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Operator-valued Fourier multiplier theorems on Besov spaces
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Abstract. Presented is a general Fourier multiplier theorem for operator-valued multiplier
functions on vector-valued Besov spaces where the required smoothness of the multiplier functions
depends on the geometry of the underlying Banach space (specifically, its Fourier type). The main
result covers many classical multiplier conditions, such as Mihlin and Hörmander conditions.

1. INTRODUCTION

In recent years, Fourier multiplier theorems with operator-valued multiplier func-
tions have found many applications in the theory of evolution equations, in particular,
in connection with: maximal regularity of parabolic equations [2, 28, 27, 6, 18, 4],
stability theory [29, 15, 20], elliptic operators on infinite dimensional state spaces [1],
and pseudo differential operators on manifolds with singularities [25]. Of particular
interest are versions of Mihlin’s multiplier theorem for functions m, from R

N into the
space B (X) of bounded operators on a Banach space X, which satisfy that

(1.1) the set
{

(1 + |t|)|α| Dαm (t) : t ∈ R
N , |α| ≤ l

}
is norm bounded ;

specifically, one would like to know for which X-valued function spaces E
(
R
N , X

)
can

one extend the operator

Tm : S (RN , X)→ S ′ (
R
N , X

)
given by Tmf :=

[
m (·) f̂ (·)

]∨
,

defined on the Schwartz class, to a bounded operator from E
(
R
N , X

)
into itself.

For the Bochner spaces Lp
(
R
N , X

)
, additional hypotheses are needed, specifically,

extension is possible only when the underlying Banach spaceX has the UMD property,
1 < p <∞, and the set in (1.1) is R-bounded (see [9, 30, 21] for scalar-valued m and
[28, 26] for operator-valued m; see also [10, 14, 4]).
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In sharp contrast to these results for Lp
(
R
N , X

)
, it was discovered independently

by H. Amann and L. Weis that for Besov spaces Bsq,r
(
R
N , X

)
, additional restrictions

on X and m are not needed and all indices s ∈ R and q, r ∈ [1,∞] are allowed (for a
detailed proof of the Mihlin case with l = N + 1 see [2], in [29] a more general result
was announced).

This paper presents a more elementary proof of these multiplier theorems (avoiding
the theory of vector-valued distributions), which has rather general assumptions on m
(again expressed in terms of Besov spaces) and which also allows for the determination
of the optimal order l of derivatives in (1.1) in terms of the geometry of the underlying
Banach space X. Indeed, Corollary 4.11 gives that for a Banach space X of Fourier
type p ∈ [1, 2] one may choose l = [N/p]+1. Recall that a Banach space X has Fourier
type p ∈ [1, 2] provided the Fourier transform defines a bounded operator from Lp (X)
into Lp′ (X), i.e. the Hausdorff Young inequality holds for the exponent p. Since a
Hilbert space has Fourier type 2, one recovers the classical result of J. Schwartz (cf. [5,
Section 6.1]). Since each Banach space has Fourier type 1, one obtains the main result
in [2]. It follows from a result of Bourgain [9] that each uniformly convex space has
Fourier type p for some p > 1; thus, for uniformly convex spaces one may choose
l = N . If X is a subspace of an Lq(Ω) space, then X has Fourier type p = min(q, q′);
thus, the l in (1.1) improves (i.e. decreases) as q tends towards 2. Furthermore, the
order l = [N/p] + 1 is optimal with respect to the scale of Besov spaces. In the case
of Bochner spaces Lp

(
R
N , X

)
on can obtain analogous results to the ones described

above (see [13]); however, the method of proof is quite different.
The paper is organized as follows. Section 2 collects definitions and basic properties

of vector-valued function spaces, in particular, Besov spaces. Section 3 contains basic
estimates for the Fourier transform on Besov spaces Bsq,r

(
R
N , X

)
for a Banach space

X with Fourier type p. Section 4 presents the multiplier theorems. Theorem 4.3 gives
a multiplier theorem on Lq

(
R
N , X

)
; its assumption is much stronger than (1.1). Ap-

plying this result to the blocks of the Paley Littlewood decomposition gives a multiplier
theorem for Besov spaces Bsq,r

(
R
N , X

)
, Theorem 4.8, whose proof is almost trivial if

q, r ∈ [1,∞). The case q = ∞ or r = ∞ requires a bit more care. The assumptions in
Theorem 4.8 are stated in a very general form. From this general formulation follows
as immediate corollaries (see Corollaries 4.11, 4.13, 4.14) vector-valued generalizations
of several classical multiplier theorems conditions (Mihlin’s condition, Hörmanders
condition, Lipschitz condition).

Theorem 4.8 was announced in [29]; the present expanded paper would have never
seen the light of day without the collaboration of the first named author.

2. BASICS

Notation is standard. Throughout this paper X, Y , Z are Banach spaces over
the field C and X∗ is the (topological) dual space of X. The space B (X,Y ) of
bounded linear operators from X to Y is endowed with the usual uniform operator
topology, unless otherwise stated. The Bochner-Lebesgue space Lp

(
R
N , X

)
, where

1 ≤ p ≤ ∞, is endowed with its usual norm topology. The conjugate exponent p′ of
p ∈ [1,∞] is given by 1

p + 1
p′ = 1. Also, N = {1, 2, . . .} is the set of natural numbers
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while N0 = {0} ∪ N. If convenient and confusion seems unlikely, the various function
spaces E

(
R
N , X

)
in this paper are denoted simply by just E (X) or E, with the

exception of the Schwartz class.
The Schwartz class S (RN , X), or simply S (X), is the space of X-valued rapidly

decreasing smooth functions ϕ on R
N , equipped with the locally convex topology

generated by the seminorms

‖ϕ‖k,α := sup
t∈RN

(
1 + |t|2)k ‖(Dαϕ) (t)‖X

for all k ∈ N0 and α ∈ N
N
0 . As customary, we often denote S (RN ,C) by just S. Note

that S (X) is norm (resp. σ (Lp (X) , Lp′ (X∗))) dense in Lp (X) when 1 ≤ p < ∞
(resp. 1 ≤ p ≤ ∞).

The space of X–valued tempered distributions S ′ (
R
N , X

)
is the space of continuous

linear operators L : S → X, equipped with the bounded convergence topology. Each
sufficiently bounded function m : R

N → X (e.g. a measurable function which grows
at most polynominally as |x| → ∞ or an Lp (X) function for 1 ≤ p ≤ ∞) defines an
Lm ∈ S ′ (

R
N , X

)
by

Lm(ϕ) :=
∫

RN

ϕ(t)m(t) dt ;

when convenient and confusion seems unlikely, we will identify such a function m with
Lm ∈ S ′ (X).

It is well-known that the Fourier transform F : S (X) → S (X) defined by

(Fϕ) (t) ≡ ϕ̂ (t) :=
∫

RN

e−it·sϕ (s) ds

is an isomorphism whose inverse is given by(F−1ϕ
)
(t) ≡ ϕ̌ (t) = (2π)−N

∫
RN

eit·sϕ (s) ds ,

where ϕ ∈ S (X) and t ∈ R
N . Also, the Fourier transform F : S ′ (X) → S ′ (X) defined

by

(2.1) (FL) (ϕ) ≡ L̂ (ϕ) := L (ϕ̂) where L ∈ S ′ (X) , ϕ ∈ S
is an isomorphism whose inverse is given by

(F−1L
)
(ϕ) ≡ Ľ (ϕ) = L (ϕ̌).

