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ABSTRACT. This paper gives the optimal order [ of smoothness in the Mihlin and Hormander
conditions for operator-valued Fourier multiplier theorems. This optimal order [ is determined by
the geometry of the underlying Banach spaces (e.g. Fourier type). This requires a new approach to
such multiplier theorems, which in turn leads to rather weak assumptions formulated in terms of
Besov norms.

1. INTRODUCTION

In recent years, operator-valued multiplier theorems have had many applications in the theory
of evolutions equations, in particular in connection with: maximal regularity of parabolic equa-
tions [4, 7, 11, 23, 37, 38|, stability theory [17, 26, 36|, elliptic operators on infinite dimensional
state spaces [3], and pseudo differential operators on manifolds with singularities [31]. In these
applications one often has a multiplier function m, from RY into the space B (X) of bounded

operators on a Banach space X, such that Mihlin’s condition holds, that is, the set
- {|t||a‘ Dm(t): t e RV\ {0} , |of gz} (1.1)

is norm bounded in B (X) and then one wants to conclude that the operator

Tm:S(RN,X)HS’(RN,X) given by T, f = [mf]v )
defined on the Schwartz class, extends to a bounded operator on L, (RN , X ) for 1 < g < oo.
It is a classical result of J. Schwartz (cf. [6, Section 6.1]) that such an extension exists if X is
a Hilbert space and [ = [N/2] + 1. Furthermore, Pisier showed that Hilbert spaces are the only
Banach spaces for which the boundedness of 7; is sufficient for the Mihlin theorem to hold; he
showed that such spaces must have type 2 and cotype 2. Bourgain [10] showed that, for a scalar-
valued multiplier function m and N = 1, Mihlin’s theorem holds if and only if X is a UMD Banach

space. This result was extended to higher dimensions in [27, 40] with [ = N. For operator-valued
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multiplier functions, it was first shown in [35, 38] that for a UMD Banach space X and | = N,
R-boundedness of 7; is sufficient for Mihlin’s theorem to hold. Recall that 7; is R-bounded if there

is a constant C so that for each n € N, subset {T]}?:1 of 7, and subset {z; }?:1 of X one has that

E|D () Ti)|| < CE|> r()ay
j=1 Jj=1

where {r;}; are the Rademacher functions. For variants of these multiplier theorems, see [4, 11, 16].

This paper presents a new method of proof which allows for the determination of the optimal
smoothness of the multiplier function; indeed, the best exponent [ in (1.1) for a given Banach
space X depends on the geometry of X, specifically, on its Fourier type. Recall that a Banach
space X has Fourier type p € [1,2] provided the Fourier transform defines a bounded operator
from L, (X) into L, (X), i.e. the Hausdorff Young inequality holds for the exponent p.

Corollary 4.4 shows that Mihlin’s theorem holds with [ = [N/p] + 1 if X is a UMD space with
Fourier type p. Since a Hilbert space has Fourier type 2, one recovers Schwartz’s result. Since
each UMD space has Fourier type p for some p > 1, one obtains the results in [35, 38] with [ = N.
If X is a subspace of an L4(Q2) space, then X has Fourier type p = min(q,q’) and so one may
use | = [N/p] +1; hence, the [ in (1.1) improves (i.e. decreases) as ¢ tends towards 2. Furthermore,
the exponent [ = [N/p] + 1 is best possible for L,, spaces.

The main result of this paper, Theorem 4.1, is a general multiplier theorem. This theorem’s
assumption, which uses vector-valued Besov spaces, may not look very attractive at first sight;
indeed, the assumption is stated in a rather general form. However, this formulation allows as
fairly easy corollaries (see Corollaries 4.4, 4.10, 4.11) vector-valued generalizations of several clas-
sical multiplier theorems conditions (& la Mihlin, Hérmander, or Lipschitz estimates); the latter
corollary gives, for scalar-valued multiplier functions, an improvement of Bourgain’s original result
n [10]. Theorem 4.1 also gives multiplier theorems in Sobolev spaces, H' (X), and BMO (X); see
Corollaries 4.6 and 4.9.

Section 3 prepares for the proof of the main result of this paper. Bourgain’s work [10] leads to a
variant of the Littlewood-Paley decomposition (Corollary 3.3) and some precise norm estimates for
scalar multiplier functions (Proposition 3.6). Also needed is a sharping, Corollaries 3.10 and 3.11,
of results in [14] on Fourier estimates on Besov spaces. Section 2 collects necessary definitions (such
as UMD and Fourier type) and some basic properties of these classes of Banach spaces.

Analogous results for multiplier theorems on Besov spaces By . (]RN , X ) are contained in [14]. In
this setting, the proofs are much more elementary and the UMD assumption and R-boundedness are
not necessary. The new technique developed in this paper can also be used to prove boundedness

results for singular integral operators (see [19]).
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2. DEFINITIONS aAnD NOTATION

Notation is standard. Throughout this paper X, Y, Z are Banach spaces over the field C
and X* is the (topological) dual space of X. The space B (X,Y) of bounded linear operators
from X to Y is endowed with the usual uniform operator topology, unless otherwise stated. The
Bochner-Lebesgue space L, (RN , X ), where 1 < p < 00, is endowed with its usual norm topology.
The space C' (R \ {0}, X) of functions f: RV \ {0} — X so that D°f is continuous and bounded
for || <1 € Ny is endowed with the usual supremum norm of f. If convenient and confusion seems
unlikely, the various function spaces F (RN , X ) in this paper are denoted simply by just E (X)
or E, with the exception of the Schwartz class function space. N = {1,2,...} is the set of natural
numbers while Ng = {0} UN. If s is a positive real number, then [s] := max {n € Ny: n < s}. The
conjugate exponent p’ of p € [1,00] is given by % + 7% = 1. Non-numerical subscripts on constants
indicate dependency.

The Schwartz class S (]RN , X ), or simply S (X), is the space of X-valued rapidly decreasing
smooth functions ¢ on RY, equipped with its usual topology generated by seminorms. As custom-
ary, S (RY,C) is often denoted by just S. Recall S (X) is norm dense in Ly (X) when 1 < ¢ < oc.
The space of X-valued tempered distributions &’ (RN , X ) is the space of continuous linear op-
erators L : § — X, equipped with the bounded convergence topology. Each m € L, (RN , X ),
where 1 < ¢ < 0o, defines an L, € S’ (RN, X) by Ly, (¢) := [pn ¢(t)m(t) dt; when convenient and
confusion seems unlikely, such a function m is identified with L,,.

It is well-known that the Fourier transform F: S (X) — S (X) defined by

FOO = 50 = [ () ds
RN
is an isomorphism whose inverse is given by
F1)® = 5 = @™ [ () ds.
where ¢ € S (X) and t € RY. Also, the Fourier transform F: &' (X) — &' (X) defined by
(FL)(¢) = L(p) := L(p) where LeS (X) ,peS
is an isomorphism whose inverse is given by (F~1L) (¢) = L (¢) := L (). The set
So(X) == {peS(X):supp@ is compact , 0 & supp ¢}

is norm dense in L, (X) for each 1 < p < oo (cf. [40, Lemma 2.3]).

For completeness a proof of the following fact is included.

Fact 2.1. Let f € Ly (RY, X) with N > 1. Define F € Ly (R, Ly (RV!, X)) by

F(t)(u)=f(t,u) for ueRY! andae teR.
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If the (N-dimensional) Fourier transform fof f has support in
Ky (r) = {(v1,...,on) € RN: |v;| <7},

then the (1-dimensional) Fourier transform F of F has support in [—r, 7).

Proof. 1t suffices to show Fact 2.1 for the case X = C; indeed, just consider functions of the
form x* o f for * € X*.
If f: R x RV=1 — C has the special form
m
g(t,u) = D hi(t) kj(u)
J
hj = hj |K1(7') S S(R, C) and i = kj ’KN—l(T) S S(]RNﬁl,C) ,
then f =377, hjk; and F(t) (u) = > ity by (1) k; (u); so, supp F C [—r,7].
For a general f € L, (]RN ,(C) with suppf C Ky (r), approximate f by functions g, of the

(2.1)

- L

special form in (2.1) in the Ly (RY,C)-norm. It then follows from Plancherel’s Theorem, first
applied in Lo (]RN , (C) and then applied in Lo (]R, Lo (RN 4,@)), that I can be approximated in
the Lo (]R, Lo (RNfl, (C))—norm by functions with support in [—r,r]. Hence s.uppla cl-rrl. N

The derivative, translation, and dilation properties of F and F~! that hold in the scalar-valued
case also hold in the vector-valued case. However, the Hausdorff-Young inequality need not hold;

thus, one has to consider the following class of Banach spaces that was introduced by Peetre [28].

