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1. Introduction
Boundedness theorems for Fourier multiplier operators, singular in-

tegral operators, and pseudo differential operators play an important
role in analysis. In recent years it has become apparent that one needs
not only the classical theorems but also vector-valued extensions with
operator-valued multiplier functions or symbols. These extensions al-
low one to treat certain problems for evolution equations with par-
tial differential operators in an elegant and efficient manner in anal-
ogy to ordinary differential equations. For example, such theorems are
used: in studying maximal regularity of parabolic equations (see, e.g.,
[1, 4, 5, 9, 17, 18, 19, 27, 28]), in stability theory (see, e.g., [21, 26]),
in the theory of pseudo differential operators on manifolds with singu-
larities (see, e.g., [23]),and for elliptic operators on infinite dimensional
state spaces (see, e.g., [3, 10]).

This paper surveys some recent results in harmonic analysis of Banach
space valued functions and tries to elucidate the interesting interplay
with the geometry of the underlying Banach space, which in the end
leads to significant applications to evolution equations.

The first Fourier multiplier theorem for operator-valued multiplier
functions was J. Schwartz’s version of Mihlin’s theorem.

Theorem 1 (J. Schwartz) Let H be a Hilbert space and

m : R
N \ {0} → B (H)

be such that the sets{
|t||α|Dαm (t) : t ∈ R

N \ {0}
}

(1)

are norm bounded for each multi-index α ∈ N
N
0 with |α| ≤ [N/2] + 1.

Then
Tm (f) := F−1 [m (Ff)] for f ∈ S (

R
N , H

)
defines a bounded operator on Lq

(
R
N , H

)
for each q ∈ (1,∞).

Here F is the Fourier transform and S (
R
N , H

)
is the Schwartz class of

rapidly decreasing functions from R
N to H. Does Theorem 1 formally

generalize by replacing the Hilbert space H by an arbitrary Banach
space X? No; G. Pisier showed that (isomorphic images of) Hilbert
spaces are the only Banach spaces for which Theorem 1 holds in the
above form. In recent years, two approaches were found to circumvent
this difficulty.

(i) Replace Bochner spaces Lq
(
R
N , X

)
by Besov spaces Bs

q,r

(
R
N , X

)
.

Using the characterization of Besov spaces in terms of the Paley-
Littlewood decomposition, one can prove a Mihlin-type theorem
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as well as boundedness results for pseudo differential operators for
any Banach space X. Section 4 elaborates on this approach. Note
that in this setting one needs only norm boundedness, and not
R-boundedness, of the sets in (1).

(ii) In the case of the Bochner spaces Lq
(
R
N , X

)
, it makes sense

to consider only those Banach spaces X for which the simplest
multiplier function, i.e. M (·) = sign (·)χX , is a Fourier multi-
plier (or equivalently, for which the Hilbert transform is bounded)
on Lq

(
R
N , X

)
. Such Banach spaces are called UMD spaces.

Subspaces of Lq (Ω,C)-spaces, for 1 < q < ∞, are examples of
UMD spaces. There are many results showing the UMD spaces
form the proper class of Banach spaces for vector-valued harmonic
analysis (see, e.g., [6, 7, 29]). For starters, if X is a UMD space,
then there is a Paley-Littlewood decompositition for Lq

(
R
N , X

)
.

But this decomposition is more delicate than the corresponding
decomposition for Besov spaces. Therefore one has to replace the
norm bounded condition in (1) by an R-bounded condition. This
leads to boundedness results for Fourier multipliers and pseudo dif-
ferential operators. Section 5 elaborates on this approach. Since
large classes of classical operators are R-bounded (cf. [12, and ref-
erences therein]), the assumptions in this approach are not too
restrictive for applications.

2. Definitions and Notation
Notation is standard; consult [14, 15] for the needed definitions and

notations. Here some basics are recalled.
Schwartz used Plancherel’s identity for L2

(
R
N , H

)
in his proof of

Theorem 1. Since Plancherel’s identity holds only for Hilbert space
valued Bochner spaces L2

(
R
N , X

)
, the following concept from Banach

space theory is needed.

Definition 2 ([22]) Let 1 ≤ p ≤ 2. A Banach space X has Fourier
type p provided the Fourier transform F defines a bounded linear op-
erator from Lp

(
R
N , X

)
to Lp′

(
R
N , X

)
for some (and thus then for

each) N ∈ N.