The derivative, translation, and dilation properties of F and F−1 which hold in the
scalar-valued case also hold in the vector-valued case. However, the Hausdorff-Young
inequality need not hold. Thus we have to consider the following class of Banach
spaces that was introduced by Peetre [22].

Definition 2.1. Let X be a Banach space and 1 ≤ p ≤ 2. Let Fp,N (X) be the
smallest C ∈ [0,∞] so that

(2.2) ‖Ff‖Lp′ (RN ,X) ≤ C ‖f‖Lp(RN ,X) for each f ∈ S (RN , X) .
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X has Fourier type p provided the Fourier type constant Fp,N (X) is finite for some
(and thus then, by [17], for each) N ∈ N.

Remark 2.2. The simple estimate ‖Ff(t)‖X ≤ ‖f‖L1(X) shows that each Banach
space X has Fourier type 1 with F1,N (X) = 1. The notion becomes more restrictive
as p increases to 2. A Banach space has Fourier type 2 if and only if X is isomorphic
to a Hilbert space [19]. A space Lq ((Ω,Σ, µ) ,R) has Fourier type p = min(q, q′) [22].
Each closed subspace (by definition) and each quotient space (by duality) of a Banach
space X has the same Fourier type as X. Bourgain [7, 9] has shown that each B–
convex Banach space (thus, in particular, each uniformly convex Banach space) has
some non-trivial Fourier type p > 1.

For completeness we include the proof the the following well-known proposition.

Proposition 2.3. Let X have Fourier type p ∈ [1, 2] and p ≤ q ≤ p′. Then X∗

and Lq(RN , X) also have Fourier type p. Specifically, Fp,M (X∗) = Fp,M (X) and
Fp,M

(
Lq
(
R
N , X

))
= Fp,M (X) for each M ∈ N.

Proof. If X is an isometric subspace of Z then Fp,M (X) ≤ Fp,M (Z); thus, it
suffices to show just ≤ in the two claimed equalities. The claim for X∗ follows from
the fact that the adjoint of F : Lp (X) → Lp′ (X), restricted to Lp (X∗), is the Fourier
transform map from Lp (X∗) to Lp′ (X∗). Let h be a simple function with finite

support in Lp
(
R
M , Lq

(
R
N , X

))
; thus,

[
ĥ (t)

]
(u) = [h (·) (u)]̂(t). By the general

Minkowski-Jessen inequality, since q ≤ p′ and p ≤ q (and wlog p 6= 1),[∫
RM

(∫
RN

∥∥∥[ĥ (t)
]
(u)
∥∥∥q du)p′/q dt]1/p′

≤
[∫

RN

(∫
RM

∥∥[h (·) (u)]̂(t)
∥∥p′ dt)q/p′ du]1/q

≤ C

[∫
RN

(∫
RM

‖h (s) (u)‖p ds
)q/p

du

]1/q

≤ C

[∫
RM

(∫
RN

‖h (s) (u)‖q du
)p/q

ds

]1/p

,

where C = Fp,M (X). This shows the claim for Lq(RN , X). 2

In order to define Besov spaces we consider the dyadic-like subsets, {Jk}∞k=0 and
{Ik}∞k=0, of R

N . Let {Jk}∞k=0 be the partitioning of R
N given by

(2.3) J0 = {t ∈ R
N : |t| ≤ 1} , Jk = {t ∈ R

N : 2k−1 < |t| ≤ 2k} for k ∈ N .

Enlarge each Jk to form a sequence {Ik}∞k=0 of overlapping subsets defined by

(2.4) I0 =
{
t ∈ R

N : |t| ≤ 2
}

, Ik =
{
t ∈ R

N : 2k−1 < |t| ≤ 2k+1
}

for k ∈ N .
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To simplify notation later, let Jk = ∅ for k < 0. Next define a partition of unity
{ϕk}k∈N0

of functions from S (RN ,R) as follows. Take a nonnegative function ψ ∈
S (R,R) with support in

[
2−1, 2

]
which satisfies

∞∑
k=−∞

ψ(2−ks) = 1 for s ∈ R \ {0}

and let, for t ∈ R
N ,

ϕk(t) = ψ
(
2−k|t|) for k ∈ N and ϕ0(t) = 1 −

∞∑
k=1

ϕk(t) .

To simplify notation later on, let ϕk ≡ 0 if k < 0. Note the following useful properties:

supp ϕk ⊂ Ik for each k ∈ N0

∞∑
k=0

ϕk(s) = 1 for each s ∈ R
N

Jm ∩ supp ϕk = ∅ if |m− k| > 1
ϕk−1(s) + ϕk(s) + ϕk+1(s) = 1 for each s ∈ supp ϕk , k ∈ N0 .

Among the many equivalent descriptions of Besov spaces, the most useful one for us
is given in terms of the so called Littlewood–Paley decomposition. Roughly speaking
this means that we consider f ∈ S ′ (X) as a distributional sum f =

∑
k fk of analytic

functions fk whose Fourier transforms have support in dyadic-like Ik and then define
the Besov norm in terms of the fk’s.

Definition 2.4. Let 1 ≤ q, r ≤ ∞ and s ∈ R. The Besov space Bsq,r
(
R
N , X

)
is the

space of all f ∈ S ′ (
R
N , X

)
for which

‖f‖Bs
q,r(RN ,X) :=

∥∥∥{2ks (ϕ̌k ∗ f)
}∞
k=0

∥∥∥
`r(Lq(X))

(2.5)

≡



[ ∞∑
k=0

2ksr ‖ϕ̌k ∗ f‖rLq(X)

]1/r

if r 6= ∞

sup
k∈N0

[
2ks ‖ϕ̌k ∗ f‖Lq(X)

]
if r = ∞

is finite; q is the main index while s is the smoothness index. Bsq,r
(
R
N , X

)
, together

with the norm in (2.5), is a Banach space.
◦
B s
q,r

(
R
N , X

)
is the closure of S (RN , X)

in Bsq,r
(
R
N , X

)
, with the induced norm.

Different choices of {ϕk} lead to equivalent norms on Bsq,r
(
R
N , X

)
[23, Lem. 3.2].

A well-known [23, Prop. 3.1] equivalent norm on the Besov spaces Bsq,r (R, X), for
0 < s < 1 and 1 ≤ q, r <∞, is

(2.6) ‖f‖′

Bs
q,r(X) = ‖f‖Lq(X) + Bsq,r (f)
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where fh (s) = f (s+ h),

Bsq,r (f) =
(∫ ∞

0

[
t−swq (f, t)

]r dt
t

)1/r

wq (f, t) = sup
|h|≤t

‖fh − f‖Lq(X) ;
(2.7)

there are similar expressions for other values of s and N > 1. Besov spaces also can
be introduced via the real interpolation method (cf. [2]): for m ∈ N0, s ∈ (0,m),
q ∈ [1,∞), and r ∈ [1,∞]

Bsq,r(R
N , X) =

(
Lq
(
R
N , X

)
, Wm

q

(
R
N , X

))
s
m ,r

where Wm
q

(
R
N , X

)
are usual Sobolev spaces, which are defined below.

Definition 2.5. Let 1 ≤ q ≤ ∞ and m ∈ N0. The Sobolev space Wm
q

(
R
N , X

)
is

Wm
q

(
R
N , X

)
=
{
f ∈ S ′ (

R
N , X

)
: Dαf ∈ Lq

(
R
N , X

)
for each |α| ≤ m

}
,

equipped with the norm

‖f‖Wm
q (RN ,X) =

∑
0≤|α|≤m

‖Dαf‖Lq(RN ,X) .

It is well-know that the Sobolev spaces are Banach spaces.

We collect some known facts about Besov and Sobolev spaces (cf. [2]).