Definition 2.2. Let 1 < p < 2. A Banach space X has Fourier type p provided the Fourier
transform F defines a bounded linear operator from L, (]RN , X ) to Ly (RN , X ) for some (and thus
then, by [22], for each) N € N. The Fourier type constant F, y(X) of X is then the norm of
FeB(L, (RN, X), L, (RN, X)).

Remark 2.3. The simple estimate || Ff(t)[x < [/fllz,x) shows that each Banach space X has
Fourier type 1 with F; ny(X) = 1. The notion becomes more restrictive as p increases to 2.
A Banach space has Fourier type 2 if and only if it is isomorphic to a Hilbert space [24]. A
space Lg ((©, %, 1), R) has Fourier type p = min(q,q¢’) [28]. If X has Fourier type p € [1,2]
and p < ¢ < p/, then F, n (X) = Fpn (X*) = Fpn (L (RY, X)) for each N € N (cf. [14]). Each
closed subspace (by definition) and each quotient space (by duality) of a Banach space X has
the same Fourier type as X. Each uniformly convex Banach space has some non-trivial Fourier

type p > 1.

Definition 2.4. Let 1 < ¢ < oo and m : RV \ {0} — B(X,Y) be a bounded measurable function.
Consider the Lo (RN, Y) functions

Tof = [mF] €Lu®.Y) for fes®EYX). (2.2)
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Then m is a Fourier multiplier from L, (RN , X ) to Lg (RN , Y) provided there is a constant C so
that

1T flr, @y <C I,y x) foreach feS(RY,X)
in which case, the operator T, € B (Lq (]RN, X) Ly (RN, Y)) uniquely determined by (2.2) is the

Fourier multiplier operator induced by m.

Since multiplier theorems need not, in general, extend from the scalar case to the Banach space
case, the class of UMD Banach spaces is considered. There are several (equivalent) formulations of

this geometric property of a Banach space; below is one which is pertinent to the setting here.

Definition 2.5. A Banach space X is a UMD space if and only if the Hilbert transform

Hf(t) = PV — f(—s)ds . feS(X)

— S

extends to a bounded operator on Ly, (R, X) for some (and thus then for each) p € (1, 00).

Thus X is a UMD space if and only if m: R\ {0} — B (X, X) given by m(t) = sign(¢) Ix is a
Fourier multiplier on L, (R, X) for some (and thus then for each) p € (1, 00).

Remark 2.6. a) L, ((2,%, 1) ,R) spaces, where 1 < ¢ < oo, are examples of UMD spaces. Closed
subspaces of, the dual of, and quotient spaces of a UMD space are UMD spaces. If X has UMD
and 1 < ¢ < oo, then Ly(RY, X) has UMD. (cf., e.g., [1, Thm. 4.5.2]).

b) A UMD space has a uniformly convex renorming. A space with a uniformly convex renorming
is reflexive and B-convex. Bourgain [8, 10] has shown that each B-convex Banach space has some

non-trivial Fourier type p > 1.

The notion (cf. [38]) of R-boundedness, which provides a vector-valued substitute for Kahane’s
contraction principle, is needed to extend scalar-valued multiplier theorems to operator-valued

multiplier theorems.

Notation 2.7. Let {ey}rez be a sequence of {—1,+1}-valued, independent, symmetric random
variables on some probability space (£2, %, ). For example, one can take an enumeration of the se-
quence {ry, }nen of Rademacher functions where 7, (u) = sign sin(2"7u) on [0,1]. Let {e;} and {}.}

be independent copies of {—1,+1, }-valued, independent, symmetric random variables.

Definition 2.8. Let 7 C B(X,Y) and p € [1,00). The number R, (7) is the smallest of the con-
stants R € [0, oo] with the property that, for each n € N and subset {7} };L:l of 7 and subset {z; }?:1
of X,

> ()T < RID &0
j=1 J=1

Lp(Q,Y) Lp(9,X)
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The set 7 is R-bounded provided R,(7) is finite for some (and thus then, by Kahane’s inequality,
for each) p € [1,00). In this case, R,(7) is called the R,-bound of 7.

The Banach space notion of Rad (X) provides a convenient way to view R-boundedness.

Definition 2.9. Let X be a Banach space. Then

Rad (X) := {{z;}jez € X% Zn gj (1) x;: @ — X is convergent in Lo(2, X)) }.

j=—n
When equipped with one of the following equivalent norms, where 1 < p < oo:
et = [Ei 5 0n], o
Rad,, (X) is a Banach space. When confusion seems unlikely, Rad, (X) is denoted by just Rad (X).
Much can be found about Rad (X) in the literature (see, e.g. [12]).

Remark 2.10. a) A sequence {T}};ez from B(X,Y) is R-bounded if and only if the mapping

T
Rad, (X) > {xj}jez - {zjj}jez € Rad, (V)

defines an element in B (Rad,(X),Rad,(Y’)) for some (or equivalently, for each) p € [1,00); in
which case, Ry ({Tj}jez) = T ]l5Rady(x)Rady(v))-

b) If X has Fourier type p then so does Rad (X). If X has UMD then so does Rad (X). This
follows from Remark 2.3, Remark 2.6, and the fact that Rad (X) is a subspace of Ly (X).

c) Note that {2}, € Rad (X) if and only if the series Z;i’in €j (+) x; converges almost surely. If X

does not (isomorphically) contain ¢y and sup,, ;j—Ln

then {z;} .., € Rad (X).

i () xjHL ) is finite for some p € [1, 00),
P

Besov spaces serve as a tool in this paper (see [15] for further details). Among the many equivalent
descriptions of Besov spaces, the most useful one in this context is given in terms of the so-called
Littlewood-Paley decomposition. Roughly speaking this means that one considers f € S’ (X) as a
distributional sum f = ), fi of analytic functions fi, := @5 * f whose Fourier transforms have
support in dyadic-like intervals {supp @i }r and then defines the Besov norm in terms of the fg’s.

Here, {¢k }ren, is a partition of unity chosen as follows.

Notation 2.11. Take a nonnegative function 1 € S (R, R) that has support in [27!, 2] and satisfies

> rez¥(27Fs) =1 for each s € R\{0}. Let pp(t) := ¢ (27%[t]) if k € Nand o (t) := 1= cn k(1)
Note that o, € S (RN, R) for each k € Ny.

Definition 2.12. Let 1 < ¢, < oo and the smoothness index s € R. The Besov space By, (RN, X)
is the space of all f € &’ (RN , X ) for which

1y ey = ||[{2 @)}

o)

(2.3)

k=0 11¢,(Lq(X))



OPERATOR-VALUED FOURIER MULTIPLIER THEOREMS ON L,(X) 7

is finite. B, (RY, X), together with the norm in (2.3), is a Banach space.

Different choices of {¢y}’s lead to equivalent norms on B, (RY,X) (cf. [29, Lemma 3.2]).

Weighted Besov spaces will give a precise estimate for the Fourier transform on Besov spaces.

Definition 2.13. Let 1 < ¢ < oo and A = {ag}ren, be a sequence of non-negative real numbers.
Then B;' (RY, X) is the space of all f € 8’ (RY, X) for which ¢y = f € Lq (RY, X) for each k € Ny

and

HfHB;I“(RN,X) = Z ar || ¢ * fHLq(RNg() (2.4)
keNy

is finite. B;JA (RN, X), endowed with the norm in (2.4), is normed linear space.
Other function spaces are also considered in this paper.

Definition 2.14. Let 1 < ¢ < oo and m € Ng. The Sobolev space W " (RN,X) is
W' (RY,X) = {feS (RY,X): D*f €L, (RY,X) foreach a e€N) with |af <m} ,
equipped with the norm

Wlwperx = 30 1Dl mv.x -

0<]al<m

It is well-known that the Sobolev spaces are Banach spaces. For more information regarding

Besov and Sobolev spaces, see [2, 14, 29, 30].

Definition 2.15. Let 1 < ¢ < oo and s € R. The Bessel potential J°: S (RN,X) — S (RN,X) is
/2 ~ v

given by J*f := [(1 + H2>S ) } . The fractional Sobolev space H, (RY, X) is the completion

of S (RY, X) with respect to the norm ”fHHg(RN7x) = |7 fll L, @&~ x)-

The Banach spaces H (]RN , X ) are also called Liouville spaces and Bessel potential spaces. If X
has UMD then H}' (RY, X) = W (RY, X) for ¢ € (1,00) and n € N (see [34, (15.55)]).

Definition 2.16. Let X be a Banach space.
a) For a locally integrable function f: RY — X let

1
wmmmy—wmaéww—mmw (2.5)

where the sup is taken over all cubes of RY and fg = Q| fQ f(t) dt. BMO (X) is the space of
such functions f for which || f|lgyo(x) is finite, endowed with the seminorm given by (2.5).

b) A function a € Lo (RN,X) is an atom if a is supported in a cube Q and [a(t) dt = 0
and [la|;_ < |Q|™'. The Hardy space H, (RY, X) is the space of all f € Ly (RY, X) which can

be represented as f =) Anan where {\,}, € {1 and each aj, is an atom. The norm | f| 5, is the
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infimum of ) |A,| over all such representations.