The simple estimate ‖Ff(t)‖X ≤ ‖f‖L1(X) shows that each Banach
space X has Fourier type 1. The notion becomes more restrictive as p
increases to 2. A Banach space has Fourier type 2 if and only if X
is isomorphic to a Hilbert space [20]. A space Lq (Ω,R) has Fourier
type p = min(q, q′) [22]. Each closed subspace, the dual, and quotient
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space of a Banach space X has the same Fourier type as X; the first fact
holds by definition, the last by duality.

The Fourier type is connected with the minimal smoothness assump-
tions on the multiplier function. For example, the condition (1) hold-
ing for |α| ≤ [N/2] + 1, instead of |α| ≤ N for the Bochner case
and |α| ≤ N + 1 for the Besov case, expresses the fact that a Hilbert
space has Fourier type 2.

To define Besov spaces, first consider a partition of unity {ϕk}k∈N0

of functions from S (
R
N ,R

)
as follows. Take a nonnegative function ψ

in S (R,R) with support in
[
2−1, 2

]
that satisfies

∞∑
k=−∞

ψ(2−ks) = 1 for s ∈ R \ {0}

and let, for t ∈ R
N ,

ϕk(t) = ψ
(
2−k|t|

)
for k ∈ N and ϕ0(t) = 1 −

∞∑
k=1

ϕk(t) .

To simplify notation, let ϕk ≡ 0 if k < 0. Note that ϕk and ϕj have
overlapping support if and only if |k − j| ≤ 1.

Among the many equivalent descriptions of Besov spaces, the most
useful one in this context is given in terms of the so-called Littlewood-
Paley decomposition. Roughly speaking this means that one consid-
ers f ∈ S ′ (X) as a distributional sum

f =
∞∑
k=0

[
ϕk f̂

]∨
=

∞∑
k=0

ϕ̌k ∗ f =
∞∑
k=0

fk , where fk := ϕ̌k ∗ f ,

of analytic functions fk whose Fourier transforms have support in the
(slightly overlapping dyadic-like) intervals {suppϕk}k∈N0

and then one
defines the Besov norm in terms of the blocks {fk}k∈N0

of the Littlewood-
Paley decomposition of f .
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Definition 3 The Besov space Bs
q,r (RN , X), where 1 ≤ q, r ≤ ∞

and s ∈ R, is the space of all f ∈ S ′ (
R
N , X

)
for which

‖f‖Bs
q,r(RN ,X) :=

∥∥∥{
2ks ‖ϕ̌k ∗ f‖Lq(X)

}∞
k=0

∥∥∥
`r

(2)

≡



[ ∞∑
k=0

2ksr ‖ϕ̌k ∗ f‖rLq(X)

]1/r

if r 6= ∞

sup
k∈N0

[
2ks ‖ϕ̌k ∗ f‖Lq(X)

]
if r = ∞

is finite; q is the main index while s is the smoothness index. The
space Bs

q,r (RN , X), together with the norm in (2), is a Banach space.

3. A weak Fourier multiplier theorem for
Bochner spaces

The following theorem is a weak Fourier multiplier theorem in the
sense that its assumption (3) is quite strong ; indeed, (3) implies that
the Fourier multiplier function m is in Lp

(
R
N ,B (X,Y )

)
.

Theorem 4 ([14]) Let X and Y have Fourier type p ∈ [1, 2] and

m ∈ B
N/p
p,1

(
R
N ,B (X,Y )

)
. (3)

Then m is a Fourier multiplier from Lq(RN , X) to Lq(RN , Y ) for
each q ∈ [1,∞]; furthermore,

‖Tm‖Lq(X)→Lq(Y ) ≤ C Mp (m) , (4)

where C is a constant independent of m and

Mp(m) := inf
{
‖m (a·)‖

B
N/p
p,1 (RN ,B(X,Y ))

: a > 0
}
.

Theorem 4 leads to vector-valued extentions of classical multiplier the-
orems (such as Mihlin-, Hörmanders-, and Lipschitz-type theorems) for
Besov spaces (see Section 4) and Bochner spaces (see Section 5) by con-
sidering a Littlewood-Paley decomposition of these spaces and then ap-
plying Theorem 4 to the blocks of the decomposition with the multiplier
function m restricted to the support of the blocks. This is the charm
behind using Littlewood-Paley decompositions: the classical (weak) as-
sumptions on m imply the (strong) assumption of Theorem 4 when re-
stricted to the support of the blocks.
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The first step in proving Theorem 4 is to extend two other classical
results to the vector-valued setting. The first extension shows that,
for spaces with Fourier type p, the Sobolev Embedding (SE) factors
through L1 via the Fourier transform F .