Fact 2.6. Let s ∈ R and 1 ≤ q, r ≤ ∞ and m ∈ N0. Here, ↪→ denotes that the
natural injection is a continuous linear operator. Then:

S (X) ↪→Wm
q (X) ↪→ S ′ (X)

S (X) ↪→ Bsq,r (X) ↪→ S ′ (X)(2.8)

Wm+1
q (X) ↪→ Bsq,r(X) ↪→Wm

q (X) ↪→ Lq(X) if m < s < m+ 1(2.9)

Bsq,r(X) ↪→ Bsq,r+ε(X) if ε > 0

Bsq,∞(X) ↪→ Bs−εq,1 (X) if ε > 0
◦
B
s
q,r(X) = Bsq,r(X) if q, r <∞ .

Also BN/q1q1,1

(
R
N , X

)
↪→ B

N/q2
q2,1

(
R
N , X

)
↪→ L∞

(
R
N , X

)
provided 1 ≤ q1 ≤ q2 <∞.

Let (E (Z) , E∗ (Z∗)) be one of the pairs, where 1 ≤ q, r ≤ ∞ and s ∈ R:

(Lq (Z) , Lq′ (Z∗)) or
(
Bsq,r (Z) , B−s

q′,r′ (Z∗)
)
.

There is a natural embedding of E∗ (Z∗) into [E (Z)]∗ as a norming subspace for E (Z).
This embedding is given by the duality map

〈 · , · 〉E(Z) : E∗ (Z∗) × E (Z) → C
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where

〈 g , f 〉Lq(Z) :=
∫

RN

〈 g (t) , f (t) 〉Z dt =
∫

RN

g (t) [f (t)] dt

in the Lebesgue space setting with E = Lq and

(2.10) 〈 g , f 〉E(Z) :=
∑

n,m∈N0

〈 ϕ̌n ∗ g , ϕ̌m ∗ f 〉Lq(Z)

in the Besov space setting with E = Bsq,r. One can check that this definition of duality
is independent of the choice of the ϕk’s. Furthermore, as seen by [2] and the fact that
◦
B s
q,r(R

N , X) norms B−s
q′ ,r′

(RN , X∗),

(2.11)
◦
B
s
q,r(X) is σ(Bsq,r(X), B−s

q′,r′ (X∗))–dense in Bsq,r(X) .

Often E∗ (Z∗) = [E (Z)]∗, for example, provided Z∗ has the Radon-Nikodým property
and either E = Lq (cf. [11]) or E = Bsq,r(cf. [2]) where q, r ∈ [1,∞) and s ∈ R. Recall
that if Z is reflexive or if Z∗ is separable, then Z∗ has the Radon-Nikodým property.

For more information regarding Besov spaces, see [2, 23, 24].

3. THE FOURIER TRANSFORM ON BESOV SPACES

As a consequence of the Hausdorff-Young inequality we get the following estimates
for the Fourier transform on Besov spaces.

Theorem 3.1. Let X be a Banach space with Fourier type p ∈ [1, 2]. Let 1 ≤ q ≤ p′

and s ≥ N
(

1
q − 1

p′

)
and 1 ≤ r ≤ ∞. Then there exists a constant C, depending only

on Fp,N (X), so that if

f ∈ Bsp,r
(
R
N , X

)
then

(3.1)
∥∥∥ {f̂ · χJm

}∞

m=0

∥∥∥
`r(Lq(RN ,X))

≤ C ‖f‖Bs
p,r(RN ,X) .

A variant of Theorem 3.1 for Besov spaces on the multidimensional torus and Lorentz
sequence spaces is already contained in [17, Thm. 4]; the proof is based on interpolation
theory and does not give the statements we need here. An immediate corollary of
Theorem 3.1 follows by choosing q = r = 1 (for (3.2)) or r = q = p′ (for (3.3)).

Corollary 3.2. Let X have Fourier type p ∈ [1, 2]. Then the Fourier transform F
defines bounded operators

F : B
N/p
p,1

(
R
N , X

) −→ L1

(
R
N , X

)
(3.2)

F : B0
p,p′
(
R
N , X

) −→ Lp′
(
R
N , X

)
.(3.3)
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The norms of the above maps F are bounded above by a constant depending only on
Fp,N (X).

Theorem 3.1 and Corollary 3.2 remain valid if F is replaced with F−1.

Proof.[Proof of Theorem 3.1] Fix f ∈ Bsp,r
(
R
N , X

)
. Then, for each k ∈ N0, since

ϕ̌k ∗ f ∈ Lp(X) and X has Fourier type p,

ϕk · f̂ = F (ϕ̌k ∗ f) ∈ Lp′(X) .

Thus

f̂ · χJm
=

(
m+1∑

k=m−1

ϕkf̂

)
· χJm

∈ Lq(X)

for each m ∈ N0.
If there exists a constant C1 so that

(3.4)
∥∥∥f̂ · χJm

∥∥∥
Lq(X)

≤ C1

m+1∑
k=m−1

2ks
∥∥∥f̂ · ϕk

∥∥∥
Lp′ (X)

for each m ∈ N0

then ∥∥∥f̂ · χJm

∥∥∥
Lq(X)

≤ C1

m+1∑
k=m−1

2ks ‖F (ϕ̌k ∗ f)‖Lp′ (X)

≤ C1 Fp,N (X)
m+1∑

k=m−1

2ks ‖ϕ̌k ∗ f‖Lp(X)

and so ∥∥∥{f̂ · χJm

}∞

m=0

∥∥∥
`r(Lq(X))

≤ 9 C1 Fp,N (X) ‖f‖Bs
p,r(X) .

Thus it suffices to show that there exists C1 so that (3.4) holds.
First consider the case where q 6= p′. Choose 1 ≤ u < ∞ so that 1

q = 1
p′ + 1

u ; thus,
N
u ≤ s. By the generalized Hölder’s inequality, for each m ∈ N0,∥∥∥f̂ · χJm

∥∥∥
Lq(X)

≤
m+1∑

k=m−1

∥∥∥f̂ · ϕk · χJm

∥∥∥
Lq(X)

≤
m+1∑

k=m−1

∥∥∥∥∥f̂ϕk
[
1 + |·|

4

]N/u
χJm

∥∥∥∥∥
Lp′ (X)

∥∥∥∥∥
[
1 + |·|

4

]−N/u
χJm

∥∥∥∥∥
Lu(R)

≤
m+1∑

k=m−1

∥∥∥∥∥
[
1 + |·|

4

]N/u
χJm

∥∥∥∥∥
L∞(R)

∥∥∥f̂ϕk∥∥∥
Lp′ (X)

[∫
Jm

[
1 + |t|

4

]−N
dt

]1/u

(3.5)

≤
m+1∑

k=m−1

(
2m−1

)N/u ∥∥∥f̂ϕk∥∥∥
Lp′ (X)

[C2]
1
u ≤ C2

m+1∑
k=m−1

2ks
∥∥∥f̂ϕk∥∥∥

Lp′ (X)
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for some universal constant C2 > 1.
If q = p′, then∥∥∥f̂ · χJm

∥∥∥
Lq(X)

≤
m+1∑

k=m−1

∥∥∥f̂ · ϕk · χJm

∥∥∥
Lp′ (X)

≤
m+1∑

k=m−1

2ks
∥∥∥f̂ϕk∥∥∥

Lp′ (X)

for each m ∈ N0. 2

Remark 3.3. The statement of Theorem 3.1 remains valid if Bsp,r is replaced
by W j

p where s < j ∈ N (with a new constant C which is just the product
of the original constant C from Theorem 3.1 and the embedding constant from
W j
p

(
R
N , X

)
↪→ Bsp,r

(
R
N , X

)
). Also, it follows from Corollary 3.2 that if X has

Fourier type p ∈ [1, 2] and N/p < j ∈ N , then the Fourier transform F defines a
bounded operator

(3.2’) F : W j
p

(
R
N , X

) −→ L1

(
R
N , X

)
.