¢) The weak-L; space L}* (RN , X ) consists of all measurable functions f: RY — X that satisfy
HfHL\{vk(RN’X) = iu;g A ({teRY: If®)]x > A}) < oo (2.6)
>
It is well-known that the expression ||-|| Ly in (2.6) is a quasi-norm on L}¥ (RY, X) with

1 + gl ey ) < 2 [l ) + l9lpn )] -

The balls with respect to ||| Ly define a linear topology on Ly* (RY, X) and LY (RY, X)), endowed

with this topology, is a quasi-Banach space.

3. STEPS TOWARDS MULTIPLIER THEOREMS

Bourgain [9, N=1], and in the higher dimensional case McConnell [27] and Zimmermann [40],
showed a generalization of the Mihlin’s multiplier theorem: Theorem 3.2. The following notation

simplifies the statements of their result and results to follow.

Notation 3.1. Let MY (X) be the set of all measurable functions m: RV \ {0} — X whose dis-
tributional derivatives D®m are represented by measurable functions for each a € N}’ with |a| <1

and
Il xy = sup {1 ID"m @]l - ¢ € RY\{0} . @ €N, Jal <1} < oo
where | € Np.

Theorem 3.2 ([9, 27, 40]). Let X be a UMD space and 1 < g < oo. If m € MY (C) then m(-) Ix
is a Fourier multiplier from Ly(R™, X) to Ly(RN, X) with | Tl < Cx N HmHM%(C)'

Multiplier theorems such as Theorem 3.2 imply Littlewood-Paley decompositions such as Corol-

lary 3.3. (Recall that {e},;, was defined in Notation 2.7).

Corollary 3.3. Let X be a UMD space and 1 < q¢ < oco. Let ¥g € S (RN,R) be a nonnegative

function that satisfies, for some n € N,
supp Iy C {tGRN:QZS\t\ §2L} for some I, L € Z
ZkeZ Oy (t) =1 for each t € RN \ {0} where Uy, (t) := o (2_”kt) .

Then there is a constant C' = Cx n,q9, S0 that

> ek (Jrx f)

kEZ

< Cfllpyev.x) (3.1)
Lq(RN,X)

1
Il @y x) < Ee

for each f € L, (RN,X).
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Proof. For K € N and u € 2, let

K

Mk () = Y ewide() : RY\{0} - C. (3.2)

k=—K

Note that, for a fixed - € RV \ {0}, there are at most £=L + 1 non-zero summands in (3.2).
Thus m,, x € MY (C) with

L—1

So by Theorem 3.2, there is a constant Cx y 4 so that

K
y L—1
sup > e (u) (g * f) < Cx,Nyg <—n +1> Dol vy ey 1fllz,ce)  (3:3)
Kenllh=—K Lo(X)

for f € S(X). This gives the desired upper estimate in (3.1).
As usual one obtains the lower estimate from (3.3) and the corresponding inequality for X*.

Since supp ¥ and supp ¥4, can overlap only for |j] < %, for each f € S, (X) and g € S, (X™)

(9 F oy = D0 D (Dkyxg Jexf)y x

i<t Rz
= > E <Zsm(1§m+j*g) ,ZEk(ﬁk*f)>

|j|<% meEZ keZ Lq¢(X)

9 1/2 2 1/2

< Y (B cn (s #0) E | ek (i + )

lil<£t meZ Ly (X*) keZ L¢(X)

~ 2(L —1 =
< Cx,Nq,o <%+1> Hg”Lq,(X*) E ng (I * f)

kEZ

Lq(X)
by Kahane’s inequality and (3.3) applied to g € Ly (X*). Supping over all g € S, (X*) with

191l ,(x+) <1 gives the lower estimate in (3.1). [ |
q

Notation 3.4. There is (cf., eg. [6, Lemma 6.1.7]) a nonnegative function ¢y € S (RN , R) satisfying

suppgo C {te RV: 271 <[t <2'}
3 o1 o 1BV (O] wher 0 o ()

Thus one can take 99 = ¢g in Corollary 3.3.
Note that

supp ¢ C {t eRN: 21 < |t] < 2’““} ;
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thus, supp ¢y, and supp ¢, can overlap only for j € {—1,0,1}. So fix j € {—1,0,1} and let

o = ¢j_1+ ¢+ dj1

Ui (1) == o (2_% . ) for each k € Z .
Then
supp Yo C {t eRN: 2172 < It| < 2j+2}
Yk = Qjy3k—1 + Pji3k + Pjr3kr1  foreach ke Z.
Thus one can also take ¥y = g in Corollary 3.3. Note that if
supph C {t € RV 2it3n=1 < |4 < gitdntl

then

h ifk=n
h by = .
0 ifk+#n

for each k € Z.
The next lemma transfers [9, Lemma 10] from T to RY.

Lemma 3.5. Let X be a UMD space and 1 < p < co. Consider translations {ngs}

m
=1

L, RY,X) > f o (ro,5f) () == f(- + 6;5) € L, RY, X) ,

for 6; € R and a fized unit (in Euclidean norm) vector s € RN, Let fi €Ly (RN,X) satisfy

1/2
~ N 2
supp fj C Bn(rj) = {(vl,...,vN) € RY: [ijl |v;] } < Tj} .
Assume that |6;| < % for a fized constant K > 2 and % > 2. Then

m m
E szzl 6j70j8fjHLp(RN,X) < CX,NJ? (an) E HZ]‘:1 6jfjHLp(RN,X) '

Proof. Without loss of generality, { fj};."zl Cc SRV, X

). Indeed, for each f € L, (]RN,X) with
supp]? C By (r) there is a sequence g, € S (RN,X), with g, — f in Lp-norm, along with
p€eS (RN,(C) such that suppy C By (r+¢) and ¢ = 1 on By (r); thus, ¢ x g, — f in L,-
norm and supp (@ * g,)” C By (r + ¢).

STEP 1: REDUCTION TO THE ONE-DIMENSIONAL CASE.
Since the L, (RN, X)—norm is invariant under rotations, it suffices to take s = e; := (1,0,...,0) €

RN, If N > 1, then define Fj € L, (R, L, (RN~ X)) N Ly (R, Ly (RV™1, X)) by

F;(t)(u) = fj (t,u) for weRY™T andae tcR.
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Then suppﬁ’; C [—rj,7;] by Fact 2.1. If Lemma 3.5 holds in the one-dimensional case, then, with
the help of Remark 2.6a,

E HZ sjm]elf]H ~E HZ £j7s, F‘

Lp(RN X

Ly(R,Lp(RN-1 X))

CX,N,p (an E HZ] 6ij‘

IN

LP (RfLP (RN71 ’X))

= Cxnp (INK) E sz 8j‘f"HmeN,—X)

Thus, without loss of generality, N = 1 and s = e; € R.
STEP 2: THE TRANSFERENCE.
For f € S(R, X) and € > 0, define the 2r-periodic function

- () (34)

nez

By the Poisson summation formula (cf. eg. [20])

) = 5 > Flenyeins | (3.5)
i.e., the n'" Fourier coefficient ﬁ(n) of I, with respect to the discrete Fourier transform on
Ly (=7, 7) is 5= f (en).
For a fixed # € R

n 11 p e\ 0 o P
Sl (s+£0)HX ds =0 IF (¢ + 0% dt. (3.6)

To see (3.6), first note that, by (3.4),

L.

e F, (s—i—e@)”X ds = (3.7)

| —r,/s+e0 1, (s+ef+2mn\|]P
/_ﬁgpf< - )+Zo¢nezepf< € )
For the n = 0 term in (3.7)

X
T 1 0 V4 +— c [e'e}
/_ c q(”j ) ds = / If e+ e =0 / I (6 + 0)|1% dt.

X -Z -
Next estimate the remaining terms in (3.7) for € |0| < 7/2 using the fact that, since f € S (X),
there is a constant C' so that || f ()||x < C|t| >

ds .

p 1/p
™ 2 0 1 ™ e
S f(i) is| <ot Y [/ |3+2m+59\—2pd8}
- 0#nEZ € X 0#nez =7/~
o 1 2 3\ 2
< Ce* v (2m)P = Z<2n—§>
n=1
e\, 0

0.
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Thus (3.6) holds. Furthermore (3.6) clearly extends to linear combinations:

ng

for each choice {Ej};n:l of signs +1. Thus

e\, 0 "
) (- +€6;) —= D e fi(-+6;)
Ly(T,X) g=1 Lp(R,X)

bS] |

ZEJ b (F))_(- + €6;) DT . (3.8)

Lp(T,X) =1 Lp(R,X)
If supp]?j C [~rj, 7], then by (3.5), supp ((Fy).)” C [-2,2]. If |9;] < % and Tjjl > 2,
then, for € small enough, there is a strictly increasing sequence {nj};ﬁ:l of positive integers so
that 2"~1 < 22 < 2% and thus |e6;| < Tﬁa < 22% Hence by [9, Lemma 10] applied to {(F})_} €

L, (T, X) and {e6,},

_1 1—1
Z&:J z (- 4 €6;) <CME)E (> e v (F), (3.9)
Ly(T,X) =1 Ly(T,X)
for £ small enough. Letting e \, 0 in (3.8) and (3.9) finishes the proof. [

Lemma 3.5 leads to the following corollary to Theorem 3.2.

