈Z

εk
(
ϑ̌k ∗ f)∥∥∥∥∥

2

Lq(X)

1/2

≤ C̃X,N,q,ϑ0

(
2 (L− l)

n
+ 1
)

‖g‖Lq′ (X∗) E

∥∥∥∥∥∑
k∈Z

εk
(
ϑ̌k ∗ f)∥∥∥∥∥

Lq(X)

by Kahane’s inequality and (3.3) applied to g ∈ Lq′ (X∗). Supping over all g ∈ So (X∗) with

‖g‖Lq′ (X∗) ≤ 1 gives the lower estimate in (3.1). �

Notation 3.4. There is (cf., eg. [6, Lemma 6.1.7]) a nonnegative function φ0 ∈ S (RN ,R
)

satisfying

supp φ0 ⊂ {
t ∈ R

N : 2−1 ≤ |t| ≤ 21
}∑

k∈Z
φk (t) = 1 for each t ∈ R

N \ {0} where φk (t) := φ0

(
2−kt

)
.

Thus one can take ϑ0 ≡ φ0 in Corollary 3.3.

Note that

supp φk ⊂
{
t ∈ R

N : 2k−1 ≤ |t| ≤ 2k+1
}

;
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thus, supp φk and supp φk+j can overlap only for j ∈ {−1, 0, 1}. So fix j ∈ {−1, 0, 1} and let

ψ0 := φj−1 + φj + φj+1

ψk (·) := ψ0

(
2−3k ·

)
for each k ∈ Z .

Then

suppψ0 ⊂ {t ∈ R
N : 2j−2 ≤ |t| ≤ 2j+2

}
ψk = φj+3k−1 + φj+3k + φj+3k+1 for each k ∈ Z .

Thus one can also take ϑ0 ≡ ψ0 in Corollary 3.3. Note that if

supp h ⊂ {t ∈ R
N : 2j+3n−1 ≤ |t| ≤ 2j+3n+1

}
,

then

h ψk =

{
h if k = n

0 if k 6= n

for each k ∈ Z.

The next lemma transfers [9, Lemma 10] from T to R
N .

Lemma 3.5. Let X be a UMD space and 1 < p <∞. Consider translations
{
τθjs

}m

j=1
,

Lp

(
R

N , X
) 3 f

τθjs−−→ (
τθjsf

)
(·) := f (· + θjs) ∈ Lp

(
R

N , X
)
,

for θj ∈ R and a fixed unit (in Euclidean norm) vector s ∈ R
N . Let fj ∈ Lp

(
R

N , X
)

satisfy

supp f̂j ⊂ BN (rj) :=

{
(v1, . . . , vN ) ∈ R

N :
[∑N

j=1
|vj |2

]1/2

≤ rj

}
.

Assume that |θj | < K
rj

for a fixed constant K > 2 and rj+1

rj
≥ 2. Then

E

∥∥∥∑m

j=1
εjτθjsfj

∥∥∥
Lp(RN ,X)

≤ CX,N,p (lnK) E

∥∥∥∑m

j=1
εjfj

∥∥∥
Lp(RN ,X)

.

Proof. Without loss of generality, {fj}m
j=1 ⊂ S (RN , X

)
. Indeed, for each f ∈ Lp

(
R

N , X
)

with

supp f̂ ⊂ BN (r) there is a sequence gn ∈ S (RN , X
)
, with gn → f in Lp-norm, along with

ϕ ∈ S (RN ,C
)

such that suppϕ ⊂ BN (r + ε) and ϕ ≡ 1 on BN (r); thus, ϕ̌ ∗ gn → f in Lp-

norm and supp (ϕ̌ ∗ gn)̂⊂ BN (r + ε).

Step 1: reduction to the one-dimensional case.

Since the Lp

(
R

N , X
)
-norm is invariant under rotations, it suffices to take s = e1 := (1, 0, . . . , 0) ∈

R
N . If N > 1, then define Fj ∈ Lp

(
R, Lp

(
R

N−1, X
)) ∩ L1

(
R, L1

(
R

N−1, X
))

by

Fj (t) (u) = fj (t, u) for u ∈ R
N−1 and a.e. t ∈ R .
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Then supp F̂j ⊂ [−rj , rj ] by Fact 2.1. If Lemma 3.5 holds in the one-dimensional case, then, with

the help of Remark 2.6a,

E

∥∥∥∑
j
εjτθje1fj

∥∥∥
Lp(RN ,X)

= E

∥∥∥∑
j
εjτθjFj

∥∥∥
Lp(R,Lp(RN−1,X))

≤ CX,N,p (lnK) E

∥∥∥∑
j
εjFj

∥∥∥
Lp(R,Lp(RN−1,X))

= CX,N,p (lnK) E

∥∥∥∑
j
εjfj

∥∥∥
Lp(RN ,X)

.

Thus, without loss of generality, N = 1 and s = e1 ∈ R
1.

Step 2: the transference.

For f ∈ S (R, X) and ε > 0, define the 2π-periodic function

Fε (s) :=
∑
n∈Z

1
ε
f

(
s+ 2πn

ε

)
. (3.4)

By the Poisson summation formula (cf. eg. [20])

Fε (s) =
1
2π

∑
n∈Z

f̂ (εn) eins , (3.5)

i.e., the nth Fourier coefficient F̂ε (n) of Fε with respect to the discrete Fourier transform on

L1 (−π, π) is 1
2π f̂ (εn).

For a fixed θ ∈ R∫ π

−π

∥∥∥ε1− 1
p Fε (s+ εθ)

∥∥∥p

X
ds

ε ↘ 0−−−−−→
∫ ∞

−∞
‖f (t+ θ)‖p

X dt. (3.6)

To see (3.6), first note that, by (3.4),∫ π

−π

∥∥∥ε1− 1
p Fε (s+ εθ)

∥∥∥p

X
ds = (3.7)∫ π

−π

∥∥∥∥ε− 1
p f

(
s+ εθ

ε

)
+
∑

06=n∈Z
ε
− 1

p f

(
s+ εθ + 2πn

ε

)∥∥∥∥p

X

ds .

For the n = 0 term in (3.7)∫ π

−π

∥∥∥∥ε− 1
p f

(
s+ εθ

ε

)∥∥∥∥p

X

ds =
∫ +π

ε

−π
ε

‖f (t+ θ)‖p
X dt

ε ↘ 0−−−−−→
∫ ∞

−∞
‖f (t+ θ)‖p

X dt.