B
N/p
p,1

(
R
N , X

)
L∞

(
R
N , X

)

L1

(
R
N , X

)
-i

SE
@

@@RF
�

���F−1

Lemma 5 ([14]) Let X have Fourier type p ∈ [1, 2]. Then the Fourier
transform defines bounded operator from B

N/p
p,1

(
R
N , X

)
to L1

(
R
N , X

)
.

The next lemma extends a well-known boundedness result for classical
integral operators.

Lemma 6 ([13]) Let F ⊆ Y ∗ be a subspace that norms Y . Let

k : R
N → B (X,Y )

be such that k and k∗ are srongly measurable and satisfy∫
RN

‖k (s) x‖Y ds ≤ C0 ‖x‖X for each x ∈ X∫
RN

‖k (s)∗ y∗‖X∗ ds ≤ C1 ‖y∗‖Y ∗ for each y∗ ∈ F

(5)

for some constants Ci. Then the convolution operator K, defined for
finitely-valued functions f : R

N → X with finite support by

(Kf) (t) =
∫

RN

k(t− s)f(s) ds for t ∈ R
N ,

extends to a bounded operator K : Lq
(
R
N , X

) → Lq
(
R
N , Y

)
for

each q ∈ [1,∞); furthermore, ‖K‖Lq→Lq
≤ C

1
q

0 C
1− 1

q

1 . If, in addi-
tion, Y does not contain c0, then the same holds true for q = ∞.

To prove Theorem 4, first consider a function m in the Schwartz class.
Applying Lemma 5 to the functions

t→ m (t)x for x ∈ X and t→ m∗ (t) y∗ for y∗ ∈ Y ∗

gives that k := m̌ satisfies the assumptions in (5) and so one has that
the corresponding operator Tm satisfies (4) (even if Y contains c0). Now,
thanks to the bound in (4) on the norm of the Tm’s, a density argument
finishes the job.
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4. Fourier multiplier theorems for Besov spaces
One can think of a Besov space as a direct sum

Bs
q,r

(
R
N , X

)
=

∑
k∈N0

Zk where Zk :=
{
ϕ̌k ∗ f : f ∈ Bs

q,r

(
R
N , X

)}
.

To see how a Fourier multiplier operator Tm, for a multiplier func-
tion m : R

N → B (X,Y ), formally behaves on a blocks Zk of the above
Littlewood-Paley decomposition, fix an f ∈ S (

R
N , X

)
. Since the func-

tion ψk := ϕk−1 + ϕk + ϕk+1 is 1 on suppϕk,

Tm (ϕ̌k ∗ f) =
[
ψkmϕk f̂

]∨
= ϕ̌k ∗

[
mψk f̂

]∨
= ϕ̌k ∗ Tm

(
ψ̌k ∗ f

) ∈ Zk.

Thus Tm leaves the blocks Zk invariant. Furthermore,

[ϕ̌k ∗ Tmf ]̂ = ψk ϕkmf̂ = mψk (ϕ̌k ∗ f)̂ = [Tmψk
(ϕ̌k ∗ f)]̂ , (6)

and so

f =
∑
k∈N0

ϕ̌k ∗ f and Tmf =
∑
k∈N0

ϕ̌k ∗ Tmf =
∑
k∈N0

Tmψk
(ϕ̌k ∗ f) .

Thus Tm behaves as a Fourier multiplier operator Tψk m on each block Zk
of the Littlewood-Paley decomposition; furthermore, the operator Tψk m

depends only on the values of m on the supports of ψk. This suggests
the following approach to boundedness results for Tm.

(1st) Estimate ‖Tmψk
‖Lq→Lq

on each block of the Littlewood-Paley de-
composition separably. For this, apply Theorem 4 to the multiplier
function mψk.

(2nd) Sum over the blocks; with the help of (6):

‖Tmf‖Bs
p,r(X) =

[ ∞∑
k=0

2ksr ‖Tmψk
(ϕ̌k ∗ f)‖rLq(X)

]1/r

≤ sup
k

‖Tmψk
‖Lq→Lq

‖f‖Bs
p,r(X) .