Proposition 3.6. Let X be a UMD space, {ax}rez be a sequence from C with |ax| < 1, and
1< g <oo. Fizhe MY (C).
(a) Assume that supph C {t € RN : b= < |t| < b} with some b>1 and d € N. Then
= Y awh (b7)
kEZ

. . . . N .
is a Fourier multiplier on Lq (RN, X) with |T,| < Cx,nq d HhHM%(C)'
(b) Assume that supph C {t € RV : 271 < |t| <2} and s € RN. Then

= Z ag exp (z’s o7k t) h (2_kt)

kEZ

is a Fourier multiplier on Ly (RN, X) with || T, || < Cx.ng In (24 |s]) HhHM%(C).

Proof. Throughout this proof, the C;’s are constants that depend on at most: X, N, and ¢. To
simplify notation, let M := ML (C). Note that h(a-) € M and ||k (a-)| o = ||k[[»s for each a > 0.
Part (a) follows easily from Theorem 3.2: indeed, the support of h (b*’“) overlaps with the
support of h (b~™:) only if |m — k| < 2d; hence, n € M and ||n|| ,, < 4d ||h[| \,-
Now to show part (b). Note that the function hg (o) := exp (is - o) h (o) is in M with ||hg]| \, <
Cq {max {1, |s|NH |2|| o4 for some constant Cy that is independent of s. So the desired conclusion
for |s| <1 follows from part (a). Thus assume that |s| > 1.
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Fix f € S, (RY,X). Then
Tonf = > ar7i (b * f)

keZ
where

LRY.X) 5 g B (ng)() = g(- +27s) €L, (®RY,X)
and
hi (1) == h (2%') ,
which is a Fourier multiplier on L, (RN , X ) by part (a). Thus, by the Littlewood-Paley decom-
position Corollary 3.3, for an appropriate choice of ¥¢y (eg., Y9 = 1y of Notation 3.4 so that for

then ﬂkh?,n_t,_j = (5k,nh3n+j)7
1

2.

j=—1

IN

Z A3n+j T3n+j (h3n+j * f)
nez

1T fll 2y e x)

LQ(RNvX)
1

CQZE

j=—1

IN

Z €k 3k+j T3k+j (Makrs * f)
keZ

Lo(RN,X)

Thus, by Kahane’s contraction principle, Lemma 3.5, and then part (a),

Z€k7k (hk*f)

keZ

IN

HTmsfHLq(IRN,X) 6C2 E

Lg(RN . X)

Z&q (i * f)

keZ Lq (RN, X)
Cy In 2+ [s]) 1Pl pg N1, @y x) -

IN

C3In(2]s|) E

IN

This completes the proof of Proposition 3.6. |

The logarithmic estimate in Proposition 3.6b enters the proof of the next result, which is a

centerpiece of the proof of Theorem 4.1.

Proposition 3.7. Let X have UMD and 1 < q < co. Let k : RV — B(X,Y) be a strongly

integrable function such that
supp% C supp ¢o (3.10)

and

L MO gl ey () ds <A gl vyey  foreach g€ Ly (RY,Y7) (1)
where w (-) :==1n (2 + |-]). Set k; (-) := 2Nk (27 -).
(a) For each finitely supported scalar sequence {a;}jcz with |aj| <1 and

L() = > ajk() : RV 5 B(X)Y) (3.12)
JEL
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the operator

Tf = Lxf for feSRYX)
extends to a bounded operator T : Ly (RN, X) — Ly (RY,Y) with ||T|| < Cx ngqA.
(b) For each f € S (RN, X) andn € N

E | eikixf < Oxng A lfllL,@y x) - (3.13)
j=—n Ly(RNY)

Also, if Y does not contain co, then the summand in (3.13) can be taken over j € Z.

Proof. Recall that the ¢i’s were defined in Notation 3.4.

Since k is strongly integrable, f — k; * f is a bounded operator from L; (RN , X ) to In (RN , Y).
Fix q € (1,00).

Fix f =" 2;g; withz; € X and g; € S (RN,(C) and m € N. Let h; := ¢;_1 + ¢j + ¢;11; note
that h; = 1 on supp ¢;. Put fj := hj f. Note that [k; * f;]"=k; h; f = k; f = [k; * f]” by (3.10).
Thus, for a.e. t € RV,

(Lxf)(t) = Y a; (s 1) (1) = o [ 2k - s
JEL JEZ RN
= k(s) ) aj fi(t—277s)ds = k(s) D aj (ro-isf5)(t)ds (3.14)
/RN ]GZZ /RN j%; 2
= / k(s)(ms * f)(t)ds
RN

where 7,9 (1) := g (- — a) and my(t) == >, a; exp (—is-277t) ho(277t). By Proposition 3.6
|77 fHLq(RN,X) < Cw(s) HfHLq(RN,X) (3.15)

for some constant C' = Cx n4 HQZ)OHM%(C)' If g € Ly (RY,Y™), then by (3.14), (3.15), and (3.11)

(g, L * f>Lq(Y)‘

IN

Lo 1 a0k e 1) 0 )y dsd
RN JRN

< [N Gl ooy It Fl 0 ds < CA gl

Thus [|L * fl|, &~ yy < CA|fllL,®y x)- Hence part (a) holds.
Part (b) follows formally from part (a). Indeed, for a fixed n € N and u € €, define Ly, (-) :=
S €j (u)kj(-). Then by part (a)

j=—n

(3.16)

Fllz,x) -

n

B3 eies = [ W # Pl oy du < CxnaAlflyev iy - (37
J=-n Le(RNY)

If Y does not contain cg, then L, (RN ,Y) does not contain ¢y [25] and so, by Remark 2.10c, the
sum in (3.17) can be taken over j € Z. Thus part (b) holds. [ |
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Remark 3.8. a) In Proposition 3.7, if (3.11) is replaced by [pn [5(s)ll5(xy) w(s)ds < A, then this
modified version of Proposition 3.7 remains true.
b) In Proposition 3.7, if:
(1) in addition, Y also has UMD,
(2) in addition, the function k* (-) := [k (-)]" : RV — B(Y*, X*) is strongly integrable,
(3) the condition (3.11) is replaced by:
1) Jan k() fll, vy w(s)ds < Al fllL, x) for each f € L, (RY,X) and 1 <r <2
(i) Jan IE* ()9, (x-) w(s)ds < Allgllp, -y foreachge L, (RY,Y*)and 1 <r <2,
(4) Cx n,q is replaced by Cx y,n g,

then this modified version of Proposition 3.7 remains true (for each ¢ € (1, 00)).
Proof of Remark 3.8. a) Indeed, the calculation in (3.16) can then be replaced by

/ B (s) (e % £) () ds
RN

IL* fllp,0n = ’

< / 1E ()l gx, vy l7s * fll, x) ds
Lq(Y) RN

< Clflly /R )o@ () ds < CANfllg,ix)

with the help of (3.14) and (3.15).

b) If ¢ € [2,00), then the modified Proposition 3.7 follows from the original Proposition 3.7 since
condition (ii) implies (3.11). So fix ¢ € (1, 2] and consider a function L of the form (3.12). Since X
and Y are UMD spaces, they are reflexive. Applying the original Proposition 3.7 to k* gives, by
condition (i), that

Kf = [LOI*[f(=)] for feS(RY, YY)

extends to a bounded operator K: Ly (RY,Y*) — Ly (RY, X*) with |K|| < Cy+ ng A. Since X
and Y are reflexive, K* isin B (Lq (X), Ly (Y)) and K* restricted to S (RN, X)is L(-)*f(—-). W

In the proof of Theorem 4.1, the assumptions Remark 3.8b will be checked by applying estimates
of the operator norm of the Fourier transform on Besov spaces. The Hausdorfl-Young inequality

holding in spaces with Fourier type gives a starting point for such norm estimates.

Corollary 3.9 ([14]). Let X have Fourier type p € [1,2]. Then the Fourier transform defines a

bounded operator

N,

F: BYP®RY,X) — L (RY,X) . (3.18)

p;

Furthermore, the norm of F is bounded above by a constant depending only on Fp ny(X).