Next estimate the remaining terms in (3.7) for ε |θ| < π/2 using the fact that, since f ∈ S (X),

there is a constant C so that ‖f (t)‖X ≤ C|t|−2 :∫ π

−π

∥∥∥∥∥∥ε−1/p
∑

06=n∈Z

f

(
s+ 2πn+ εθ

ε

)∥∥∥∥∥∥
p

X

ds

1/p

≤ C ε
2− 1

p

∑
06=n∈Z

[∫ π

−π
|s+ 2πn+ εθ|−2p ds

]1/p

≤ C ε
2− 1

p (2π)1/p 2
π2

∞∑
n=1

(
2n− 3

2

)−2

ε ↘ 0−−−−−→ 0 .
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Thus (3.6) holds. Furthermore (3.6) clearly extends to linear combinations:∥∥∥∥∥∥
m∑

j=1

εj ε
1− 1

p (Fj)ε (· + εθj)

∥∥∥∥∥∥
Lp(T,X)

ε ↘ 0−−−−−→
∥∥∥∥∥∥

m∑
j=1

εj fj (· + θj)

∥∥∥∥∥∥
Lp(R,X)

for each choice {εj}m
j=1 of signs ±1. Thus

E

∥∥∥∥∥∥
m∑

j=1

εjε
1− 1

p (Fj)ε (· + εθj)

∥∥∥∥∥∥
Lp(T,X)

ε ↘ 0−−−−−→ E

∥∥∥∥∥∥
m∑

j=1

εjfj (· + θj)

∥∥∥∥∥∥
Lp(R,X)

. (3.8)

If supp f̂j ⊂ [−rj , rj ], then by (3.5), supp
(
(Fj)ε

)̂ ⊂ [− rj

ε ,
rj

ε

]
. If |θj | < K

rj
and rj+1

rj
≥ 2,

then, for ε small enough, there is a strictly increasing sequence {nj}m
j=1 of positive integers so

that 2nj−1 <
rj

ε ≤ 2nj and thus |εθj | < K
rj/ε ≤ 2K

2nj . Hence by [9, Lemma 10] applied to
{
(Fj)ε

} ∈
Lp (T, X) and {εθj},

E

∥∥∥∥∥∥
m∑

j=1

εjε
1− 1

p (Fj)ε (· + εθj)

∥∥∥∥∥∥
Lp(T,X)

≤ C (lnK) E

∥∥∥∥∥∥
m∑

j=1

εjε
1− 1

p (Fj)ε

∥∥∥∥∥∥
Lp(T,X)

(3.9)

for ε small enough. Letting ε↘ 0 in (3.8) and (3.9) finishes the proof. �

Lemma 3.5 leads to the following corollary to Theorem 3.2.

Proposition 3.6. Let X be a UMD space, {ak}k∈Z be a sequence from C with |ak| ≤ 1, and

1 < q <∞. Fix h ∈ MN
N (C).

(a) Assume that supp h ⊂ {t ∈ R
N : b−d ≤ |t| ≤ bd

}
with some b > 1 and d ∈ N. Then

n (t) :=
∑
k∈Z

akh
(
b−kt

)
is a Fourier multiplier on Lq

(
R

N , X
)

with ‖Tn‖ ≤ CX,N,q d ‖h‖MN
N (C).

(b) Assume that supp h ⊂ {t ∈ R
N : 2−1 ≤ |t| ≤ 2

}
and s ∈ R

N . Then

ms (t) :=
∑
k∈Z

ak exp
(
is · 2−k t

)
h
(
2−kt

)
is a Fourier multiplier on Lq

(
R

N , X
)

with ‖Tms‖ ≤ CX,N,q ln (2 + |s|) ‖h‖MN
N (C).

Proof. Throughout this proof, the Ci’s are constants that depend on at most: X, N , and q. To

simplify notation, let M := MN
N (C). Note that h (a ·) ∈ M and ‖h (a ·)‖M = ‖h‖M for each a > 0.

Part (a) follows easily from Theorem 3.2: indeed, the support of h
(
b−k·) overlaps with the

support of h (b−m·) only if |m− k| < 2d; hence, n ∈ M and ‖n‖M ≤ 4d ‖h‖M.

Now to show part (b). Note that the function hs (◦) := exp (is · ◦) h (◦) is in M with ‖hs‖M ≤
C1

[
max

{
1, |s|N

}]
‖h‖M for some constant C1 that is independent of s. So the desired conclusion

for |s| ≤ 1 follows from part (a). Thus assume that |s| > 1.
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Fix f ∈ So

(
R

N , X
)
. Then

Tmsf =
∑
k∈Z

ak τk
(
ȟk ∗ f)

where

Lq

(
R

N , X
) 3 g

τk−→ (τkg) (·) := g
(
· + 2−k s

)
∈ Lq

(
R

N , X
)
,

and

hk (·) := h
(
2−k ·

)
,

which is a Fourier multiplier on Lq

(
R

N , X
)

by part (a). Thus, by the Littlewood-Paley decom-

position Corollary 3.3, for an appropriate choice of ϑ0 (eg., ϑ0 = ψ0 of Notation 3.4 so that for

then ϑkh3n+j = δk,nh3n+j),

‖Tmsf‖Lq(RN ,X) ≤
1∑

j=−1

∥∥∥∥∥∑
n∈Z

a3n+j τ3n+j

(
ȟ3n+j ∗ f

)∥∥∥∥∥
Lq(RN ,X)

≤ C2

1∑
j=−1

E

∥∥∥∥∥∑
k∈Z

εk a3k+j τ3k+j

(
ȟ3k+j ∗ f

)∥∥∥∥∥
Lq(RN ,X)

.

Thus, by Kahane’s contraction principle, Lemma 3.5, and then part (a),

‖Tmsf‖Lq(RN ,X) ≤ 6C2 E

∥∥∥∥∥∑
k∈Z

εk τk
(
ȟk ∗ f)∥∥∥∥∥

Lq(RN ,X)

≤ C3 ln (2 |s|) E

∥∥∥∥∥∑
k∈Z

εk
(
ȟk ∗ f)∥∥∥∥∥

Lq(RN ,X)

≤ C4 ln (2 + |s|) ‖h‖M ‖f‖Lq(RN ,X) .

This completes the proof of Proposition 3.6. �

The logarithmic estimate in Proposition 3.6b enters the proof of the next result, which is a

centerpiece of the proof of Theorem 4.1.

Proposition 3.7. Let X have UMD and 1 < q < ∞. Let k : R
N → B (X,Y ) be a strongly

integrable function such that

supp k̂ ⊂ supp φ0 (3.10)

and∫
RN

‖[k(s)]∗ g‖Lq′(RN ,X∗) w (s) ds ≤ A ‖g‖Lq′ (RN ,Y ∗) for each g ∈ Lq′
(
R

N , Y ∗) (3.11)

where w (·) := ln (2 + |·|). Set kj (·) := 2Njk
(
2j ·).

(a) For each finitely supported scalar sequence {aj}j∈Z with |aj | ≤ 1 and

L (·) :=
∑
j∈Z

ajkj (·) : R
N → B (X,Y ) (3.12)
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the operator

Tf := L ∗ f for f ∈ S (RN , X
)

extends to a bounded operator T : Lq

(
R

N , X
)→ Lq

(
R

N , Y
)

with ‖T‖ ≤ CX,N,q A.

(b) For each f ∈ S (RN , X
)

and n ∈ N

E

∥∥∥∥∥∥
n∑

j=−n

εjkj ∗ f
∥∥∥∥∥∥

Lq(RN ,Y )

≤ CX,N,q A ‖f‖Lq(RN ,X) . (3.13)

Also, if Y does not contain c0, then the summand in (3.13) can be taken over j ∈ Z.

Proof. Recall that the φk’s were defined in Notation 3.4.

Since k is strongly integrable, f → kj ∗ f is a bounded operator from L1

(
R

N , X
)

to L1

(
R

N , Y
)
.

Fix q ∈ (1,∞).

Fix f =
∑m

i=1 xigi with xi ∈ X and gi ∈ S (RN ,C
)

and m ∈ N. Let hj := φj−1 +φj +φj+1; note

that hj = 1 on supp φj . Put fj := ȟj ∗ f . Note that [kj ∗ fj ]̂= k̂j hj f̂ = k̂j f̂ = [kj ∗ f ]̂ by (3.10).