This gives the heuristic idea behind the proof of the main result of this
section (additional considerations are necessary if q or r is ∞):

Theorem 7 [14] Let X and Y be Banach spaces with Fourier type p.
Let m : R

N → B (X,Y ) satisfy, for each k ∈ N0,

ϕk ·m ∈ B
N/p
p,1

(
R
N ,B (X,Y )

)
and Mp(ϕk ·m) ≤ A .
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Then m is a Fourier multiplier from Bs
q,r(RN , X) to Bs

q,r(RN , Y ) for
each q, r ∈ [1,∞] and s ∈ R. Furthermore, ‖Tm‖Bs

q,r→Bs
q,r

≤ CA for
some constant C that is independent of m.

Note that each Banach space has Fourier type 1 and each uniformly
convex Banach space has Fourier type p for some p > 1. Our result
shows that the required smoothness of the multiplier functionm depends
not only on the dimension of R

N but also on the geometry of the Banach
spaces X and Y . It follows from results in [26] that the smoothness N/p
is sharp for the Besov scale.

An advantage of the rather general formulation of the assumptions in
Theorem 7 is that one can deduce from them, by simple estimates, sev-
eral multiplier theorems with classical assumptions. For example, the
Mihlin-type multiplier theorem below follows easily; it was the first mul-
tiplier theorem of this kind and its parts i) and iii) are due independently
to H. Amann [2] and L. Weis [26], respectively.
Corollaries of Theorem 7. [14] Let q, r ∈ [1,∞] and s ∈ R.
Mihlin condition If m : R

N → B (X,Y ) satisfies, for some constant A,
the estimate

sup
t∈RN

∥∥∥(1 + |t|)|α|Dαm (t)
∥∥∥
B(X,Y )

≤ A

for each multi-index α ∈ N
N
0 with |α| ≤ l, then m is a Fourier mul-

tiplier from Bs
q,r(RN , X) to Bs

q,r(RN , Y ) provided one of the following
conditions hold:

i) X and Y are arbitrary Banach spaces and l = N + 1

ii) X and Y are uniformly convex Banach spaces and l = N

iii) X and Y have Fourier type p and l = [Np ] + 1.

Hörmander condition Let X and Y have Fourier type p and l =
[
N
p

]
+1.

Letm : R
N → B (X,Y ) satisfy, for some constant A and each R ∈ [1,∞),

the estimates: [ ∫
|t|≤2

‖Dαm(t)‖p dt
]1/p

≤ A

[
R−N

∫
R<|t|<4R

‖Dαm(t)‖p dt
]1/p

≤ AR−|α|

for each α with |α| ≤ l. Thenm is a Fourier multiplier from Bs
q,r

(
R
N , X

)
to Bs

q,r

(
R
N , Y

)
.
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Lipschitz condition Let X and Y have Fourier type p and l ∈ (1/p, 1).
Assume that m : R → B (X,Y ) satisfies, for some constant A, the esti-
mates:

‖m (t)‖ ≤ A for t ∈ R

(1 + |t|)l
∥∥∥∥∥m (t+ u) −m (t)

|u|l
∥∥∥∥∥ ≤ A for u, t ∈ R , u 6= 0 .

Then m is a Fourier multiplier from Bs
q,r (X) to Bs

q,r (Y ).
It is also useful to consider pseudo differential operators with operator-

valued symbols. A pseudo differential operators Ψa with symbol a is
formally defined by

Ψaf (t) := (2π)−N
∫

RN

eit·sa (t, s) f̂ (s) ds , f ∈ S (
R
N , X

)
.

In analogy to classical symbol classes, for δ ∈ [0, 1) and an r > 0,
let S0

1,δ (r,X) be the the class of symbols a : R
N × R

N → B (X) so that
for all multi-indices α there is a constant Cα with∥∥∥(1 + |s|)|α| ∂αs a (t, s)

∥∥∥ ≤ Cα for each t, s ∈ R
N (7)

‖∂αs a (·, s)‖Br∞,∞
≤ Cα (1 + |s|)δr−|α| .

By extending the Coifman-Meyer decomposition of symbols to the op-
erator-valued case, Z. Štrkalj showed the following theorem.

Theorem 8 [24] Let X be a separable Banach space. Let q, r ∈ [1,∞]
and − (1 − δ) r < s < r. If a ∈ S0

1,δ (r,X) then Ψa is bounded
on Bs

q,r

(
R
N , X

)
.

5. Fourier multiplier theorems for Bochner
spaces

This section presents Fourier multiplier theorems on Bochner spaces.
The methods are similar to those in the Besov case: one uses Theorem 4
and a Littlewood-Paley decomposition for Bochner spaces. For this de-
composition, one needs to decompose R

N not only for |t| → ∞ but also
for |t| → 0.