A sharping of this result, in the spirit of the logarithmic estimate in Proposition 3.6, is needed in

this paper. Recall that Bg‘ was given in Definition 2.13 and {¢ }ren, wWas given in Notation 2.11.
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Corollary 3.10. Let w: RY — [0,00) be a measurable function so that
.= oNk/p h keN
ap = wasupp%HLoo(RN’R) < oo for eac eNp.

Set A := {ak}keNO' If X has Fourier type p € [1,2] then the Fourier transform defines a bounded
operator

F: B} (RY.X) — L ((RY,w(t) dt),X) . (3.19)

Furthermore, the norm of F is bounded above by a constant depending only on F, n(X).

Note that if w = 1 in Corollary 3.10, then (3.19) reduces to (3.18). Corollary 3.9 and Corol-
lary 3.10 remain valid if F is replaced with F 1.

Proof of Corollary 3.10. Let {Jy}ren, be the partitioning of RV given by
Ty = {teRszk_1< ]t]§2k} for ke N and Jo:={tc RV : |t <1}

and set ¢_1 =0 and J_1 = ) to simplify notation.
Fix f € Bg‘ (RN, X). For each k € Ny, since g * f € L, (RN, X) and X has Fourier type p, one
has that ¢y, - f=7r (Ge = f) € Ly (RY,X); in particular, the distributional Fourier transform

of f is represented as a measurable function. Thus for each m € Ny

m

FXom = Y. enfx,

k=m-—1
and so (with a_; :=0)
<

L k:zmzl

EOE

—~ [1+ H]N/p

471 -N/p
fok 1 F—H']

4

Hf *XJm w‘ XJm X Jm WX supp @y

Ly (X) Lp(R)

XJm XJm

4

L)Y
4

m
< 2
—

k

Hfsok) | ||stuppsak||Loo(R)
L (R)

Ly (X

ki:_ (Qk)N/p HﬁpkHLp,(X) a2~ NE/P [/Jm <#>N dt]

C k—zm—l ag HJ?%HLPI(X) < CFpn(X) k—zm—l ak ||@x * fllL,x0)

1 Lp(R)

1/p

IN

1

IN

for some universal constant C'. Thus
L P v a < 207550 1l
as needed. [ |

Let X and Y have Fourier type p and m € B]]I 1/p (RN ,B (X, Y)) Then Corollary 3.9 implies that
m € Ly (RN, B (X, Y)) only if p = 1 since if p > 1 then B (X,Y") usually does not also have Fourier
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type p. However, for p > 1, one can at least conclude from Corollary 3.9 that for each x € X

/]RN || [m () .’B] (t) ||Y dt S Hf‘|BI])\”{p(RN,Y)~>L1(RN,Y) ”mHBix{p(RN,B(X,Y)) ”xHX :
A somewhat stronger statement than this, which is made possible by Corollary 3.10, is needed.
Corollary 3.11. Let X and Y have Fourier type p € (1,2] and 1 < ¢ < p. Let w: RN — [0, 00) be
a measurable function so that
ap = 2Nk/4 lwXsupp il 1 gy gy < 00 for each k€ Np .
Set A = {ap}ren, and let m € B;;‘ (RN, B(X,Y)) N Ly (RY,B(X,Y)) have norm M in B(’;‘.
Then then there is a constant C, depending only on Fq n (X) and Fyn (Y), so that

/R AL Oy, vy w(E) dt < C M Sl @y x) for cach f € L (RY, X)  (3.20)

/RN i O (g )y, @ xoy w (t) dt < C M |lgllp, gy« for each g € Ly (RY,Y*)  (3.21)

for each 1 <r <¢'.

Note that if w =1, then Bj;‘ (B(X,Y)) = Bgl/q (B(X,Y)). Also, Corollary 3.11 remains valid if

one replaces m with m in (3.20) and (3.21).

Proof. The first step is to show that the operator
LRV, X) 5 f—T—@m() fw() € Li (RY,L, (RV,Y))
is bounded for r =1 and r = ¢.

Fix z € X. Note that m(-)x € B(’;‘ (Y) has norm at most M ||z||y since m € B(‘;‘ (B(X,Y))
has norm M and that [m (-)z]” (t) = [m(t)] (z) since m € Ly (B(X,Y)). Thus by Corollary 3.10
applied to m (-) z, there is a constant C, depending only on F, n (Y), so that

L @@l ly wd < el

Thus, for simple functions f € Ly (X

L @17 ) iy wie) de = /R/ (5) Iy wit) dtds < CvM [[fllpycx)

Thus ”Tl” S ClM
Let X := Ly (RY,X) and Y := Ly (RY,Y). Then Fyn (X) = Fyn (X*) = Fyn (X), and
likewise for Y, by Remark 2.3. Extend m to an operator RN > ¢t — m(t) € B (Y, ?) by
[m(t) f](s) == [m@)](f(s)) for feX, seRY.
Note that m € B(‘;‘ (B (7, ?)) NLp (B (7, ?)) has norm M in B(‘;‘ since for each t € RN

m®lsxy) = ImOlsxyy and  [(@exm) Olgxy) = [1(@rxm) Ollpxyy -
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Fix a simple function f € X. Note m (-) f € BqA (Y) has norm at most M || f||x and

) 7)) = m@)[fC)] -
Thus by Corollary 3.10 applied to 7 (-) f, there is a constant Cs, depending only on F, n (7), SO
that
/RN lm @) [f Ollly w (@) dt < Co M || fllx
Thus ||Ty|| < CoM.

Thus (3.20) holds for 1 < r < ¢ by interpolation in the scale of Bochner-spaces (see [6,
Thm. 5.1.2]). Claim (3.21) is obtained by applying the same argument to [m(t)]* € B(Y*, X*). W

One more preparatory result is needed for the proof of Theorem 4.1. The proof of the following
lemma is due to N.J. Kalton and replaces our original (more complicated) proof. Recall that {ej }rez

and {e} }xez were given in Notation 2.7.

Lemma 3.12. For any Banach space X and any array {xp by ez from X

Z EkTkE

kEZ

E. < Eeo || Y exeizm

¥ klEZ X

Proof. For oy, € {—1,1}, the sequences of random variables {e;}, {e}.}, {aw ex}, and {aj €} } have

the same distribution. Hence by Fubini’s theorem

!/ /
Eeo | Y ertian| = Eoo | Y axcucreizm| - (3:22)
klEZ x RISY/A x

Let {nx} be a sequence of {—1,+1}-valued, independent, symmetric random variables that is

independent of {e;} and {e} }. Integrating (3.22) gives

/ ! !
Ege § ekezpl|| = EeoEy E Mk MEKEIT kL > E.o ||Ey E NkMELEI TR
kleZ X kleZ X kl€Z X
!
= E.o E ERELT kK E. § ERTRE| s
keZ X k€EZ X

again since u — ¢y, (u) - €} (v), for each fixed v, is a sequence of independent random variables with

the same distribution as {ej}. [

4. FOURIER MULTIPLIER THEOREMS

This section explores operator-valued Fourier multiplier operators. The assumptions of the main
result, Theorem 4.1, may be somewhat awkward looking. However, with respect to the smoothness

of the multiplier function, it is a rather weak assumption that will make it easy to derive, in a
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unified way, several results modeled after classical conditions, such as of Mihlin and Hérmander,

as shown by the corollaries to follow.

Theorem 4.1. Let X and Y be UMD spaces with Fourier type p € (1,2] and 1 < ¢ < oo. Set
X = Rady (X) and Y = Rad, (Y). Let m : RN\ {0} — B(X,Y) be a measurable function that
induces a mapping M : RN — B ()Z', 17) ,

M(s) := {gbo(s)m(ka)} for s #0 and M(0):=0,

kEZ

that satisfies M € B;;‘ <RN7B ()?,?)) with norm D where A = {(kV 1)2Nk/p}k€N0. Then m
is a Fourier multiplier from Ly(RN,X) to Ly(RNY). Furthermore, HTmHLqHLq < CD for some

constant C depending on: X, Y, N, p, q, and ¢g.

Remark 4.2. a) Recall that each UMD space has Fourier type p for some p > 1.

b) Remark 2.10 provides a convenient way to compute the norm of M; indeed, || M (s)]| B(XY) =
do(s)Rq ({m(2¥s): k € Z}) for each s € R,

c¢) For the A in Theorem 4.1, there are continuous embeddings

Wl (RN, z) ¢ B3, (RY,Z) ¢ B RY,2) c BY["(RY,2)

where N/p < s <l e Nand r € [1,c].
d) The exponent N/p is best possible in the following sense. Let A4, := {(kV 1) 2Nk/p}k€N0. Note

that the spaces Bﬁp form a scale since, for 1 < p < g < oo,
B)» (RN,Z) < Bj"(RY,Z) .

In general it is not possible to replace B;;l ?in Theorem 4.1 by a larger space Bf ¢ for some q > p.
This follows as in [14, Remark 4.9].

Proof of Theorem 4.1. Throughout this proof, the C;’s denotes constants which depend on at most:
X, Y, N, p, q, and ¢g. Note that X and Y are UMD spaces with Fourier type p by Remark 2.10.