Thus, for a.e. t ∈ R
N ,

(L ∗ f) (t) =
∑
j∈Z

aj (kj ∗ f) (t) =
∑
j∈Z

aj

∫
RN

2Njk(2js)fj(t− s)ds

=
∫

RN

k(s)
∑
j∈Z

aj fj(t− 2−js)ds =
∫

RN

k(s)
∑
j∈Z

aj (τ2−jsfj)(t)ds (3.14)

=
∫

RN

k(s)(m̌s ∗ f)(t)ds

where τag (·) := g (· − a) and ms(t) :=
∑

j aj exp
(−is · 2−jt

)
h0(2−jt). By Proposition 3.6

‖m̌s ∗ f‖Lq(RN ,X) ≤ Cw (s) ‖f‖Lq(RN ,X) (3.15)

for some constant C = CX,N,q ‖φ0‖MN
N (C). If g ∈ Lq′

(
R

N , Y ∗), then by (3.14), (3.15), and (3.11)∣∣〈g, L ∗ f〉Lq(Y )

∣∣ ≤
∫

RN

∫
RN

| 〈 g (t) , k(s) (m̌s ∗ f) (t) 〉Y | ds dt

≤
∫

‖[k(s)]∗ g‖Lq′(X∗) ‖m̌s ∗ f‖Lq(X) ds ≤ C A ‖g‖Lq′(Y ∗) ‖f‖Lq(X) .

(3.16)

Thus ‖L ∗ f‖Lq(RN ,Y ) ≤ CA ‖f‖Lq(RN ,X). Hence part (a) holds.

Part (b) follows formally from part (a). Indeed, for a fixed n ∈ N and u ∈ Ω, define Lu,n (·) :=∑n
j=−n εj (u) kj (·). Then by part (a)

E

∥∥∥∥∥∥
n∑

j=−n

εjkj ∗ f
∥∥∥∥∥∥

Lq(RN ,Y )

=
∫

RN

‖Lu,n ∗ f‖Lq(RN ,Y ) du ≤ CX,N,q A ‖f‖Lq(RN ,X) . (3.17)

If Y does not contain c0, then Lq

(
R

N , Y
)

does not contain c0 [25] and so, by Remark 2.10c, the

sum in (3.17) can be taken over j ∈ Z. Thus part (b) holds. �
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Remark 3.8. a) In Proposition 3.7, if (3.11) is replaced by
∫

RN ‖k(s)‖B(X,Y ) w(s)ds ≤ A, then this

modified version of Proposition 3.7 remains true.

b) In Proposition 3.7, if:

(1) in addition, Y also has UMD,

(2) in addition, the function k∗ (·) := [k (·)]∗ : R
N → B (Y ∗, X∗) is strongly integrable,

(3) the condition (3.11) is replaced by:

(i)
∫

RN ‖k(s)f‖Lr(Y ) w(s) ds ≤ A ‖f‖Lr(X) for each f ∈ Lr

(
R

N , X
)

and 1 < r ≤ 2

(ii)
∫

RN ‖k∗(s)g‖Lr(X∗) w(s) ds ≤ A ‖g‖Lr(Y ∗) for each g ∈ Lr

(
R

N , Y ∗) and 1 < r ≤ 2 ,

(4) CX,N,q is replaced by CX,Y,N,q,

then this modified version of Proposition 3.7 remains true (for each q ∈ (1,∞)).

Proof of Remark 3.8. a) Indeed, the calculation in (3.16) can then be replaced by

‖L ∗ f‖Lq(Y ) =
∥∥∥∥∫

RN

k (s) (m̌s ∗ f) (·) ds
∥∥∥∥

Lq(Y )

≤
∫

RN

‖k (s)‖B(X,Y ) ‖m̌s ∗ f‖Lq(X) ds

≤ C ‖f‖Lq(X)

∫
RN

‖k (s)‖B(X,Y )w (s) ds ≤ CA ‖f‖Lq(X)

with the help of (3.14) and (3.15).

b) If q ∈ [2,∞), then the modified Proposition 3.7 follows from the original Proposition 3.7 since

condition (ii) implies (3.11). So fix q ∈ (1, 2] and consider a function L of the form (3.12). Since X

and Y are UMD spaces, they are reflexive. Applying the original Proposition 3.7 to k∗ gives, by

condition (i), that

Kf := [L (·)]∗ ∗ [f (− · )] for f ∈ S (RN , Y ∗)
extends to a bounded operator K : Lq′

(
R

N , Y ∗)→ Lq′
(
R

N , X∗) with ‖K‖ ≤ CY ∗,N,q′ A. Since X

and Y are reflexive, K∗ is in B (Lq (X) , Lq (Y )) and K∗ restricted to S (RN , X
)

is L (·)∗f (− · ). �

In the proof of Theorem 4.1, the assumptions Remark 3.8b will be checked by applying estimates

of the operator norm of the Fourier transform on Besov spaces. The Hausdorff-Young inequality

holding in spaces with Fourier type gives a starting point for such norm estimates.

Corollary 3.9 ([14]). Let X have Fourier type p ∈ [1, 2]. Then the Fourier transform defines a

bounded operator

F : B
N/p
p,1

(
R

N , X
) −→ L1

(
R

N , X
)
. (3.18)

Furthermore, the norm of F is bounded above by a constant depending only on Fp,N (X).

A sharping of this result, in the spirit of the logarithmic estimate in Proposition 3.6, is needed in

this paper. Recall that BA
p was given in Definition 2.13 and {ϕk}k∈N0 was given in Notation 2.11.
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Corollary 3.10. Let w : R
N → [0,∞) be a measurable function so that

ak := 2Nk/p ‖wχsupp ϕk
‖L∞(RN ,R) < ∞ for each k ∈ N0 .

Set A := {ak}k∈N0
. If X has Fourier type p ∈ [1, 2] then the Fourier transform defines a bounded

operator

F : BA
p

(
R

N , X
) −→ L1

((
R

N , w (t) dt
)
, X
)
. (3.19)

Furthermore, the norm of F is bounded above by a constant depending only on Fp,N (X).

Note that if w ≡ 1 in Corollary 3.10, then (3.19) reduces to (3.18). Corollary 3.9 and Corol-

lary 3.10 remain valid if F is replaced with F−1.

Proof of Corollary 3.10. Let {Jk}k∈N0 be the partitioning of R
N given by

Jk :=
{
t ∈ R

N : 2k−1 < |t| ≤ 2k
}

for k ∈ N and J0 :=
{
t ∈ R

N : |t| ≤ 1
}

and set ϕ−1 ≡ 0 and J−1 = ∅ to simplify notation.