Note that (3.2’) is the appropriate vector-valued version of the well-known Bernstein
theorem. Furthermore, if X has Fourier type p ∈ [1, 2] and N/p < j ∈ N then there
is a constant C so that

(3.6)
∥∥∥f̂∥∥∥

L1(RN ,X)
≤ C ‖f‖1− N

jp

Lp(RN ,X)

∑
|α|=j

‖Dαf‖Lp(RN ,X)

 N
jp

for each f ∈ W j
p

(
R
N , X

)
. A short proof of (3.6) is obtained from the classical ar-

gument of Bernstein’s theorem (see, e.g. [3, Lemma 8.2.1]) by replacing the Cauchy-
Schwarz inequality by Hölder’s inequality and using the fact that the appropriate
Hausdorff-Young inequality holds in a space with Fourier type p.

4. FOURIER MULTIPLIERS ON BESOV SPACES

For a bounded measurable function m : R
N → B (X,Y ), its corresponding Fourier

multiplier operator T0 is defined by the following (commutative) diagram

S (RN , X) T0−−−−→ S ′ (
R
N , Y

)
F
y xF−1

S (RN , X) Mm−−−−→ S ′ (
R
N , Y

)
where Mm is the multiplication operator induced by m; thus,

(4.1) T0(f) = F−1[m(·) (Ff)(·)] .
Note that since m is bounded

(4.2) (T0f)̂ (·) = m (·)
[
f̂ (·)

]
∈ L1 (Y )
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and T0 maps S (X) into L∞ (Y ).
In this section we identify conditions on m, generalizing the classical Mihlin condi-

tion, so that

(4.3) ‖T0f‖Bs
q,r(Y ) ≤ C ‖f‖Bs

q,r(X) for each f ∈ S (X) .

Note that (4.3) implies that T0 extends uniquely to a bounded operator

T̃0 :
◦
B
s
q,r (X) → Bsp,r (Y ) .

If we can find a further extention

(4.4) Tm : Bsq,r (X) → Bsp,r (Y )

of T̃0 which is σ
(
Bsq,r(X), B−s

q′,r′ (X∗)
)

–to–σ
(
Bsq,r(Y ), B−s

q′,r′ (Y ∗)
)

continuous then,
by (2.11), Tm is uniquely determined by (4.1). This leads to the following definition
of a Fourier multiplier.

Definition 4.1. Let
(
E
(
R
N , Z

)
, E∗ (

R
N , Z∗)) be one of the following dual systems,

where 1 ≤ q, r ≤ ∞ and s ∈ R:

(Lq (Z) , Lq′ (Z∗)) or
(
Bsq,r (Z) , B−s

q′,r′ (Z∗)
)
.

A bounded measurable function m : R
N → B (X,Y ) is called a Fourier multiplier

from E(X) to E(Y ) if there is a bounded linear operator

Tm : E(X) → E(Y )

such that

Tm(f) = F−1[m(·) (Ff)(·)] for each f ∈ S (X)(4.5)
Tm is σ(E(X), E∗(X∗))–to–σ(E(Y ), E∗(Y ∗)) continuous .(4.6)

The (uniquely determined) operator Tm is the Fourier multiplier operator induced by
m.

Note that

(4.7) (Tmf)̂ (·) = m (·)
[
f̂ (·)

]
∈ L1 (Y ) for each f ∈ S (X)

and Tm maps S (X) into L∞ (Y ).

Remark 4.2. If Tm ∈ B (E (X) , E (Y )) and T ∗
m maps E∗ (Y ∗) into E∗ (X∗) then

Tm satisfies the continuity condition (4.6).

We will first give rather general criteria for Fourier multipliers in terms of the Besov
norm of the multiplier function; later we derive from these results analogues of the
classical Mihlin and Hörmander conditions. To simplify the statements of our results,
we let

Mp(m) := inf
{
‖m (a·)‖

B
N/p
p,1 (RN ,B(X,Y ))

: a > 0
}
.
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First we give a multiplier result on Lq(X) in the spirit of Steklin’s theorem which, in
spite of its strong hypothesis, is still useful in many circumstances.

Theorem 4.3. Let X and Y have Fourier type p ∈ [1, 2]. Then there is a constant
C, depending only on Fp,N (X) and Fp,N (Y ), so that if

(4.8) m ∈ B
N/p
p,1

(
R
N ,B (X,Y )

)
then m is a Fourier multiplier from Lq(RN , X) to Lq(RN , Y ) with

‖Tm‖Lq(X)→Lq(Y ) ≤ C Mp (m)

for each q ∈ [1,∞].

Remark 4.4. a) Since Wm
p (RN , Z) ⊂ B

N/p
p,1 (RN , Z) for m > N/p, one can estimate

with Sobolev-norms in order to verify the assumption (4.8) (e.g. see [16, Prop. 6.4] or
Lemma 4.10).
b) If m(s) = n(s)A, where n is a scalar-valued function and A ∈ B (X,Y ), then the
result holds if n ∈ B

N/2
2,1 (RN ,C) without any Fourier type requirement on X and Y .

See the proof of Corollary 4.15.
c) We can replace m ∈ B

N/p
p,1 (RN ,B (X,Y )) by the pointwise conditions

‖m(·)x‖
B

N/p
p,1 (Y )

≤ M ‖x‖X for x ∈ X

‖m(·)∗y∗‖
B

N/p
p,1 (X∗)

≤ M ‖y∗‖Y ∗ for y∗ ∈ Y ∗ .

Combine the proof below with [12].

The proof of Theorem 4.3 uses the following lemma.

Lemma 4.5. Let k ∈ L1

(
R
N ,B (X,Y )

)
and 1 ≤ q ≤ ∞. Assume that there exists

constants Ci so that for each x ∈ X and y∗ ∈ Y ∗

(4.9)
∫

RN

‖k (s) x‖Y ds ≤ C0 ‖x‖X and
∫

RN

∥∥k (s)∗ y∗
∥∥
X∗ ds ≤ C1 ‖y∗‖Y ∗ .

Then the convolution operator K : Lq
(
R
N , X

)→ Lq
(
R
N , Y

)
defined by

(4.10) (Kf) (t) =
∫

RN

k(t− s)f(s) ds for t ∈ R
N

satisfies that ‖K‖Lq→Lq
≤ C

1
q

0 C
1− 1

q

1 .

Proof.[Proof of Lemma 4.5] Since k ∈ L1

(
R
N ,B (X,Y )

)
it is well-known that (4.10)

defines a bounded operator on Lq (X). Indeed, for f ∈ Lq (X)∩L∞ (X) we have, where
fs(t) := f(t− s),∫

RN

‖k (t− s) f (s)‖Y ds =
∫

RN

‖k(s)fs(t)‖Y ds ≤ ‖k‖L1(B(X,Y )) ‖f‖L∞(X)
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for each t ∈ R
N and

‖Kf (·)‖Lq(Y ) ≤
∫

RN

‖k (s) fs (·)‖Lq(Y ) ds

≤
∫

RN

‖k (s)‖B(X,Y ) ‖fs (·)‖Lq(X) ds = ‖k‖L1(B(X,Y )) ‖f‖Lq(X) .