Since M € L (]RN,B ()?,?)) has bounded support, M € L; (RN,B ()?,?)) Define the
function K by:

RNSs — K(s) = (F'M)(s)€B ()2'17) .
Corollary 3.11 applied to M € B;‘ <B <)?,1~/>> with w(t) = In (2 + |t|) gives that for 1 < r <2
/ IK@F (), 3y w®) dt < CD|F|, gy  foreach FelL, (f()
RN

/RN IE®) GOl -y w®) dt < CD|G], 3.y foreach GeL (17) .
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Also, K and K* are strongly integrable by Corollary 3.9 and supp KcC supp ¢p. Thus Remark 3.8b
can be applied to K € L (B ()Z,Y/)) Hence for Kj (-) :== 2" K (27 - ), condition (3.13) gives
that for each F € § (RN, )Z)

E (> eK;xF < GOD|F|, 5 - (4.1)
JEZL Lq(f/)
To see that inequality (4.1) implies the boundedness of T),, fix f € S, (X) and let hy 1= ¢p_1 +
O + ¢p+1. Then F := {hk * f}kez esS ()~(> and by Corollary 3.3

< Gy - (42)

1
||F||Lq()~<) = 'Zl H{ékﬂ * f}keZHLq()}) =3 H{gﬁk ¥ f}kGZHLq()?)
—

Note that M € L., implies that m € L.; thus it follows from Remark 3.8b that

K F = {6 5 by % Ty ,)f}ke e, (V) = Rad, (L, (V)

Z

since, for a.e. s,
(Kj«F) (s) = M (2_js) F(s) = {gbo (Z_js) m <2k_js) hi () f(s)}
= {0 @ m®) (Tums ) ()}

Since hy, is 1 on the support of ¢, if j = k then gZ;j * Py, * Tm(Qk*j ) (f) = ¢j * (T}, f). Hence, by
Corollary 3.3 and Lemma 3.12,

kEZ

1Tnfll, vy < CoBe||d ejdy*Tuf

Jer Ly(Y)
< C4E. o Z o Z gjd; * hy, * T (ar-s .)f (4.3)
keZ JEL Lo(¥)
= C4E5 Zaﬂé]*hk*Tm(Qkfj)f
JEL keZl|Rady (Lo (Y))
< 05 Ea ZEj {éj*hk*Tm(Qk_j')f}keZ = C5 Es ZEjKj*F
ier Lo(Y) Jer Lo(Y)
Combining (4.1), (4.2), and (4.3) gives that ||TmeLq(Y) < CgD Hf||Lq(X). |

The following notation simplifies the statements of corollaries to come.

Notation 4.3. Let RMY (B(X,Y)) be the set of all measurable functions m: RV \ {0} — B(X,Y)

whose distributional derivatives D®m are represented by measurable functions for each o € N¥
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with |a| <1 and

Imllpagy oy = max Ry <{|t||a‘ Dom () :teRN\{O}}> < 0 (4.4)
0
|| <1

where [ € Np.

Note that if X and Y are Hilbert spaces, then ||m||MlN(B(X7y)) = ”mHRM{V(B(X,Y)y

The following Mihlin-type multiplier theorem is an immediate consequence of Theorem 4.1.

Corollary 4.4. Let X andY be UMD spaces with Fourier type p € (1,2] and | := [%} +1. If
meRMY (B(X,Y))  with  |lmllgpnsxyy = A

then m is a Fourier multiplier from Lq(RN,X) to Lq(RN,Y) for each q € (1,00). Furthermore,

||TmHLq—>Lq < C A for some constant C independent of m.

Remark 4.5. a) Corollary 4.4 applies to Hilbert spaces X and Y with [ = [N/2]+ 1, which recovers
Schwartz’s classical result. For arbitrary UMD spaces, Corollary 4.4, but with | = N, was first
shown in [35], for a second proof see [16]. Furthermore, [36, Remark 3.7] shows that the expo-
nent [ := [N/p] + 1 is best possible for L,-spaces.
b) The proof will show that the assumption (4.4) on m can be replaced by the following formally
weaker assumption:

max  sup Ry ({‘2’%‘04 Dm(2%): k € Z}) = A<oo. (4.5)

a€Ny' 4eRN
| <l 27 1< ¢ <2?

Proof of Corollary 4.4. Let B := B(Rad, (X),Rad, (Y)). Without loss of generality, via an ap-
proximation argument, suppm C {t eRVN: 27" < Jt| < 2”} for some n € N. Thus, if s € RY
then M (s) := {¢o (s) ks)}kez € B with the k' coordinate of M (s) being zero for |k| > n. By

Leibniz’s rule and Remark 2.10a,

IMlyyev,s < D2 2% 161 DM (1) Xupp oo (1)

e Ly(dt,B)
<>y 2“'( )H|t|°‘ Bl DB, (t {‘2’%‘ (2’%)}
la|<l B<a kezll L, (dt,B)
> 2|a( > H|t|'°‘ D> Fgo (t) R ({‘2’%’@ D’m (2’%) ke Z}) X2 <jii<) .
la|<l B<a Ly (dt,R)

By (4.5) and Holder’s inequality, M € Wll) (]RN , B). By Remark 4.2c, Theorem 4.1 applies. |

Corollary 4.6. Let X and Y be UMD spaces with Fourier type p € (1,2] and [ := [%} + 1. Let
m € RMY (B(X,Y)) and set ||mHRMlN(B(ny)) = A.
(a) Then m is a Fourier multiplier from Hy (RN, X) to Ly (RY,Y) and Tonllgg, ., < CA for
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some constant C' independent of m.
(b) Then m is a Fourier multiplier from Ly (RN, X) to L¥* (RN,Y) and ||Tm||L1_)L11ﬂk < CA for
some constant C' independent of m.
(c) Then m is a Fourier multiplier from Lo, (RN, X) to BMO (RN,Y) and | Tl o < CA

for some constant C' independent of m.

Remark 4.7. A related result, which also covers the spaces H,, for p < 1 was found independently

by T. Hyt6nen [18].

A word about what is meant by a Fourier multiplier for UMD spaces X and Y for the function
spaces in Corollary 4.6 is in order. Since Sy (}RN,X) = {f eS (RN,X) e £ (1) dt = 0} is
norm-dense in H; (RN , X ), it is clear what is meant by a Fourier multiplier from H; to Li: in
Definition 2.4, just replace S by Sy and L, by either Hy or L;, accordingly. A linear mapping
T: Ly (RY, X) — LY% (RV,Y) is (uniformly) continuous if and only if

17N, = sup {IT Al IFl, <1} < o0
If a linear mapping 7: S (RY, X) — LY* (R, Y) satisfies
HTf”L;vk(RN,Y) < CHfHLl(]RN,X) for each f e S (RN,X) )

then, since & (RN , X ) is a norm-dense subspace of Ly (RN , X ), there is a unique continuous linear
extension T': Ly (RY,X) — LY*(RM,Y) of T and HTHLIHLsz < 2C. Thus it is clear what
is meant by a Fourier multiplier from L; to L‘l’Vk: in Definition 2.4, just replace L, by either L;
or LY¥, accordingly. The Schwartz class is not norm-dense in L; however, it is weak*-dense in L.

Since X and Y are UMD spaces (in particular, reflexive)
(H: (RN, Y*)]" = BMO(RY,Y)  and  [L; RV, V)] = L (RY)Y) ,

(cf. [9] for H;-BMO duality). Thus m is a Fourier multiplier from Lo, (RY, X) to BMO (RY,Y)
provided there is an operator T,, € B (Loo (RN, X) ,BMO (RN, Y)) satisfying:

Thnf = [mf}v for each fGS(RN,X) (4.6)

T, is weak™-to-weak™ continuous .

Note that (4.6) guarantees the uniqueness of a norm-to-norm continuous operator, if it exists.

Proof of Corollary 4.6. Throughout this proof, the C;’s are constants that are independent of m
and the fixed n € N.
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For each j € Z and a fixed n € N, let

n
m; = mqu Mn = Z m;

j=—o0

k‘j = Thj Kn = Mn = i k‘j.