So consider a partition of unity {φk}k∈Z of functions from S (
R
N ,R

)
defined as follows. Take a nonnegative function φ0 ∈ C∞(RN ,R) that
has support in {t : 2−1 ≤ |t| ≤ 2} and satisfies, for φk (t) := φ0(2−kt) for
each k ∈ Z, that

∑
k∈Z

φk(t) = 1 for each t 6= 0. Note that

‖ϕ̌k‖L1
= ‖ϕ̌0‖L1

and supp φk ⊂
{
t : 2k−1 ≤ |t| ≤ 2k+1

}
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for each k ∈ Z.
Bourgain [7, N = 1] and Zimmermann [29, N > 1] proved that if a

scalar-valued function m : R
N \ {0} → C satisfied a certain Mihlin-type

smoothness condition and X is a UMD space, then m (·) IX is a Fourier
multiplier from Lq(RN , X) to Lq(RN , X) for each q ∈ (1,∞). Their
result leads to a Littlewood-Paley decomposition for Bochner spaces.
Henceforth, {rk}k∈Z

is just any enumeration of the Rademacher func-
tions.

Corollary 9 ([15]) Let X be a UMD space and 1 < q < ∞. There is
a constant C so that

1
C

‖f‖Lq(RN ,X) ≤
∫

[0,1]

∥∥∥∥∥∑
k∈Z

rk (t)
(
φ̌k ∗ f

)∥∥∥∥∥
Lq(RN ,X)

dt ≤ C ‖f‖Lq(RN ,X) (8)

for each f ∈ Lq
(
R
N , X

)
.

To see the fundamental difference between the Besov- and Bochner-
space case (for 1 < q < ∞), let’s compare the norms. If f ∈ B0

q,2 (X)
(which is closest to Lq (X)), then

‖f‖B0
q,2(X) =

[ ∞∑
k=0

‖ϕ̌k ∗ f‖2
Lq(X)

]1/2

; (9)

thus, {ϕ̌k ∗ f}k∈N0
is absolutely 2-summable in Lq (X). If f ∈ Lq (X),

then Corollary 9 gives not only that
{
φ̌k ∗ f

}
k∈Z

is almost uncondi-
tionally summable in Lq (X) but also (in the scalar case) that

‖f‖Lq(C) ∼
∥∥∥∥∥∥
[∑
k∈Z

∣∣φ̌k ∗ f ∣∣2]1/2
∥∥∥∥∥∥
Lq(C)

, (10)

with the help of Kahane’s and Khintchine’s inequalities. Compare (9)
and (10)! In the Besov case, one can estimate the Bochner norm of each
block ϕ̌k ∗ f of f separately (via Theorem 4) and then sum over the
blocks. But this approach is not possible in the Bochner case since one
sums over the blocks inside the Bochner norm. Therefore one needs tools
to estimate the blocks simultaneously as an unconditionally summable
sequence. Definition 10 is the first tool; Definition 12 is the second tool.

Definition 10 Let X be a Banach space. Then the space Rad (X), or
simply X̃, is

Rad (X) or= X̃ :=
{ {xk}k∈Z

∈ XZ :∑n

k=−n rk (·)xk : [0, 1] → X is convergent in L1([0, 1], X)
}
.
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For 1 ≤ p < ∞, when equipped with one of the following norms, which
are equivalent by Kahane’s inequality,

‖{xk}k∈Z‖Radp(X) :=

∥∥∥∥∥∑
k∈Z

rk (·)xk
∥∥∥∥∥
Lp([0,1],X)

,

Radp (X) becomes a Banach space. Much can be found about Rad (X)
in the literature (see, e.g. [11]).

Condition (8) can thus be reformulated as follows:

‖f‖Lq(RN ,X) ∼
∥∥∥{
φ̌k ∗ f

}
k∈Z

∥∥∥
Lq(RN ,X̃)

.

It is now possible to estimate the blocks simultaneously in the following
way: for a given function m : R

N \ {0} → B (X,Y ), simultaneously roll
in all the blocks to the 0th block by defining the corresponding map-
ping M : R

N \ {0} → B
(
X̃, Ỹ

)
by

M(s) :=
{
φ0(s)m(2ks)

}
k∈Z

. (11)

Next (if possible), apply Theorem 4 to the function M to get a Fourier
multiplier operator TM : Lq

(
X̃

)
→ Lq

(
Ỹ

)
, which then can be rolled

back out to a Fourier multiplier operator Tm : Lq (X) → Lq (Y ). This
approach leads to the following theorem (note that if X has Fourier
type p (resp. UMD), then so does X̃).