But what is important for us is that, by using (4.9), we can get a better norm estimate
on ‖K‖ than ‖k‖L1

.
For q = 1 we have from (4.9)

‖Kf‖L1(Y ) ≤
∫ ∫

‖k(t− s)f(s)‖Y dt ds

≤ C0

∫
‖f(s)‖X ds = C0 ‖f‖L1(X) .

Thus ‖K‖L1→L1
≤ C0. If q = ∞, then for each f ∈ L∞ (X) and y∗ ∈ Y ∗ and t ∈ R

N

|〈y∗, (Kf) (t)〉Y | ≤
∫

|〈k(t− s)∗y∗, f(s)〉X | ds

≤
∫

‖k(t− s)∗y∗‖X∗ ‖f(s)‖X ds ≤ C1 ‖y∗‖Y ∗ ‖f‖L∞(X) .

Hence ‖K‖L∞→L∞ ≤ C1. Let L0
∞(X) denotes the closure, in the L∞(X) norm, of

the simple functions
∑m
k=1 xkχAk

, where xk ∈ X and vol(Ak) <∞ and m ∈ N. Then
one can check that K maps L0

∞(X) into L0
∞(Y ). Indeed, for f = x · χA, we have

Kf(t) =
∫
t−A k(s)xds → 0 for |t| → ∞ and Kf is a continuous function from R

N to
Y . Now the Riesz-Thorin Theorem (cf. [5, Thm 5.1.2]) yields the claim for 1 < p <∞.

2

Remark 4.6. The assumption in Lemma 4.5 that k ∈ L1

(
R
N ,B (X,Y )

)
can be

replaced by much weaker measurability conditions. This is explored in [12].

Proof.[Proof of Theorem 4.3] First assume in addition that m ∈ S (B (X,Y )).
Thus m̌ ∈ S (B (X,Y )). Fix x ∈ X. For an appropriate choice of a > 0, we can

apply Corollary 3.2 to the function

t → m (at)x in B
N/p
p,1 (Y )

and use that [m (a·)x]∨ (s) = a−N m̌
(
s
a

)
x to get

‖m̌ (·)x‖L1(Y ) =
∥∥[m (a·)x]∨ ∥∥

L1(Y )

≤ C1 ‖m (a·)‖
B

N/p
p,1

‖x‖X ≤ 2C1 Mp(m) ‖x‖X
(4.11)

for some constant C1 which depends on Fp,N (Y ).
By the additional assumption on m

[m (·)]∗ ∈ S (B (Y ∗, X∗)) and
[
m (·)∗]∨ = [m̌ (·)]∗ ∈ S (B (Y ∗, X∗)) .
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Let y∗ ∈ Y ∗. Similarly, by applying Corollary 3.2 to an appropriate function

t → [m (at)]∗ y∗ in B
N/p
p,1 (X∗)

and using the fact that Mp(m) = Mp(m∗), one has

(4.12)
∥∥ [m̌ (·)]∗ y∗ ∥∥

L1(X∗)
≤ 2C2 Mp(m) ‖y∗‖Y ∗

for some constant C2 which depends Fp,N (X∗).
By Lemma 4.5, the convolution operator

(Tmf) (t) :=
∫

RN

m̌(t− s)f(s) ds

satisfies, where C = 2 max{C1, C2},
‖Tm‖B(Lq(X),Lq(Y )) ≤ CMp(m) .

Furthermore Tm satisfies (4.5) since m ∈ L1 (B (X,Y )). Also, Tm satisfies (4.6);
indeed, T ∗

m restricted to Lq′ (Y ∗) is just Tm(−·)∗ and so Remark 4.2 holds.
For the general case where m ∈ B

N/p
p,1 (B (X,Y )), choose a sequence {mn}n from

S (B (X,Y )) that converges to m in the B
N/p
p,1 –norm and obtain operators Tmn

∈
B (Lq(X), Lq(Y )) with ‖Tmn

− Tml
‖ at most C ‖mn −ml‖BN/p

p,1
. Then

T := ‖·‖B(Lq(X),Lq(Y )) − lim
n→∞Tmn

has the desired properties. Indeed, conditions (4.5) and (4.6) pass from Tmn
to Tm.

One also has that ‖Tm‖ ≤ C ‖m‖
B

N/p
p,1

. To get the desired bound, fix a > 0 such that

m(a·) ∈ B
N/p
p,1 (B (X,Y )). Then IY ◦ Tm(a·) = Tm ◦ IX where IZ : Lq (Z) → Lq (Z) is

the isometry (Tf) (t) = aN/q f (at). Thus

‖Tm‖ =
∥∥Tm(a·)

∥∥ ≤ C ‖m(a·)‖
B

N/p
p,1 (B(X,Y ))

and so ‖Tm‖ ≤ CMp (m). 2

The following remark collects some basic facts about the Fourier multiplier operators
Tm given in Theorem 4.3 that will be used in the proof of Theorem 4.8. Recall that
for a distribution g ∈ S ′ (

R
N , X

)
and a closed subset Ω of R

N

supp g ⊂ Ω if and only if g (ϕ) = 0 for each ϕ ∈ S with Ω ∩ supp ϕ = ∅ .

Remark 4.7. Assume that we are in the setting of Theorem 4.3. Let f ∈ Lq (X)
and Ω be a closed subset of R

N .

a) Viewing f and Tmf as distributions, if supp f̂ ⊂ Ω then supp T̂mf ⊂ Ω.

b) Tm1 + Tm2 = Tm1+m2 . If ϕ ∈ S, then ϕ̌ ∗ (Tmf) = Tm (ϕ̌ ∗ f) = Tϕm (f).

c) If ϕ ∈ S is 1 on supp f̂ , then Tϕmf = Tmf .
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d) T ∗
m restricted to Lq′ (Y ∗) is Tm(−·)∗ .

Proof. a) If f ∈ S (X) then the claim follows from the fact that Tm has the
form (4.7). In general, choose a sequence {fn} from S (X) that converges to f

in σ (Lq (X) , Lq′ (X∗)) and with supp f̂n ⊂ Ω. Then {Tmfn} converges to Tmf in
σ (Lq (Y ) , Lq′ (Y ∗)). If ϕ ∈ S with Ω ∩ supp ϕ = ∅ and y∗ ∈ Y ∗ then

y∗
[
(Tmf)̂(ϕ)

]
= (y∗ ⊗ ϕ̂) (Tmf)

= lim
n→∞ (y∗ ⊗ ϕ̂) (Tmfn) = lim

n→∞ y∗
[
(Tmfn)̂(ϕ)

]
.

Thus (Tmf)̂(ϕ) = 0.
b) The claim is trivial if Tm is a convolution operator with kernel m̌ ∈ S (B (X,Y )).
But according to the proof of Theorem 4.3, Tm can be approximated by such operators
in operator norm.
c) Follows directly from b).
d) The proof is contained in the proof of Theorem 4.3. 2

By applying this Theorem 4.3 to the blocks of the Littlewood–Paley decomposition
of Bsq,r we will now get the main result of this section.

Theorem 4.8. Let X and Y be Banach spaces with Fourier type p ∈ [1, 2]. Then
there is a constant C, depending only on Fp,N (X) and Fp,N (Y ), so that if m : R

N →
B (X,Y ) satisfy
(4.13)
ϕk ·m ∈ B

N/p
p,1

(
R
N ,B (X,Y )

)
and Mp(ϕk ·m) ≤ A for each k ∈ N0

then m is a Fourier multiplier from Bsq,r(R
N , X) to Bsq,r(R

N , Y ) and ‖Tm‖ ≤ CA for
each s ∈ R and q, r ∈ [1,∞].