Jj=—00
Note that M,, € RM} (B(X,Y)) with
I Mnllg iy sxyy < CoA-

So Tw, € B (L2 (RN, X), Ly (RY,Y)) by Corollary 4.4. That Ty, satisfies parts (a) and (b), for
some constant C independent of m and the fixed n € N, follows from the Benedek-Calderon-Panzone
theorem for convolutions on vector-valued spaces (see [13, Ch. V, Thm 3.4 and Remark (3.3) on

p. 494]) if one can show that
/ =)z = K @ally de < AC el (4.7)
t|>2[s

for each s € RY and x € X. Inequality (4.7) is now shown via an adaption of the classical argument
in [32, Ch. VI, Sect. 4.4].
Fix € X. For a € N}¥ with |a| < I, by Leibniz’s rule,

IDm; (D)l gxyy < ACs2770
thus, since (D%m;)" (t) = (—it)* k; (t) and Y has Fourier type p,

1/p'

[/RN I[(—it)* &; (t) 2|2 dt] e

Thus for each [y € {0,1,...,1}

1/p
. i N
/ ID%m; ()l dt| < ACs271 25 |lall, .
supp ¢;

lo v w & —jlo
. H|t| ki(t)al| dt| < ACE 2 27 aly . (4.8)

Using (4.8) with [ = Iy, Holder’s inequality gives, for any a > 0, since N/p < I,

/ 1/p’ 1/p
/ ij (t)xHY dt < |:/ H’t’l ]{Jj (t) x P dt] [/ |t|*lp dt]
iz RN Y [t >a

1/p
4.9
|t 7t dt] (19)

< ACg 27 277 |z a? a
[t[>1

. N _g
< ACr (2Ja)f’ llz] 5 -

Similarly, taking Iy = 0 in (4.8) gives

, 1/ 1/p ,
/ Ik; (0 lly dt < U Ik; (6) |1 dt} [/ 1dt] < ACs (2a)
[t|<a RN [t|<a

N
p

2]l - (4.10)
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Choosing a = 277 in (4.9) and (4.10) gives
| s @aly < Acally
Let n; (t) :== [D%k;] (t) = (i el g, ; (t) for each j € Z. For g € N} with |8 <
HDﬁnj (t)HB(X,Y) < Ay 2l 2-ilAl
by Leibniz’s rule; thus, since [Dﬁnj]v (t) = (—i)lm t? Dk, (t) and Y has Fourier type p,

[ epews el af " e [ |, v

< ACH 9dlel 9—=ilBloiN/p
Arguing as above gives that

IN

1Dk @yl dt < ACw2 (4.11)

[l

dt | ds
v (4.12)
AC142 |n] [|lz]|y ;

indeed, just apply the Fundamental Theorem of Calculus to R" 3 s — k; (t + sh)x € Y and then
use (4.11). Fix s € RY. Note that the inequality

/| K= 92—k @l @ < A0 (4.13)
t[>2|s

Thus, for each h = (hy,...,hy) € RY,

IN

/RN lk; (t+ h) = — k; () x|y dt L+ sh)x

IN

JEZ
. . . : -1 X 1 .
implies (4.7). To see (4.13), let I'; := {] e N: 27 < |5 } and Iy := {j e N: |s] <23}.
By (4.12),

kj(t—s)x—kj(t dt < AC 27 < AC :
> / oy W €= )=k Ol dt < ACu lalx [I93, ., ¥] < ACus llellx

jely
By (4.9)
Z/ By (6= s)e— k() ally dt < 2 Z/ Ik ()l di
jels t|>2|| jer, Y It>11s]

N_g N
< 240 faly |ls3 X (25| < aci el

since N/p < [. This completes the proof of (4.7). Thus Ty, satisfies parts (a) and (b) for some

constant Cyg independent of m and n € N.
Towards showing part (a), fix f € Sg (R, X) and let

G = {9 e SR Y"): lglly v < 1} '
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Then
[T fllp, @y yy = sup (g, Tnf) = sup lim (g,Th f) < sup Lm |gll,_ v+ 1T, fll L, )
geG geG n—00 geG n—oo

< i (T gy ()~ paey 1l < ACs 1l -

n—0o0

Thus part (a) holds.

If fed. (RN, X) = {g eS (RN,X) s supp g is compact}, then T,,,f = Ty, f for n sufficiently
large. Since S, (RN, X) is norm-dense in L4 (RN, X), part (b) holds.

Part (c) follows from part (a) and a duality argument. Since X and Y have nontrivial (Fourier)
type, m* € RMY (B(Y*, X*)) and [m*[lgpy iy xe) < Cuo lImllgmy sy (cf eg. (39,
Thm. 2.2.14]). Thus Tp- € B (Hy (RY,Y*), Ly (RN, X*)) with || T+ ||, ., < ACa by part (a).
Hence (T),«)* € B (Loo (RN,X) ,BMO (RN, Y)) is weak*-to-weak™ continuous and is of norm at
most A Cy. Furthermore, (Trn+)* |s®y x) = Tin(—) ls@y x) - Thus part (c) holds. [ |

Remark 4.8. One can use the estimates in the proof of Corollary 4.6 to give a more direct proof
of Corollary 4.4 avoiding Besov spaces. We indicate this for p = 1,1 = [N] + 1: By assumption
M(t) = (¢po(t)m(2¥t)) and M(®) where |o| < N+1, have norm less than C'in B (Rad (X),Rad (Y)).
Estimates (4.9) and (4.10) applied to K(t) = M(t)" with p = 1 give [ |[k(t)]|dt < oo for the
operator norm on B (Rad (X),Rad (Y)). Now apply Remark 3.8a and finish the proof as in the
last part of the proof of Theorem 4.1.

Our results are easily adapted to Sobolev spaces. Corollary 4.9 gives a flavor of this for fractional

Sobolev spaces (see Definition 2.15).

Corollary 4.9. Let X and Y have UMD and Fourier type p € (1,2] and | := [%} +1 and s € R.
Assume that m € C' (RV \ {0},B(X,Y)) satisfies that
max Re ({ (14 [H2) ¢l (D*m) () : £ € RN \ {0}} ) = A

aeNg
o] <1

IA
g

(4.14)

Then m is a Fourier multiplier from H; (RN,X) to H;”“S (IR{N, Y) for each r € R and q € (1,00).

Also, ||Tm”HT—>H];+S < C A for some constant C' independent of m.
q

s/2
Proof. Tt suffices to show that n (-) := (1 + HQ) m () is a Fourier multiplier from L, (RY, X)
to Ly (RN , Y); for then, the following diagram

HI (RN, X) — HI*s (RM,Y)

Jrl lJrqts

L,(RY, X) — L, (RN)Y)
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commutes, where J": Hy (RN A ) — Lq (RN A ) is the isometry defined by

JU(f) = [<1+|-|2)"/2 f(-)]v for feSRN,Z).
But
1 Doty = 1o D% [ (141) )] 0
Dﬂ[ 14|

(1+17)"

] t [(1 - W)S/Q ¢l DB (2)

- 3 (5)qe

B<a

(4.15)

and the terms {---} in (4.15) are uniformly bounded on R¥ \ {0}. Thus the assumption (4.14)
gives that n € RMY (B(X,Y)) and so Corollary 4.4 finishes off the proof. [

Hormander’s condition takes here the following form.

Corollary 4.10. Let X and Y be UMD spaces with Fourier type p € (1,2] and | := [%} + 1.
Let m: RV \ {0} — B(X,Y) be a measurable function whose distributional derivatives D*m are

represented by measurable functions for each oo € N with || <1 and

o] P
max / [Rg({’th‘ Dam(th>:k€Z}>] dt = A < o0. (4.16)
aeNy  Ja-1qjt<2
laf <1
Then m is a Fourier multiplier from Lq(X) to Le(Y) for each 1 < q < oo. Also, [Ty, ., < CA

for some constant C' independent of m.

Proof. In the proof of Corollary 4.4, just replace (4.5) by (4.16) to see that Theorem 4.1 applies in
this setting also. u

The following corollary shows that our result improves on the multiplier theorem of Bourgain
even in the case of scalar-valued multiplier functions m. Its proof uses the following equivalent

norm [29, Prop. 3.1] on the Besov spaces B, | (R, Z) for 0 < s <1 and 1 <p < oo:

HfH/B;’l(R,Z) = fll,mz + Bpi(f)

where f (u) := f (u+ h),

e d
Bl = [t §

Wp (f,t) == sup Hfh_f”Lp(R,Z) .
|h|<t
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Corollary 4.11. Let X and Y be UMD spaces with Fourier type p € (1,2]. Assume that for the
function m : R\ {0} — B(X,Y) there is somel € (%, 1) and ho > 0 so that, for some constant A,

Ry ({m(u) :uweR\{0}}) < A

Ry <{|uylm(u+h)— m (u) cu,u+h e R\ {0} and 0 < |h| < |ul ho}) < 4. (4.17)

|hf
Then m is a Fourier multiplier from Ly (R, X) to Ly (R,Y) for each ¢ € (1,00). Furthermore,

[Tmllp,—r, < CA for some constant C independent of m.