Fix f ∈ BA
p

(
R

N , X
)
. For each k ∈ N0, since ϕ̌k ∗ f ∈ Lp

(
R

N , X
)

and X has Fourier type p, one

has that ϕk · f̂ = F (ϕ̌k ∗ f) ∈ Lp′
(
R

N , X
)
; in particular, the distributional Fourier transform

of f is represented as a measurable function. Thus for each m ∈ N0

f̂ · χJm =
m∑

k=m−1

ϕk f̂ χJm

and so (with a−1 := 0)∥∥∥f̂ · χJm · w
∥∥∥

L1(X)
≤

m∑
k=m−1

∥∥∥∥∥f̂ϕk

[
1 + |·|

4

]N/p

χJm

∥∥∥∥∥
Lp′ (X)

∥∥∥∥∥
[
1 + |·|

4

]−N/p

χJmwχsupp ϕk

∥∥∥∥∥
Lp(R)

≤
m∑

k=m−1

∥∥∥∥∥
[
1 + |·|

4

]N/p

χJm

∥∥∥∥∥
L∞(R)

∥∥∥f̂ϕk

∥∥∥
Lp′ (X)

‖wχsupp ϕk
‖L∞(R)

∥∥∥∥∥
[
1 + | · |

4

]−N/p

χJm

∥∥∥∥∥
Lp(R)

≤
m∑

k=m−1

(
2k
)N/p ∥∥∥f̂ϕk

∥∥∥
Lp′ (X)

ak 2−Nk/p

[∫
Jm

(
1 + |t|

4

)−N

dt

]1/p

≤ C
m∑

k=m−1

ak

∥∥∥f̂ϕk

∥∥∥
Lp′ (X)

≤ C Fp,N (X)
m∑

k=m−1

ak ‖ϕ̌k ∗ f‖Lp(X)

for some universal constant C. Thus∫
RN

∥∥∥f̂ (t)
∥∥∥

X
w (t) dt ≤ 2C Fp,N (X) ‖f‖BA

p (RN ,X) ,

as needed. �

Let X and Y have Fourier type p and m ∈ B
N/p
p,1

(
R

N ,B (X,Y )
)
. Then Corollary 3.9 implies that

m̂ ∈ L1

(
R

N ,B (X,Y )
)

only if p = 1 since if p > 1 then B (X,Y ) usually does not also have Fourier
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type p. However, for p > 1, one can at least conclude from Corollary 3.9 that for each x ∈ X∫
RN

‖ [m (·)x]̂(t) ‖Y dt ≤ ‖F‖
B

N/p
p,1 (RN ,Y )→L1(RN ,Y )

‖m‖
B

N/p
p,1 (RN ,B(X,Y ))

‖x‖X .

A somewhat stronger statement than this, which is made possible by Corollary 3.10, is needed.

Corollary 3.11. Let X and Y have Fourier type p ∈ (1, 2] and 1 < q ≤ p. Let w : R
N → [0,∞) be

a measurable function so that

ak := 2Nk/q ‖wχsupp ϕk
‖L∞(RN ,R) < ∞ for each k ∈ N0 .

Set A := {ak}k∈N0 and let m ∈ BA
q

(
R

N ,B (X,Y )
) ∩ L1

(
R

N ,B (X,Y )
)

have norm M in BA
q .

Then then there is a constant C, depending only on Fq,N (X) and Fq,N (Y ), so that∫
RN

‖ m̂ (t) [f (·)] ‖Lr(RN ,Y ) w (t) dt ≤ C M ‖f‖Lr(RN ,X) for each f ∈ Lr

(
R

N , X
)

(3.20)∫
RN

‖ [m̂ (t)]∗ [g (·)] ‖Lr(RN ,X∗) w (t) dt ≤ C M ‖g‖Lr(RN ,Y ∗) for each g ∈ Lr

(
R

N , Y ∗) (3.21)

for each 1 ≤ r ≤ q′.

Note that if w ≡ 1, then BA
q (B (X,Y )) = B

N/q
q,1 (B (X,Y )). Also, Corollary 3.11 remains valid if

one replaces m̂ with m̌ in (3.20) and (3.21).

Proof. The first step is to show that the operator

Lr

(
R

N , X
) 3 f

Tr−−−−→ m̂ (·) fw (·) ∈ L1

(
R

N , Lr

(
R

N , Y
))

is bounded for r = 1 and r = q′.

Fix x ∈ X. Note that m (·)x ∈ BA
q (Y ) has norm at most M ‖x‖X since m ∈ BA

q (B (X,Y ))

has norm M and that [m (·)x]̂(t) = [m̂ (t)] (x) since m ∈ L1 (B (X,Y )). Thus by Corollary 3.10

applied to m (·)x, there is a constant C1, depending only on Fq,N (Y ), so that∫
RN

‖ [m̂ (t)]x ‖Y w(t) dt ≤ C1M ‖x‖X .

Thus, for simple functions f ∈ L1 (X),∫
RN

‖ [ m̂ (t)] f (·) ‖L1(Y )w(t) dt =
∫

RN

∫
RN

‖ [m̂ (t)] f (s) ‖Y w(t) dt ds ≤ C1M ‖f‖L1(X) .

Thus ‖T1‖ ≤ C1M .

Let X := Lq′
(
R

N , X
)

and Y := Lq′
(
R

N , Y
)
. Then Fq,N (X) = Fq,N (X∗) = Fq,N

(
X
)
, and

likewise for Y , by Remark 2.3. Extend m to an operator R
N 3 t→ m(t) ∈ B (X,Y ) by

[m (t) f ] (s) := [m (t)] (f (s)) for f ∈ X , s ∈ R
N .

Note that m ∈ BA
q

(B (X,Y )) ∩ L1

(B (X,Y )) has norm M in BA
q since for each t ∈ R

N

‖m(t)‖B(X,Y ) = ‖m(t)‖B(X,Y ) and ‖(ϕ̌k ∗m) (t)‖B(X,Y ) = ‖(ϕ̌k ∗m) (t)‖B(X,Y ) .
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Fix a simple function f ∈ X. Note m (·) f ∈ BA
q

(
Y
)

has norm at most M ‖f‖X and

[m (·) f ]̂(t) = m̂ (t) [f (·)] .

Thus by Corollary 3.10 applied to m (·) f , there is a constant C2, depending only on Fq,N

(
Y
)
, so

that ∫
RN

‖m̂ (t) [f (·)]‖Y w (t) dt ≤ C2 M ‖f‖X .

Thus
∥∥Tq′

∥∥ ≤ C2M .

Thus (3.20) holds for 1 ≤ r ≤ q′ by interpolation in the scale of Bochner-spaces (see [6,

Thm. 5.1.2]). Claim (3.21) is obtained by applying the same argument to [m(t)]∗ ∈ B (Y ∗, X∗). �

One more preparatory result is needed for the proof of Theorem 4.1. The proof of the following

lemma is due to N.J. Kalton and replaces our original (more complicated) proof. Recall that {εk}k∈Z

and {ε′k}k∈Z were given in Notation 2.7.

Lemma 3.12. For any Banach space X and any array {xkl}k,l∈Z from X

E ε

∥∥∥∥∥∑
k∈Z

εkxkk

∥∥∥∥∥
X

≤ E ε,ε′

∥∥∥∥∥∥
∑
k,l∈Z

εkε
′
lxkl

∥∥∥∥∥∥
X

.