Remark 4.9. a) Note that each Banach space has Fourier type 1 and each uniformly
convex Banach space has Fourier type p for some p > 1. Our result shows that the
required smoothness of the multiplier function m depends not only on the dimension
of R

N but also on the geometry of the Banach spaces X and Y .
b) Our results are sharp in the following sense. Note that the spaces BN/pp,1 (RN , Z)
form a scale since

B
N/p
p,1 (RN , Z) ⊂ B

N/q
q,1 (RN , Z)

if p < q. In general it is not possible to replace BN/pp,1 in Theorem 4.8 by a larger space

B
N/q
q,1 for some q > p. Indeed, it was shown in [29, Remark 3.7] that counterexamples

for such a stronger statement can be found in the context of stability theory for
semigroups on Lp-spaces.
c) We can replace (4.13) by a weaker pointwise condition:

‖ϕkm (·)x‖
B

N/p
p,1 (Y )

≤ A ‖x‖ for x ∈ X∥∥ϕkm (·)∗ y∗∥∥
B

N/p
p,1 (X∗)

≤ A ‖y∗‖ for y∗ ∈ Y ∗ .
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See the proof below and Remark 4.4c.

The heuristic idea behind the proof of Theorem 4.8 is to formally decompose the
desired Fourier multiplier operator Tm as

Tmf =
[
mf̂

]∨
=

∑
k∈N0

[
(ϕk−1 + ϕk + ϕk+1) m (ϕ̌k ∗ f)̂ ]∨

=
∑
k∈N0

T(ϕk−1+ϕk+ϕk+1)m (ϕ̌k ∗ f)

where T(ϕk−1+ϕk+ϕk+1)m is the Fourier multiplier operator on Lq (X) given by Theo-
rem 4.3. It then follows easily that such a decomposition yields a bounded operator
from

◦
B s
q,r (X) to Bsq,r (Y ). The case when

◦
B s
q,r (X) 6= Bsq,r (X) (i.e. q = ∞ or r = ∞)

requires further consideration.

Proof.[Proof of Theorem 4.8] Theorem 4.3 gives that ϕk · m induces a Fourier
multiplier operator Tmϕk

with

‖Tmϕk
‖B(Lq(X),Lq(Y )) ≤ CMp(ϕk ·m) ≤ CA

for some constant C depending only on Fp,N (X) and Fp,N (Y ). Let ψk = ϕk−1 +
ϕk + ϕk+1; note that ψk is 1 on supp ϕk. Then ψk ·m induces the Fourier multiplier
operator Tmψk

with

(4.14) Tmψk
= Tmϕk−1 + Tmϕk

+ Tmϕk+1 ∈ B (Lq (X) , Lq (Y ))

and ‖Tmψk
‖ ≤ 3CA.

As in the introduction of Section 4, define T0 : S(X) → S ′(Y ) by (4.1); namely,

T0(f) = F−1[m(·) (Ff)(·)] .
If f ∈ S (X), then

ϕ̌k ∗ T0f = Tmψk
(ϕ̌k ∗ f)

for each k ∈ N0 since

[Tmψk
(ϕ̌k ∗ f)]̂(·) = ψk (·)m (·) [(ϕ̌k ∗ f)̂(·)] = ψk (·)m (·)

[
ϕk (·) f̂ (·)

]
= ϕk (·)

[
m (·) f̂ (·)

]
= ϕk (·) (T0f)̂(·) = (ϕ̌k ∗ T0f)̂(·) ;

so, by the definition of the Besov norm

‖T0f‖Bs
q,r(Y ) ≤ 3CA ‖f‖Bs

q,r(X) .

Thus T0 extends to a bounded linear operator from
◦
B s
q,r (X) to Bsq,r (Y ). If q, r <∞,

then
◦
B s
q,r (X) = Bsq,r (X) and so all that would remain is to verify the weak continuity

condition (4.6). However, we continue with the proof in order to also cover the case
q = ∞ or r = ∞.
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We shall show that

Tm : Bsq,r (X) → Bsq,r (Y )

defined by

(4.15) Tmf :=
∞∑
k=0

fk where fk := Tmψk
(ϕ̌k ∗ f) ∈ Lq (Y )

is indeed a (norm) continuous operator. Towards this, fix f ∈ Bsq,r (X).
First we show that the formal series Tmf in (4.15) defines an element in S ′ (Y ).

Towards this, fix ϕ ∈ S. Remark 4.7 gives that supp f̂k ⊂ Ik. Thus

fk (ϕ) = f̂k (ϕ̌) = f̂k (ψk (−·) ϕ̌) = fk

(
(2π)−N ψk (−·)̂ ∗ ϕ

)
= fk

(
ψ̌k ∗ ϕ

)
and so

∞∑
k=0

‖fk (ϕ)‖Y ≤
∞∑
k=0

‖fk‖Lq(Y )

∥∥ψ̌k ∗ ϕ∥∥
Lq′ (C)

≤ 3AC
∞∑
k=0

(
2ks ‖ϕ̌k ∗ f‖Lq(X)

) (
2−ks

∥∥ψ̌k ∗ ϕ∥∥
Lq′ (C)

)
≤ 27AC 2|s| ‖f‖Bs

q,r(X) ‖ϕ‖B−s

q′,r′ (C) .

Thus

(4.16) ‖·‖Y − lim
n→∞

n∑
k=0

fk (ϕ) := (Tmf) (ϕ) for ϕ ∈ S

defines a linear map Tmf from S into Y which is continuous by (2.8).
By Remark 4.7, for each j, k ∈ N0

ϕ̌j ∗ Tmψk
(ϕ̌k ∗ f) = Tmψk

(ϕ̌j ∗ ϕ̌k ∗ f) = ϕ̌k ∗ Tmψk
(ϕ̌j ∗ f) .

Thus, since the support of ϕk intersects the support of ϕj only for |k − j| ≤ 1, applying
Remark 4.7 further gives

ϕ̌k ∗ Tmf =
k+1∑
j=k−1

ϕ̌k ∗ Tmψj
(ϕ̌j ∗ f) =

k+1∑
j=k−1

ϕ̌j ∗ Tmψj
(ϕ̌k ∗ f)

=
k+1∑
j=k−1

Tϕjψjm (ϕ̌k ∗ f) = Tmψk
(ϕ̌k ∗ f) .

(4.17)

Hence ϕ̌k ∗ Tmf ∈ Lq (Y ) and

‖ϕ̌k ∗ Tmf‖Lq(Y ) ≤ 3CA ‖ϕ̌k ∗ f‖Lq(X) ,

from which it follows that range of Tm is contained in Bsq,r(X) and that norm of Tm
as an operator from Bsq,r(X) to Bsq,r(Y ) is bounded by a constant depending on the
items claimed.
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Furthermore, Tm extends T0; indeed, if f ∈ S (X) then (viewing equality as pointwise
in S ′ (Y ))

(Tmf)̂ =
∞∑
k=0

[Tmψk
(ϕ̌k ∗ f)]̂ =

∞∑
k=0

(
ψkmϕk f̂

)
=

∞∑
k=0

(
ϕkmf̂

)
=

( ∞∑
k=0

ϕk

)
mf̂ = (T0f)̂ ,

where the first equality follows from (2.1) and (4.16) while the fourth equality follows
from viewing each ϕkmf̂ as an element of L1(Y ).