Proof. Throughout this proof, the C;’s are constants independent of m. Without loss of general-
ity,h0<%. Fixssothat0<%<s<l<1.
Set m (0) := 0. For t € R, let my(t) = ¢o(t)m(2¥t) and M (t) = {my (t)},cz. Note that

‘%Vm%w+hy—mgm]:

ul! k k k ull
¢0(u)’ﬁ‘ [m<2 (u+h)>—m(2 u)] + m(2 (u—i—h))‘%’ [0 (u+ h) — ¢ (u)] -
So, since ¢p € S and | < 1, the assumption (4.17) yields, for each u, h € R\ {0} with 0 < |h| < |u| hy,

Ry ({my (u+h)—mg(u): keZ}) =
thg ({‘%‘l[mk(u+h)—mk(u)]:keZ}) <

Thus, if || < 2 then, with B := B (Rad, (X),Rad, (Y)),

h l

u

AC .

u

B =

NG
11U

since % <. Also, |[Myp — M|, gy < 2|Mll g < ACfor any h € R. Thus

3
128, ~ Ml 5, = ! J I wm) =M@l du| - < A
1

lp p
du| < ACs |h|

ST

>

ACs ¢ if ¢+<ho
wp(M,t)g{ Cs Hr=

ACs if ¢+> %
Thus By, (M) < ACs since 0 < s <l and so M € By, (R, B) with norm at most ACy. By

Remark 4.2¢, since 119 < s, we can apply Theorem 4.1, one last time. [

REFERENCES

[1] Herbert Amann, Linear and quasilinear parabolic problems. Vol. I, Birkhauser Boston Inc., Boston, MA, 1995,
Abstract linear theory. MR 96g:34088

, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr. 186

(1997), 5-56. MR, 98h:46033

, Elliptic operators with infinite-dimensional state spaces, J. Evol. Equ. 1 (2001), no. 2, 143-188. MR 1
846 745

[4] Wolfgang Arendt and Shangquan Bu, The operator-valued Marcinkiewicz multiplier theorem and mazimal regu-
larity, Math. Z. 240 (2002), no. 2, 311-343. MR 1 900 314

[5] A. Benedek, A.-P. Calderén, and R. Panzone, Convolution operators on Banach space valued functions, Proc.
Nat. Acad. Sci. U.S.A. 48 (1962), 356-365. MR 24 #A3479

2]

3]




28
[6]
[7]
8]
[9]

(10]

(11]

12
[13]
[14]
[15]
[16]

(17]

MARIA GIRARDI AND LUTZ WEIS

Joran Bergh and Jorgen Lofstrom, Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976,
Grundlehren der Mathematischen Wissenschaften, No. 223. MR 58 #2349

Sonke Blunck, Mazimal regularity of discrete and continuous time evolution equations, Studia Math. 146 (2001),
no. 2, 157-176. MR 1 853 519

J. Bourgain, A Hausdorff-Young inequality for B-conver Banach spaces, Pacific J. Math. 101 (1982), no. 2,
255-262. MR 84d:46014

, Vector-valued singular integrals and the H'-BMO duality, Probability theory and harmonic analysis
(Cleveland, Ohio, 1983), Dekker, New York, 1986, pp. 1-19. MR 87j:42049b

, Vector-valued Hausdorff-Young inequalities and applications, Geometric aspects of functional analysis
(1986/87), Springer, Berlin, 1988, pp. 239-249. MR 89m:46069

Philippe Clément and Jan Priiss, An operator-valued transference principle and maximal reqularity on vector-
valued Ly-spaces, Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998)
(Giinter Lummer and Lutz Weis, eds.), Dekker, New York, 2001, pp. 67-87. MR 2001m:47064

Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge University Press,
Cambridge, 1995. MR 96i:46001

José Garcia-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland
Publishing Co., Amsterdam, 1985, Notas de Matemé&tica [Mathematical Notes], 104. MR 87d:42023

Maria Girardi and Lutz Weis, Operator-valued Fourier multiplier theorems on Besov spaces, Mathematische
Nachrichten, (to appear).

, Vector-valued extentions of some classical theorems in harmonic analysis, Analysis and Applications -
ISAAC 2001 (H. G. W. Begehr, R. P. Gilbert, and M. W. Wong, eds.), Kluwer, Dordrecht, (to appear).

Robert Haller, Horst Heck, and André Noll, Mikhlin’s theorem for operator-valued Fourier multipliers in n
variables, Math. Nachr. 244 (2002), 110-130. MR 1 928 920

Matthias Hieber, A characterization of the growth bound of a semigroup via Fourier multipliers, Evolution
equations and their applications in physical and life sciences (Bad Herrenalb, 1998) (Giinter Lummer and Lutz
Weis, eds.), Dekker, New York, 2001, pp. 121-124. MR 2002a:47064

Tuomas Hytonen, Conwvolutions, multipliers, and maximal regularity on vector-valued Hardy spaces, Helsinki
University of Technology Institute of Mathematics Research Reports (preprint).

Tuomas Hytoénen and Lutz Weis, Singular convolution integrals with operator-valued kernels, (submitted).
Frank Jones, Lebesgue integration on Euclidean space, Jones and Bartlett Publishers, Boston, MA, 1993. MR
93m:28001

N. J. Kalton and L. Weis, The H®-calculus and sums of closed operators, Math. Ann. 321 (2001), no. 2, 319-345.
MR 1 866 491

Hermann Konig, On the Fourier-coefficients of vector-valued functions, Math. Nachr. 152 (1991), 215-227. MR
92m:46049

P. C. Kunstmann, Mazimal Ly-regularity for second order elliptic operators with uniformly continuous coefficients
on domains, (submitted).

S. Kwapieni, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coeffi-
cients, Studia Math. 44 (1972), 583-595, Collection of articles honoring the completion by Antoni Zygmund of
50 years of scientific activity, VI. MR 49 #5789

, On Banach spaces containing co, Studia Math. 52 (1974), 187-188, A supplement to the paper by J.
Hoffmann-Jgrgensen: “Sums of independent Banach space valued random variables” (Studia Math. 52 (1974),
159-186). MR 50 #8627

Y. Latushkin and F. Rébiger, Fourier multipliers in stability and control theory, (preprint).

Terry R. McConnell, On Fourier multiplier transformations of Banach-valued functions, Trans. Amer. Math.
Soc. 285 (1984), no. 2, 739-757. MR 87a:42033

Jaak Peetre, Sur la transformation de Fourier des fonctions a valeurs vectorielles, Rend. Sem. Mat. Univ. Padova
42 (1969), 15-26. MR 41 #812

A. Pelezyniski and M. Wojciechowski, Molecular decompositions and embedding theorems for vector-valued Sobolev
spaces with gradient norm, Studia Math. 107 (1993), no. 1, 61-100. MR 94h:46050

Hans-Jiirgen Schmeisser, Vector-valued Sobolev and Besov spaces, Seminar analysis of the Karl-Weierstraf3-
Institute of Mathematics 1985/86 (Berlin, 1985/86), Teubner, Leipzig, 1987, pp. 4-44. MR 89h:46053
Bert-Wolfgang Schulze, Boundary value problems and singular pseudo-differential operators, John Wiley & Sons
Ltd., Chichester, 1998. MR 99m:35281

Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton
University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic
Analysis, ITI. MR 95¢:42002




OPERATOR-VALUED FOURIER MULTIPLIER THEOREMS ON L,(X) 29

[33] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on FEuclidean spaces, Princeton University
Press, Princeton, N.J., 1971, Princeton Mathematical Series, No. 32. MR 46 #4102

[34] Hans Triebel, Fractals and spectra, Birkhduser Verlag, Basel, 1997, Related to Fourier analysis and function
spaces. MR 99b:46048

[35] Z. Strkalj and Lutz Weis, On operator-valued Fourier multiplier theorems, (submitted).

[36] Lutz Weis, Stability theorems for semi-groups via multiplier theorems, Differential equations, asymptotic analysis,
and mathematical physics (Potsdam, 1996), Akademie Verlag, Berlin, 1997, pp. 407-411. MR 98h:47062

, A new approach to mazimal Ly-reqularity, Evolution equations and their applications in physical and

life sciences (Bad Herrenalb, 1998) (Gunter Lummer and Lutz Weis, eds.), Dekker, New York, 2001, pp. 195-214.

MR 2002a:47068

, Operator-valued Fourier multiplier theorems and mazimal Ly-regularity, Math. Ann. 319 (2001), no. 4,
735-758. MR 2002c:42016

[39] H. Witvliet, Unconditional schauder decompositions and multiplier theorems, Ph.D. thesis, Technische Univer-
siteit Delft, November 2000.

[40] Frank Zimmermann, On vector-valued Fourier multiplier theorems, Studia Math. 93 (1989), no. 3, 201-222. MR
91b:46031

37]

(38]

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208, U.S.A.
Current address: Mathematisches Institut I, Universitat Karlsruhe, Englerstrafle 2, 76128 Karlsruhe, Germany
E-mail address: girardi@math.sc.edu

MATHEMATISCHES INSTITUT I, UNIVERSITAT KARLSRUHE, ENGLERSTRASSE 2, 76128 KARLSRUHE, GERMANY
E-mail address: Lutz.Weis@math.uni-karlsruhe.de