Proof. For αk ∈ {−1, 1}, the sequences of random variables {εk}, {ε′k}, {αk εk}, and {αk ε
′
k} have

the same distribution. Hence by Fubini’s theorem

E ε,ε′

∥∥∥∥∥∥
∑
k,l∈Z

εkε
′
lxkl

∥∥∥∥∥∥
X

= E ε,ε′

∥∥∥∥∥∥
∑
k,l∈Z

αk αl εkε
′
lxkl

∥∥∥∥∥∥
X

. (3.22)

Let {ηk} be a sequence of {−1,+1}–valued, independent, symmetric random variables that is

independent of {εk} and {ε′k}. Integrating (3.22) gives

E ε,ε′

∥∥∥∥∥∥
∑
k,l∈Z

εkε
′
lxkl

∥∥∥∥∥∥
X

= E ε,ε′ E η

∥∥∥∥∥∥
∑
k,l∈Z

ηkηlεkε
′
lxkl

∥∥∥∥∥∥
X

≥ E ε,ε′

∥∥∥∥∥∥E η

∑
k,l∈Z

ηkηlεkε
′
lxkl

∥∥∥∥∥∥
X

= E ε,ε′

∥∥∥∥∥∑
k∈Z

εkε
′
kxkk

∥∥∥∥∥
X

= E ε

∥∥∥∥∥∑
k∈Z

εkxkk

∥∥∥∥∥
X

,

again since u→ εk (u) · ε′k (v), for each fixed v, is a sequence of independent random variables with

the same distribution as {εk}. �

4. FOURIER MULTIPLIER THEOREMS

This section explores operator-valued Fourier multiplier operators. The assumptions of the main

result, Theorem 4.1, may be somewhat awkward looking. However, with respect to the smoothness

of the multiplier function, it is a rather weak assumption that will make it easy to derive, in a
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unified way, several results modeled after classical conditions, such as of Mihlin and Hörmander,

as shown by the corollaries to follow.

Theorem 4.1. Let X and Y be UMD spaces with Fourier type p ∈ (1, 2] and 1 < q < ∞. Set

X̃ := Radq (X) and Ỹ := Radq (Y ). Let m : R
N \ {0} → B (X,Y ) be a measurable function that

induces a mapping M : R
N → B

(
X̃, Ỹ

)
,

M(s) :=
{
φ0(s)m(2ks)

}
k∈Z

for s 6= 0 and M(0) := 0 ,

that satisfies M ∈ BA
p

(
R

N ,B
(
X̃, Ỹ

))
with norm D where A =

{
(k ∨ 1) 2Nk/p

}
k∈N0

. Then m

is a Fourier multiplier from Lq(RN , X) to Lq(RN , Y ). Furthermore, ‖Tm‖Lq→Lq
≤ C D for some

constant C depending on: X, Y , N , p, q, and φ0.

Remark 4.2. a) Recall that each UMD space has Fourier type p for some p > 1.

b) Remark 2.10 provides a convenient way to compute the norm of M ; indeed, ‖M (s)‖B(X̃,Ỹ ) =

φ0(s)Rq

({
m(2ks) : k ∈ Z

})
for each s ∈ R

N .

c) For the A in Theorem 4.1, there are continuous embeddings

W l
p

(
R

N , Z
) ⊂ Bs

p,r

(
R

N , Z
) ⊂ BA

p

(
R

N , Z
) ⊂ B

N/p
p,1

(
R

N , Z
)

where N/p < s < l ∈ N and r ∈ [1,∞].

d) The exponent N/p is best possible in the following sense. Let Ap :=
{
(k ∨ 1) 2Nk/p

}
k∈N0

. Note

that the spaces BAp
p form a scale since, for 1 ≤ p < q <∞,

B
Ap
p

(
R

N , Z
) ⊂ B

Aq
q

(
R

N , Z
)
.

In general it is not possible to replace BAp
p in Theorem 4.1 by a larger space BAq

q for some q > p.

This follows as in [14, Remark 4.9].

Proof of Theorem 4.1. Throughout this proof, the Ci’s denotes constants which depend on at most:

X, Y , N , p, q, and φ0. Note that X̃ and Ỹ are UMD spaces with Fourier type p by Remark 2.10.

Since M ∈ L∞
(
R

N ,B
(
X̃, Ỹ

))
has bounded support, M ∈ L1

(
R

N ,B
(
X̃, Ỹ

))
. Define the

function K by:

R
N 3 s → K(s) :=

(F−1M
)
(s) ∈ B

(
X̃, Ỹ

)
.

Corollary 3.11 applied to M ∈ BA
p

(
B
(
X̃, Ỹ

))
with w(t) = ln (2 + |t|) gives that for 1 ≤ r ≤ 2∫

RN

‖K(t)F (·)‖
Lr(Ỹ ) w (t) dt ≤ C1D ‖F‖

Lr(X̃) for each F ∈ Lr

(
X̃
)

∫
RN

‖[K(t)]∗G (·)‖
Lr(X̃∗) w (t) dt ≤ C1D ‖G‖

Lr(Ỹ ∗) for each G ∈ Lr

(
Ỹ ∗
)
.
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Also, K and K∗ are strongly integrable by Corollary 3.9 and supp K̂ ⊂ supp φ0. Thus Remark 3.8b

can be applied to K ∈ L∞
(
B
(
X̃, Ỹ

))
. Hence for Kj (·) := 2NjK

(
2j · ), condition (3.13) gives

that for each F ∈ S
(
R

N , X̃
)

E

∥∥∥∥∥∥
∑
j∈Z

εjKj ∗ F
∥∥∥∥∥∥

Lq(Ỹ )

≤ C2C1D ‖F‖
Lq(X̃) . (4.1)

To see that inequality (4.1) implies the boundedness of Tm, fix f ∈ So (X) and let hk := φk−1 +

φk + φk+1. Then F :=
{
ȟk ∗ f}

k∈Z
∈ S

(
X̃
)

and by Corollary 3.3

‖F‖
Lq(X̃) ≤

1∑
j=−1

∥∥∥{φ̌k+j ∗ f
}

k∈Z

∥∥∥
Lq(X̃)

= 3
∥∥∥{φ̌k ∗ f}

k∈Z

∥∥∥
Lq(X̃)

≤ C3 ‖f‖Lq(X) . (4.2)

Note that M ∈ L∞ implies that m ∈ L∞; thus it follows from Remark 3.8b that

Kj ∗ F =
{
φ̌j ∗ ȟk ∗ Tm(2k−j ·)f

}
k∈Z

∈ Lq

(
Ỹ
)

= Radq (Lq (Y ))

since, for a.e. s,

(Kj ∗ F )̂(s) = M
(
2−js

)
F̂ (s) =

{
φ0

(
2−js

)
m
(
2k−js

)
hk (s) f̂ (s)

}
k∈Z

=
{
φj (s)hk (s)

(
Tm(2k−j ·)f

)̂(s)
}

k∈Z

.

Since hk is 1 on the support of φk, if j = k then φ̌j ∗ ȟk ∗ Tm(2k−j ·) (f) = φ̌j ∗ (Tmf). Hence, by

Corollary 3.3 and Lemma 3.12,

‖Tmf‖Lq(Y ) ≤ C4 E ε

∥∥∥∥∥∥
∑
j∈Z

εj φ̌j ∗ Tmf

∥∥∥∥∥∥
Lq(Y )

≤ C4 E ε,ε′

∥∥∥∥∥∥
∑
k∈Z

ε′k

∑
j∈Z

εjφ̌j ∗ ȟk ∗ Tm(2k−j ·)f

∥∥∥∥∥∥
Lq(Y )

(4.3)

= C4 E ε

∥∥∥∥∥∥
∑

j∈Z

εjφ̌j ∗ ȟk ∗ Tm(2k−j ·)f


k∈Z

∥∥∥∥∥∥
Rad1(Lq(Y ))

≤ C5 E ε

∥∥∥∥∥∥
∑
j∈Z

εj

{
φ̌j ∗ ȟk ∗ Tm(2k−j ·)f

}
k∈Z

∥∥∥∥∥∥
Lq(Ỹ )

= C5 E ε

∥∥∥∥∥∥
∑
j∈Z

εjKj ∗ F
∥∥∥∥∥∥

Lq(Ỹ )

.