It remains to show only that Tm satisfies (4.6). Since [m (−·)]∗ : R
N → B (Y ∗, X∗)

also satisfies condition (4.13), the Fourier multiplier operator Tm(−·)∗ , defined by (4.5),
extends to Tm(−·)∗ ∈ B (E∗ (Y ∗) , E∗ (X∗)) where E = Bsq,r. By Remark 4.2, it suffices
to show that T ∗

m restricted to E∗ (Y ∗) is Tm(−·)∗ . Towards this, fix g ∈ E∗ (Y ∗) and
f ∈ E (X). By (4.17) and (2.10)

〈T ∗
mg, f 〉E(X) =

∑
n,k∈N0

〈 ϕ̌n ∗ g, ϕ̌k ∗ Tmf 〉Lq(Y )

=
∑

n,k∈N0

〈 ϕ̌n ∗ g, Tmψk
(ϕ̌k ∗ f) 〉Lq(Y )

(4.18)

and 〈
Tm(−·)∗g, f

〉
E(X)

=
∑

n,k∈N0

〈
ϕ̌n ∗ Tm(−·)∗g, ϕ̌k ∗ f

〉
Lq(X)

=
∑

n,k∈N0

〈
Tm(−·)∗ψn(·) (ϕ̌n ∗ g) , ϕ̌k ∗ f

〉
Lq(X)

.
(4.19)

Fix K0 ∈ N0 and choose a radial ψ ∈ S with compact support such that ψ is 1 on
∪K0+1
k=1 supp ϕk. If n, k ∈ {0, 1, . . . ,K0} then ψk = ψψk and ψn = ψψn and so, by

Remark 4.7,

Tmψk
(ϕ̌k ∗ f) = Tmψψk

(ϕ̌k ∗ f) = Tmψ (ϕ̌k ∗ f)(4.20)

and

Tm(−·)∗ψn(·) (ϕ̌n ∗ g) = Tm(−·)∗ψ(·)ψn(·) (ϕ̌n ∗ g) = Tm(−·)∗ψ(·) (ϕ̌n ∗ g)(4.21)

since ψm and ψ(·)m(−·)∗ satisfy the assumptions of Theorem 4.3 (indeed, ψm =∑l
k=0 ψϕkm for some l large enough, likewise for ψ(·)m(−·)∗). Thus 〈T ∗

mg, f 〉 =〈
Tm(−·)∗g, f

〉
by (4.18),(4.19), (4.20), (4.21), and Remark 4.7. 2

The next lemma gives a convenient way to verify the assumption of Theorem 4.8 in
terms of derivatives.

Lemma 4.10. Let N
p < l ∈ N and u ∈ [p,∞]. If m ∈ Cl(RN ,B (X,Y )) satisfies,

for some A,

(4.22) ‖Dαm |I0‖Lu(B(X,Y )) ≤ A
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and for each k ∈ N, with mk(·) := m
(
2k−1·),

(4.23) ‖Dαmk |I1‖Lu(B(X,Y )) ≤ A

for each α ∈ N
N
0 with |α| ≤ l, then m satisfies condition (4.13) of Theorem 4.8.

Proof. Since l > N
p one has that W l

p

(
R
N ,B (X,Y )

) ⊂ B
N/p
p,1

(
R
N ,B (X,Y )

)
, say

with embedding constant K (see (2.9)). Let ũ ∈ [p,∞] be so that 1/u + 1/ũ = 1/p.
Note that, for i ∈ N0,

Clũ (ϕi) :=
∑
|α|≤l

∑
β≤α

(
α
β

) ∥∥Dβϕi
∥∥
Lũ

is finite. Thus, by (4.22),

Mp (ϕ0m) ≤ ‖ϕ0m‖
B

N/p
p,1

≤ K ‖ϕ0m‖W l
p

= K
∑
|α|≤l

∥∥∥∥∥∥
∑
β≤α

(
α
β

)
Dβϕ0 D

α−βm |I0

∥∥∥∥∥∥
Lp

≤ K A Clũ (ϕ0) .

For each k ∈ N,

(4.24) Mp (ϕkm) ≤ ∥∥ϕk (2k−1·)m (2k−1·)∥∥
B

N/p
p,1

= ‖ϕ1mk‖BN/p
p,1

;

thus by (4.23),

Mp (ϕkm) ≤ K ‖ϕ1mk‖W l
p

≤ K A Clũ (ϕ1) .

Thus for each k ∈ N0

Mp (ϕkm) ≤ KA
[
Clũ (ϕ0) ∨ Clũ (ϕ1)

]
;

so m does indeed satisfy condition (4.13) of Theorem 4.8. 2

Now we show that the classical Mihlin conditions imply assumption (4.13) of Theo-
rem 4.8.

Corollary 4.11. Let q, r ∈ [1,∞] and s ∈ R. If m ∈ Cl(RN ,B (X,Y )) satisfies, for
some constant A,

(4.25) sup
t∈RN

∥∥∥(1 + |t|)|α|Dαm (t)
∥∥∥
B(X,Y )

≤ A

for each multi-index α with |α| ≤ l, then m is a Fourier multiplier from Bsq,r(R
N , X)

to Bsq,r(R
N , Y ) provided one of the following conditions hold.

a) X and Y are arbitrary Banach spaces and l = N + 1.

b) X and Y are uniformly convex Banach spaces and l = N .

c) X and Y have Fourier type p and l = [Np ] + 1.
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Remark 4.12. Part a) was shown by H. Amann in [2]. By Remark 2.2, part c) can
be applied to Banach spaces X and Y that are subspaces of Lq ((Ω,Σ, µ) ,R) where
p = min(q′, q).

Proof. In case c), X and Y are assumed to have Fourier type p. In case b), since X
and Y are uniformly convex, they have Fourier type p for some p > 1. In case a), let
p = 1. Thus, in each of the three cases, X and Y have Fourier type p and, by design,
N/p < l ∈ N.

Keeping with the notation from Lemma 4.10, let u = ∞. Fix α ∈ N
n
0 with |α| ≤ l.

Clearly (4.25) implies (4.22) since

‖Dαm |I0‖L∞ ≤
∥∥∥(1 + |·|)|α|Dαm (·)

∥∥∥
L∞

≤ A .

For each k ∈ N and t ∈ I1
(4.26)

‖Dαmk (t)‖B(X,Y ) ≤
∥∥∥|t||α| Dαmk (t)

∥∥∥
B(X,Y )

=
∥∥∥∣∣2k−1t

∣∣|α| Dαm
(
2k−1t

)∥∥∥
B(X,Y )

;

thus (4.25) implies (4.23) since

‖Dαmk |I1‖L∞ ≤
∥∥∥(1 + |·|)|α|Dαm (·)

∥∥∥
L∞

≤ A .

So by Lemma 4.10, m satisfies condition (4.13) of Theorem 4.8. 2

The next results generalizes Hörmanders condition.

Corollary 4.13. Let X and Y have Fourier type p and l =
[
N
p

]
+ 1. Let m ∈

Cl(RN ,B (X,Y )) satisfy, for some constant A,

(4.27)

[ ∫
|t|≤2

‖Dαm(t)‖p dt
]1/p

≤ A

and, for 1 ≤ R <∞,

(4.28)

[
R−N

∫
R<|t|<4R

‖Dαm(t)‖p dt
]1/p

≤ AR−|α|

for each multi-index α ∈ N
N
0 with |α| ≤ l. Then m is a Fourier multiplier from

Bsq,r
(
R
N , X

)
to Bsq,r

(
R
N , Y

)
for each s ∈ R and q, r ∈ [1,∞].