Theorem 11 [15] Let X and Y be UMD Banach spaces with Fourier
type p ∈ (1, 2] and 1 < q < ∞. Let m : R

N \ {0} → B (X,Y ) be a
measurable function so that the corresponding mapping M , as defined
in (11), satisfies that M ∈ Bs

p,1

(
R
N ,B

(
X̃, Ỹ

))
for some s > N/p.

Then m is a Fourier multiplier from Lq(RN , X) to Lq(RN , Y ).

The assumption in Theorem 11 may look awkward; however, it is general
enough to yield classical multiplier theorems, with the help of our second
tool.

Definition 12 A subset τ of B (X,Y ) is R-bounded provided there is
a constant Cp so that for each n ∈ N and subset {Tj}nj=1 of τ and
subset {xj}nj=1 of X∥∥∥∥∥∥

n∑
j=1

rj (·)Tj(xj)
∥∥∥∥∥∥
Lp(Ω,Y )

≤ Cp

∥∥∥∥∥∥
n∑
j=1

rj (·)xj

∥∥∥∥∥∥
Lp(Ω,X)

(12)
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for some (and thus then, by Kahane’s inequality, for each) p ∈ [1,∞).
The R-bound of τ , R (τ), is smallest constant C1 for which (12) holds.

Note the following connection between our two tools: Definition 10 and
Definition 12.

Remark 13 A sequence {Tj}j∈Z from B (X,Y ) is R-bounded if and only
if the mapping

X̃ 3 {xj}j∈Z

T̃−−−−−−→ {Tjxj}j∈Z
∈ Ỹ

defines an element in B
(
X̃, Ỹ

)
for some (or equiv., for each) p ∈ [1,∞).

The statements, and proofs, of the following corollaries to Theorem 11
are similar to the corresponding corollaries to Theorem 7.
Corollaries of Theorem 11. [15]
Let X and Y be UMD spaces with Fourier type p and 1 < q <∞.
Mihlin condition If for m : R

N \ {0} → B (X,Y ) the set{
|t||α|Dαm (t) : t ∈ R

N \ {0}
}

is R-bounded for each multi-index α ∈ N
N
0 with |α| ≤ [Np ] + 1, then m

is a Fourier multiplier from Lq
(
R
N , X

)
to Lq

(
R
N , Y

)
.

Hörmander condition If for m : R
N \ {0} → B (X,Y ) the term[∫

1
2
<|t|<2

R

({∣∣∣2kt∣∣∣|α|Dαm
(
2kt

)}
k∈Z

)p

dt

]1/p

is finite for each multi-index α ∈ N
N
0 with |α| ≤ [Np ] + 1, then m is a

Fourier multiplier from Lq
(
R
N , X

)
to Lq

(
R
N , Y

)
.

Lipschitz condition If for m : R → B (X,Y ) the set{
m (t) , |t|l m (t+ s) − m (t)

|s|l : t, s ∈ R \ {0}
}

is R-bounded for some l ∈ (1/p, 1), then m is a Fourier multiplier
from Lq

(
R
N , X

)
to Lq

(
R
N , Y

)
.

For the connection between R-boundedness and multiplier theorems
with scalar multiplier functions, see [8]. The operator-valued Mihlin
multiplier theorem was first proved for N = 1 in [28] and for higher
dimensions in [25]. For variants of the proof of the Mihlin-type result,
see [4, 5, 9, 10, 16].
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Now returning to pseudo differential operators, define the symbol
class <S0

1,δ (r,X) similarly to the symbol class S0
1,δ (r,X): just replace (7)

by the condition that

R
({

(1 + |s|)|α| ∂αs a (t, s) : s ∈ R
N

})
≤ Cα for each t ∈ R

N .

In this context, using the same tools and the Coifman-Meyer decomposi-
tion of symbols, Z. Štrkalj has shown, among other things, the following
boundedness result.

Theorem 14 [24] Let X be a separable UMD Banach space, δ ∈ [0, 1),
and r > 0. If a ∈ <S0

1,δ (r,X) then Ψa is bounded on Lq
(
R
N , X

)
for

each q ∈ (1,∞).
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