Combining (4.1), (4.2), and (4.3) gives that ‖Tmf‖Lq(Y ) ≤ C6D ‖f‖Lq(X). �

The following notation simplifies the statements of corollaries to come.

Notation 4.3. Let RMN
l (B (X,Y )) be the set of all measurable functionsm : R

N \ {0} → B (X,Y )

whose distributional derivatives Dαm are represented by measurable functions for each α ∈ N
N
0
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with |α| ≤ l and

‖m‖RMN
l (B(X,Y )) := max

α∈NN
0

|α|≤l

R2

({
|t||α|Dαm (t) : t ∈ R

N \ {0}
})

< ∞ (4.4)

where l ∈ N0.

Note that if X and Y are Hilbert spaces, then ‖m‖MN
l (B(X,Y )) = ‖m‖RMN

l (B(X,Y )).

The following Mihlin-type multiplier theorem is an immediate consequence of Theorem 4.1.

Corollary 4.4. Let X and Y be UMD spaces with Fourier type p ∈ (1, 2] and l :=
[

N
p

]
+ 1. If

m ∈ RMN
l (B (X,Y )) with ‖m‖RMN

l (B(X,Y )) := A

then m is a Fourier multiplier from Lq(RN , X) to Lq(RN , Y ) for each q ∈ (1,∞). Furthermore,

‖Tm‖Lq→Lq
≤ C A for some constant C independent of m.

Remark 4.5. a) Corollary 4.4 applies to Hilbert spaces X and Y with l = [N/2]+1, which recovers

Schwartz’s classical result. For arbitrary UMD spaces, Corollary 4.4, but with l = N , was first

shown in [35], for a second proof see [16]. Furthermore, [36, Remark 3.7] shows that the expo-

nent l := [N/p] + 1 is best possible for Lp-spaces.

b) The proof will show that the assumption (4.4) on m can be replaced by the following formally

weaker assumption:

max
α∈NN

0
|α|≤l

sup
t∈RN

2−1≤|t|≤21

R2

({∣∣∣2kt
∣∣∣|α|Dαm(2kt) : k ∈ Z

})
:= A <∞ . (4.5)

Proof of Corollary 4.4. Let B := B (Radq (X) ,Radq (Y )). Without loss of generality, via an ap-

proximation argument, suppm ⊂ {
t ∈ R

N : 2−n ≤ |t| ≤ 2n
}

for some n ∈ N. Thus, if s ∈ R
N

then M (s) :=
{
φ0 (s)m(2ks)

}
k∈Z

∈ B with the kth coordinate of M (s) being zero for |k| > n. By

Leibniz’s rule and Remark 2.10a,

‖M‖W l
p(RN ,B) ≤

∑
|α|≤l

2|α|
∥∥∥|t||α|DαM (t) χsupp φ0 (t)

∥∥∥
Lp(dt,B)

≤
∑
|α|≤l

∑
β≤α

2|α|
(
α

β

)∥∥∥∥|t||α−β|Dα−βφ0 (t)
{∣∣∣2kt

∣∣∣|β|Dβm
(
2kt
)}

k∈Z

∥∥∥∥
Lp(dt,B)

=
∑
|α|≤l

∑
β≤α

2|α|
(
α

β

)∥∥∥∥|t||α−β|Dα−βφ0 (t) Rq

({∣∣∣2kt
∣∣∣|β|Dβm

(
2kt
)

: k ∈ Z

})
χ[2−1≤|t|≤2]

∥∥∥∥
Lp(dt,R)

.

By (4.5) and Hölder’s inequality, M ∈W l
p

(
R

N , B
)
. By Remark 4.2c, Theorem 4.1 applies. �

Corollary 4.6. Let X and Y be UMD spaces with Fourier type p ∈ (1, 2] and l :=
[

N
p

]
+ 1. Let

m ∈ RMN
l (B (X,Y )) and set ‖m‖RMN

l (B(X,Y )) := A.

(a) Then m is a Fourier multiplier from H1

(
R

N , X
)

to L1

(
R

N , Y
)

and ‖Tm‖H1→L1
≤ C A for
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some constant C independent of m.

(b) Then m is a Fourier multiplier from L1

(
R

N , X
)

to Lwk
1

(
R

N , Y
)

and ‖Tm‖L1→Lwk
1

≤ C A for

some constant C independent of m.

(c) Then m is a Fourier multiplier from L∞
(
R

N , X
)

to BMO
(
R

N , Y
)

and ‖Tm‖L∞→BMO ≤ C A

for some constant C independent of m.

Remark 4.7. A related result, which also covers the spaces Hp for p < 1 was found independently

by T. Hytönen [18].

A word about what is meant by a Fourier multiplier for UMD spaces X and Y for the function

spaces in Corollary 4.6 is in order. Since SH

(
R

N , X
)

:=
{
f ∈ S (RN , X

)
:
∫

RN f (t) dt = 0
}

is

norm-dense in H1

(
R

N , X
)
, it is clear what is meant by a Fourier multiplier from H1 to L1: in

Definition 2.4, just replace S by SH and Lq by either H1 or L1, accordingly. A linear mapping

T : L1

(
R

N , X
)→ Lwk

1

(
R

N , Y
)

is (uniformly) continuous if and only if

‖T‖L1→Lwk
1

:= sup
{
‖Tf‖Lwk

1
: ‖f‖L1

≤ 1
}
< ∞ .

If a linear mapping T : S (RN , X
)→ Lwk

1

(
R

N , Y
)

satisfies

‖Tf‖Lwk
1 (RN ,Y ) ≤ C ‖f‖L1(RN ,X) for each f ∈ S (RN , X

)
,

then, since S (RN , X
)

is a norm-dense subspace of L1

(
R

N , X
)
, there is a unique continuous linear

extension T̃ : L1

(
R

N , X
) → Lwk

1

(
R

N , Y
)

of T and ‖T̃‖L1→Lwk
1

≤ 2C. Thus it is clear what

is meant by a Fourier multiplier from L1 to Lwk
1 : in Definition 2.4, just replace Lq by either L1

or Lwk
1 , accordingly. The Schwartz class is not norm-dense in L∞; however, it is weak∗-dense in L∞.

Since X and Y are UMD spaces (in particular, reflexive)

[
H1

(
R

N , Y ∗)]∗ = BMO
(
R

N , Y
)

and
[
L1

(
R

N , Y ∗)]∗ = L∞
(
R

N , Y
)
,

(cf. [9] for H1–BMO duality). Thus m is a Fourier multiplier from L∞
(
R

N , X
)

to BMO
(
R

N , Y
)

provided there is an operator Tm ∈ B (L∞
(
R

N , X
)
, BMO

(
R

N , Y
))

satisfying:

Tmf :=
[
mf̂

]∨
for each f ∈ S (RN , X

)
Tm is weak∗-to-weak∗ continuous .

(4.6)

Note that (4.6) guarantees the uniqueness of a norm-to-norm continuous operator, if it exists.

Proof of Corollary 4.6. Throughout this proof, the Ci’s are constants that are independent of m

and the fixed n ∈ N.
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For each j ∈ Z and a fixed n ∈ N, let

mj := mφj Mn :=
n∑

j=−∞
mj

kj := m̌j Kn := M̌n =
n∑

j=−∞
kj .