Proof. Keeping with the notation from Lemma 4.10, let u = p. Fix α ∈ N
N
0 with

|α| ≤ l. Then (4.27) is just (4.22). Also, (4.28) and (4.26) give that

‖Dαmk |I1‖Lp
≤ 4lA

for each k ∈ N. So by Lemma 4.10, m satisfies condition (4.13) of Theorem 4.8. 2

Variants of Corollary 4.11, where the assumption (4.25) of bounds on derivatives is
replaced by Lipschitz conditions, follow from the formal statement of Theorem 4.8.
The proof of the next corollary shows how to obtain such variants.
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Corollary 4.14. Let X and Y have Fourier type p ∈ (1, 2]. Assume that m : R →
B (X,Y ) satisfies, for some constant A and l ∈ (1/p, 1),

‖m (t)‖ ≤ A for t ∈ R(4.29)

(1 + |t|)l
∥∥∥∥∥m (t+ u) −m (t)

|u|l
∥∥∥∥∥ ≤ A for u, t ∈ R , u 6= 0 .(4.30)

Then m is a Fourier multiplier from Bsq,r (X) to Bsq,r (Y ) for each s ∈ R and 1 ≤
q, r ≤ ∞.

Proof. It suffices to show that there is a constant C so that, following the notation
from (2.7) and with mk (·) := m

(
2k−1·),

(4.31) B
1/p
p,1 (ϕ0m) ≤ C and B

1/p
p,1 (ϕ1mk) ≤ C for each k ∈ N ;

indeed, for then m satisfies (4.13) from Theorem 4.8 by (4.24), (2.6), and (4.29).
Let u0 = 9; thus, if |h| ≥ u0 then Ij ∩ (Ij − h) = ∅ for j = 0, 1.
Fix k ∈ N. Note that if t ∈ I1 and h ∈ R \ {0} then by (4.30)

(4.32)

∥∥∥∥∥mk (t+ h) −mk (t)

|h|l
∥∥∥∥∥ ≤ |t|l

∥∥∥∥∥mk (t+ h) −mk (t)

|h|l
∥∥∥∥∥ ≤ A .

If |h| ≤ u0, then by (4.32) and (4.29),

‖ϕ1mk (· + h) − ϕ1mk (·) ‖Lp
=

∥∥∥∥∥ϕ1 (·) |h|l mk (· + h) −mk (·)
|h|l

χI1 (·) +

mk (· + h) |h| ϕ1 (· + h) − ϕ1 (·)
|h| χ(I1−h)∪I1 (·)

∥∥∥∥
Lp

≤ ‖ϕ1‖Lp
|h|lA + A |h| ‖ϕ′

1‖L∞

∥∥χ(I1−h)∪I1
∥∥
Lp

(4.33)

≤ A
[
‖ϕ1‖Lp

+ u1−l
0 ‖ϕ′

1‖L∞ (2 |I1|)1/p
]
|h|l .

If |h| ≥ u0, then by (4.29)

(4.34) ‖ϕ1mk (· + h) − ϕ1mk (·)‖Lp
= 21/p ‖ϕ1mk‖Lp

≤ 21/p ‖ϕ1‖Lp
A .

Thus, by (4.33) and (4.34), there is a constant C1, dependent on ϕ1 but independent
of k, so that (following the notation from (2.7))

wp (ϕ1mk, u) := sup
|h|≤u

‖ϕ1mk (· + h) − ϕ1mk (·)‖Lp

≤
{
C1u

l if 0 ≤ u ≤ u0

C1 if u ≥ u0 .

(4.35)

Similar calculations show that (4.35) holds for ϕ0m with some constant C0 depending
on ϕ0. Thus (4.31) holds. 2

The proof of Theorem 4.8 also gives a result for essentially scalar valued multipliers
which has the same smoothness requirement as in the classical theorems but without
any Fourier type assumptions on the Banach spaces.
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Corollary 4.15. Let {Xj}n1
j=1 and {Yi}n2

i=1 be Banach spaces and Sij ∈ B (Xj , Yi)
for i = 1, . . . , n2 and j = 1, . . . , n1. Put X = X1 × . . .×Xn1 and Y = Y1 × . . .× Yn2

and S = {Sij}i,j. Assume that n : R
N → C

n2 satisfies for each k ∈ N0

(4.36) ϕkn ∈ B
N/2
2,1

(
R
N ,Cn2

)
and M2 (ϕkn) ≤ A .

Then t → m (t) := n (t)S ∈ B (X,Y ) is a Fourier multiplier from Bsq,r
(
R
N , X

)
to

Bsq,r
(
R
N , Y

)
for each s ∈ R and q, r ∈ [1,∞].

Remark 4.16. Condition (4.36) follows from either condition (4.25) of Corol-
lary 4.11 or conditions (4.27) and (4.28) of Corollary 4.13 or conditions (4.29) and
(4.30) of Corollary 4.14 with p = 2 adjusted to this special setting.

Proof. Looking back at the proof of Theorem 4.8, one sees that one only needs that
the ϕkm’s induce Fourier multiplier operators Tmϕk

’s on Lq
(
R
N , X

)
which satisfy the

conditions in Remark 4.7 and

‖Tmϕk
‖Lq(X)→Lq(Y ) ≤ CM2 (ϕkn) .

But this follows from (4.36); indeed, just make minor modifications to the proof of
Theorem 4.3, applying Corollary 3.2 to ϕkn ∈ B

N/2
2,1

(
R
N ,Cn2

)
, which is valid since

C
n2 has Fourier type 2 (Plancherel’s Theorem). Towards this, note that there exists

a constant C1, dependent on the choice of product topologies, so that

‖αy‖Y ≤ C1 ‖α‖Cn2 ‖y‖Y
for each α ∈ C

n2 and y ∈ Y . If ϕkn ∈ S (Cn2), then (4.11) takes the form∥∥(ϕkn)∨ Sx
∥∥
L1(Y )

≤ 2C1 ‖S‖M2 (ϕkn) ‖x‖X
for each x ∈ X while (4.12) takes the form∥∥(ϕkn)∨ S∗y∗

∥∥
L1(X∗)

≤ 2C1 ‖S‖M2 (ϕkn) ‖y∗‖Y ∗

for each y∗ ∈ Y ∗. Thus by Lemma 4.5, ϕkm induces the Fourier multiplier operator

(Tϕkmf) (t) :=
∫

RN

[ϕkn]∨ (t− s)Sf(s) ds

with ‖Tϕkm‖Lq→Lq
≤ 2C1 ‖S‖M2 (ϕkn). The general case where ϕkn ∈ B

N/2
2,1 fol-

lows, as in the proof of Theorem 4.3, by approximation. 2
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[20] Y. Latushkin and F. Räbiger, Fourier multipliers in stability and control theory, (preprint).

[21] Terry R. McConnell, On Fourier multiplier transformations of Banach-valued functions, Trans.
Amer. Math. Soc. 285 (1984), no. 2, 739–757.

[22] Jaak Peetre, Sur la transformation de Fourier des fonctions à valeurs vectorielles, Rend. Sem.
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[23] A. Pe lczyński and M. Wojciechowski, Molecular decompositions and embedding theorems for
vector-valued Sobolev spaces with gradient norm, Studia Math. 107 (1993), no. 1, 61–100.



Girardi, Weis, Operator-valued Fourier multiplier theorems on Besov spaces 23

[24] Hans-Jürgen Schmeisser, Vector-valued Sobolev and Besov spaces, Seminar analysis of the Karl-
Weierstraß-Institute of Mathematics 1985/86 (Berlin, 1985/86), Teubner, Leipzig, 1987, pp. 4–
44.

[25] Bert-Wolfgang Schulze, Boundary value problems and singular pseudo-differential operators,
John Wiley & Sons Ltd., Chichester, 1998.
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