Note that Mn ∈ RMN
l (B (X,Y )) with

‖Mn‖RMN
l (B(X,Y )) ≤ C0A .

So TMn ∈ B (L2

(
R

N , X
)
, L2

(
R

N , Y
))

by Corollary 4.4. That TMn satisfies parts (a) and (b), for

some constant C independent ofm and the fixed n ∈ N, follows from the Benedek-Calderon-Panzone

theorem for convolutions on vector-valued spaces (see [13, Ch. V, Thm 3.4 and Remark (3.3′) on

p. 494]) if one can show that∫
|t|>2|s|

‖Kn (t− s)x−Kn (t)x‖Y dt ≤ AC1 ‖x‖X (4.7)

for each s ∈ R
N and x ∈ X. Inequality (4.7) is now shown via an adaption of the classical argument

in [32, Ch. VI, Sect. 4.4].

Fix x ∈ X. For α ∈ N
N
0 with |α| ≤ l, by Leibniz’s rule,

‖Dαmj (t)‖B(X,Y ) ≤ AC32−j|α| ;

thus, since (Dαmj)
∨ (t) = (−it)α kj (t) and Y has Fourier type p,[∫

RN

‖(−it)α kj (t)x‖p′
Y dt

]1/p′

≤ C4

[∫
supp φj

‖Dαmj (t)x‖p
Y dt

]1/p

≤ AC5 2−j|α| 2
jN
p ‖x‖X .

Thus for each l0 ∈ {0, 1, . . . , l}[∫
RN

∥∥∥|t|l0 kj (t)x
∥∥∥p′

Y
dt

]1/p′

≤ AC6 2
jN
p 2−jl0 ‖x‖X . (4.8)

Using (4.8) with l = l0, Hölder’s inequality gives, for any a > 0, since N/p < l,∫
|t|≥a

‖kj (t)x‖Y dt ≤
[∫

RN

∥∥∥|t|l kj (t)x
∥∥∥p′

Y
dt

]1/p′
[∫

|t|≥a
|t|−lp dt

]1/p

≤ AC6 2
jN
p 2−jl ‖x‖X a

N
p a−l

[∫
|t|≥1

|t|−lp dt

]1/p

≤ AC7

(
2ja
)N

p
−l ‖x‖X .

(4.9)

Similarly, taking l0 = 0 in (4.8) gives∫
|t|≤a

‖kj (t)x‖Y dt ≤
[∫

RN

‖kj (t)x‖p′
Y dt

]1/p′
[∫

|t|≤a
1 dt

]1/p

≤ AC8

(
2ja
)N

p ‖x‖X . (4.10)
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Choosing a = 2−j in (4.9) and (4.10) gives∫
RN

‖kj (t)x‖Y dt ≤ AC9 ‖x‖X .

Let nj (t) := [Dαkj ]̂(t) = (i)|α| tαmj (t) for each j ∈ Z. For β ∈ N
N
0 with |β| ≤ l∥∥∥Dβnj (t)

∥∥∥
B(X,Y )

≤ AC10 2j|α| 2−j|β|

by Leibniz’s rule; thus, since
[
Dβnj

]∨ (t) = (−i)|β| tβ Dαkj (t) and Y has Fourier type p,[∫
RN

∥∥∥tβDαkj (t)x
∥∥∥p′

Y
dt

]1/p′

≤ C11

[∫
RN

∥∥∥Dβnj (t)x
∥∥∥p

Y
dt

]1/p

≤ AC12 2j|α| 2−j|β|2jN/p .

Arguing as above gives that∫
RN

‖Dαkj (t)x‖Y dt ≤ AC132j|α| ‖x‖X . (4.11)

Thus, for each h = (h1, . . . , hN ) ∈ R
N ,∫

RN

‖kj (t+ h)x− kj (t)x‖Y dt ≤
∫ 1

0

(
N∑

i=1

|hi|
∫

RN

∥∥∥∥ ∂∂tikj (t+ sh)x
∥∥∥∥

Y

dt

)
ds

≤ AC14 2j |h| ‖x‖X ;

(4.12)

indeed, just apply the Fundamental Theorem of Calculus to R
n 3 s → kj (t+ sh)x ∈ Y and then

use (4.11). Fix s ∈ R
N . Note that the inequality∑
j∈Z

∫
|t|>2|s|

‖kj (t− s)x− kj (t)x‖Y dt ≤ AC15 ‖x‖X (4.13)

implies (4.7). To see (4.13), let Γ1 :=
{
j ∈ N : 2j ≤ |s|−1

}
and Γ2 :=

{
j ∈ N : |s|−1 < 2j

}
.

By (4.12),∑
j∈Γ1

∫
|t|>2|s|

‖kj (t− s)x− kj (t)x‖Y dt ≤ AC14 ‖x‖X

[
|s|
∑

j∈Γ1

2j
]

≤ AC16 ‖x‖X .

By (4.9)∑
j∈Γ2

∫
|t|>2|s|

‖kj (t− s)x− kj (t)x‖Y dt ≤ 2
∑
j∈Γ2

∫
|t|>1 |s|

‖kj (t)x‖Y dt

≤ 2 AC7 ‖x‖X

[
|s|N

p
−l
∑

j∈Γ2

(
2

N
p
−l
)j
]

≤ AC17 ‖x‖X

since N/p < l. This completes the proof of (4.7). Thus TMn satisfies parts (a) and (b) for some

constant C18 independent of m and n ∈ N.

Towards showing part (a), fix f ∈ SH

(
R

N , X
)

and let

G :=
{
g ∈ S (RN , Y ∗) : ‖g‖L∞(Y ∗) ≤ 1

}
.
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Then

‖Tmf‖L1(RN ,Y ) = sup
g∈G

〈g, Tmf〉 = sup
g∈G

lim
n→∞ 〈g, TMnf〉 ≤ sup

g∈G
lim

n→∞
‖g‖L∞(Y ∗) ‖TMnf‖L1(Y )

≤ lim
n→∞

‖TMn‖H1(X)→L1(Y ) ‖f‖H1(X) ≤ AC18 ‖f‖H1(X) .

Thus part (a) holds.

If f ∈ S∗
(
R

N , X
)

:=
{
g ∈ S (RN , X

)
: supp ĝ is compact

}
, then Tmf = TMnf for n sufficiently

large. Since S∗
(
R

N , X
)

is norm-dense in L1

(
R

N , X
)
, part (b) holds.

Part (c) follows from part (a) and a duality argument. Since X and Y have nontrivial (Fourier)

type, m∗ ∈ RMN
l (B (Y ∗, X∗)) and ‖m∗‖RMN

l (B(Y ∗,X∗)) ≤ C19 ‖m‖RMN
l (B(X,Y )) (cf., eg., [39,

Thm. 2.2.14]). Thus Tm∗ ∈ B (H1

(
R

N , Y ∗) , L1

(
R

N , X∗)) with ‖Tm∗‖H1→L1
≤ AC20 by part (a).

Hence (Tm∗)∗ ∈ B (L∞
(
R

N , X
)
, BMO

(
R

N , Y
))

is weak∗-to-weak∗ continuous and is of norm at

most AC20. Furthermore, (Tm∗)∗ |S(RN ,X) = Tm(−·) |S(RN ,X) . Thus part (c) holds. �

Remark 4.8. One can use the estimates in the proof of Corollary 4.6 to give a more direct proof

of Corollary 4.4 avoiding Besov spaces. We indicate this for p = 1, l = [N ] + 1: By assumption

M(t) = (φ0(t)m(2kt)) andM (α), where |α| ≤ N+1, have norm less than C in B (Rad (X) ,Rad (Y )).

Estimates (4.9) and (4.10) applied to K(t) = M(t)∨ with p = 1 give
∫

RN ‖k(t)‖ dt < ∞ for the

operator norm on B (Rad (X) ,Rad (Y )). Now apply Remark 3.8a and finish the proof as in the

last part of the proof of Theorem 4.1.

Our results are easily adapted to Sobolev spaces. Corollary 4.9 gives a flavor of this for fractional

Sobolev spaces (see Definition 2.15).

Corollary 4.9. Let X and Y have UMD and Fourier type p ∈ (1, 2] and l :=
[

N
p

]
+ 1 and s ∈ R.

Assume that m ∈ Cl
(
R

N \ {0} ,B (X,Y )
)

satisfies that

max
α∈NN

0
|α| ≤ l

R2

({ (
1 + |t|2)s/2 |t||α| (Dαm) (t) : t ∈ R

N \ {0}
} )

:= A ≤ ∞ . (4.14)

Then m is a Fourier multiplier from Hr
q

(
R

N , X
)

to Hr+s
q

(
R

N , Y
)

for each r ∈ R and q ∈ (1,∞).

Also, ‖Tm‖Hr
q→Hr+s

q
≤ C A for some constant C independent of m.

Proof. It suffices to show that n (·) :=
(
1 + |·|2

)s/2
m (·) is a Fourier multiplier from Lq

(
R

N , X
)

to Lq

(
R

N , Y
)
; for then, the following diagram

Hr
q

(
R

N , X
) Tm−−−−→ Hr+s

q

(
R

N , Y
)

Jr

y yJr+s

Lq

(
R

N , X
) Tn−−−−→ Lq

(
R

N , Y
)
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commutes, where Ju : Hu
q

(
R

N , Z
)→ Lq

(
R

N , Z
)

is the isometry defined by

Ju (f) :=
[(

1 + |·|2
)u/2

f̂ (·)
]∨

for f ∈ S (RN , Z
)
.

But

|t||α| Dαn (t) = |t||α| Dα

[(
1 + |·|2

)s/2
m (·)

]
(t)

=
∑
β≤α

(
α

β

)|t||β|
Dβ

[(
1 + |·|2

)s/2
]

(t)(
1 + |t|2

)s/2


[(

1 + |t|2
)s/2 |t||α−β| Dα−βm (t)

]
(4.15)

and the terms {· · · } in (4.15) are uniformly bounded on R
N \ {0}. Thus the assumption (4.14)

gives that n ∈ RMN
l (B (X,Y )) and so Corollary 4.4 finishes off the proof. �

Hörmander’s condition takes here the following form.

Corollary 4.10. Let X and Y be UMD spaces with Fourier type p ∈ (1, 2] and l :=
[

N
p

]
+ 1.

Let m : R
N \ {0} → B (X,Y ) be a measurable function whose distributional derivatives Dαm are

represented by measurable functions for each α ∈ N
N
0 with |α| ≤ l and

max
α∈NN

0
|α| ≤ l

∫
2−1<|t|<2

[
R2

( { ∣∣∣2kt
∣∣∣|α|Dαm

(
2kt
)

: k ∈ Z

} ) ]p

dt := A < ∞ . (4.16)

Then m is a Fourier multiplier from Lq(X) to Lq(Y ) for each 1 < q <∞. Also, ‖Tm‖Lq→Lq
≤ CA

for some constant C independent of m.

Proof. In the proof of Corollary 4.4, just replace (4.5) by (4.16) to see that Theorem 4.1 applies in

this setting also. �

The following corollary shows that our result improves on the multiplier theorem of Bourgain

even in the case of scalar-valued multiplier functions m. Its proof uses the following equivalent

norm [29, Prop. 3.1] on the Besov spaces Bs
p,1 (R, Z) for 0 < s < 1 and 1 ≤ p <∞:

‖f‖′Bs
p,1(R,Z) := ‖f‖Lp(R,Z) + Bs

p,1 (f)

where fh (u) := f (u+ h),

Bs
p,1 (f) :=

∫ ∞

0
t−swp (f, t)

dt

t

wp (f, t) := sup
|h|≤t

‖fh − f‖Lp(R,Z) .
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Corollary 4.11. Let X and Y be UMD spaces with Fourier type p ∈ (1, 2]. Assume that for the

function m : R \ {0} → B (X,Y ) there is some l ∈
(

1
p , 1
)

and h0 > 0 so that, for some constant A,

R2 ({m (u) : u ∈ R \ {0}}) ≤ A

R2

({
|u|l m (u+ h) − m (u)

|h|l : u, u+ h ∈ R \ {0} and 0 < |h| ≤ |u| h0

})
≤ A .

(4.17)

Then m is a Fourier multiplier from Lq (R, X) to Lq (R, Y ) for each q ∈ (1,∞). Furthermore,

‖Tm‖Lq→Lq
≤ C A for some constant C independent of m.

Proof. Throughout this proof, the Cj ’s are constants independent of m. Without loss of general-

ity, h0 <
1
4 . Fix s so that 0 < 1

p < s < l < 1.

Set m (0) := 0. For t ∈ R, let mk(t) := φ0(t)m(2kt) and M (t) := {mk (t)}k∈Z
. Note that∣∣∣u

h

∣∣∣l [mk(u+ h) −mk(u)] =

φ0(u)
∣∣∣u
h

∣∣∣l [m(2k (u+ h)
)
−m

(
2ku
)]

+ m
(
2k (u+ h)

) ∣∣∣u
h

∣∣∣l [φ0 (u+ h) − φ0 (u)] .

So, since φ0 ∈ S and l < 1, the assumption (4.17) yields, for each u, h ∈ R\{0} with 0 < |h| ≤ |u|h0,

R2 ({mk (u+ h) −mk (u) : k ∈ Z}) ≡∣∣∣∣hu
∣∣∣∣l R2

({∣∣∣u
h

∣∣∣l [mk (u+ h) −mk (u)] : k ∈ Z

})
≤
∣∣∣∣hu
∣∣∣∣l AC1 .

Thus, if |h| ≤ h0
4 then, with B := B (Radq (X) ,Radq (Y )),

‖Mh −M‖Lp(B) =

[∫ 3

1
4

‖M (u+ h) −M (u)‖p
B du

] 1
p

≤ AC2

[∫ 3

1
4

∣∣∣∣hu
∣∣∣∣lp du

] 1
p

≤ AC3 |h|l

since 1
p < l. Also, ‖Mh −M‖Lp(B) ≤ 2 ‖M‖Lp(B) ≤ AC4 for any h ∈ R. Thus

wp (M, t) ≤
{
AC5 t

l if t ≤ h0
4

AC6 if t > h0
4 .

Thus Bs
p,1 (M) ≤ AC8 since 0 < s < l and so M ∈ Bs

p,1 (R, B) with norm at most AC9. By

Remark 4.2c, since 1
p < s, we can apply Theorem 4.1, one last time. �

References

[1] Herbert Amann, Linear and quasilinear parabolic problems. Vol. I, Birkhäuser Boston Inc., Boston, MA, 1995,
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