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Abstract. Given a complete separable �-�nite measure space (X;�; �) and nested

partitions of X, we construct unbalanced Haar-like wavelets on X that form an uncon-

ditional basis for Lp(X;�; �) where 1 < p <1. Our construction and proofs build upon

ideas of Burkholder and Mitrea. We show that if (X;�; �) is not purely atomic, then the

unconditional basis constant of our basis is (max(p; q)� 1). We derive a fast algorithm

to compute the coe�cients.

1. Introduction

Our goal is, given a measure space (X;�; �) and nested partitions of X, to construct un-

balanced Haar-like wavelets on X that form an unconditional basis for Lp � Lp(X;�; �) where

1 < p <1.

Wavelets are traditionally de�ned on Euclidean spaces. They usually are the translates and

dilates of one particular function and are orthogonal or biorthogonal with respect to the Lebesgue

measure.

However, we work on a general measure space, which need not even have a vector space

structure, so translation and dilation becomes void. Although our wavelets are not the translates

and dilates of one function, they still enjoy the desirable properties of traditional wavelets, such

as a multiresolution structure and an associated fast transform algorithm. Our setting allows

for non-translation invariant measures and covers general nested partitions of arbitrary subsets

of Euclidean spaces. Thus our wavelets are particularly useful in practical applications.
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Our construction is inspired by and generalizes the construction [1, 14] of Mitrea wavelets

on dyadic cubes in Rn. This was the �rst construction of Haar-like wavelets in case of non-

translation invariant measures on Rn for n > 1.

To show that wavelets form an unconditional basis of Lp, one often uses Calder�on-Zygmund

theory and an interpolation result of Marcinkiewicz. We follow a di�erent approach; we show

that the wavelets essentially are a martingale di�erence sequence and thus are able to use

Burkholder's celebrated inequality [4, 5, 6] to show that they form an unconditional basic se-

quence. This approach gives the best unconditional basis constant. We also show that in some

cases the wavelets form a monotone basis.

One aim of this paper is to illustrate how techniques from martingale and Banach space theory

can be used in wavelet theory.

The paper is organized as follows. In Section 2 we set some notation and recall some classical

results. In Section 3 we introduce the notion of a forest, which we use as an indexing set. We use

the forest to de�ne partitions in Section 4. Section 5 contains the construction of the wavelets

while Section 6 contains the proof that they form an unconditional basis. We discuss the dual

basis and a characterization in Section 7. The next two sections contain more practical results.

Sections 8 shows the connection with multiresolution analysis and the fast wavelet transform,

while Section 9 discusses the setting inside a Euclidean space.

2. Notation and Terminology and Basics

Recall that a countable family f 
g
2G is an unconditional basis for Lp if for each f 2 Lp

there is a unique family fc
g
2G of real numbers so that
P
c
 
 converges unconditionally to f

in Lp-norm. This is the case if and only if the following two conditions hold:

(C1) clos spanf 
 j 
 2 Gg = Lp

(C2) a constant K exists so that for all �nite subsets � � G
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;

for all choices of c
 2 R and �
 = �1.

The smallest K for which condition (C2) holds, denoted Kp(f 
g), is the unconditional basis

constant of f 
g.

Clearly, any Banach space with a countable basis is separable. If 1 < p <1, then a separable

Lp(�) space has an unconditional basis [17, 8]. Pe lczy�nski [18] showed that, for any �nite non-

purely atomic measure �, the space L1(�) does not even embed into a Banach space with an

unconditional basis. Thus we restrict our attention to separable Lp spaces with 1 < p < 1.

In this setting, we know Lp(X;�; �) up to an isometric isomorphism. Recall that two Banach
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spaces E and F are isometrically isomorphic if there is an invertible bounded linear operator

T : E ! F so that kTk = 1 = kT�1k. A separable Lp(X;�; �) is isometrically isomorphic to

precisely one of the following spaces, where Lp(m) is the Lp space on the Lebesgue measure space

on [0; 1]: `p, `
n
p , Lp(m), Lp(m)�p `p, Lp(m)�p `

n
p for some n 2 N (cf. [22, Proposition III.A.1]).

The isometric isomorphism basically follows from mapping (X;�; �) into a combination of the

Lebesgue measure space on [0; 1] and the counting measure space on N. For practical reasons,

we prefer to constructively build our wavelets directly on X instead of calling upon this mapping.

Throughout this paper, (X;�; �) is a �xed complete measure space with � taking values in

the non-negative extended real numbers. Let �+ be the collection of all sets in � with strictly

positive, but �nite, �-measure; let e� be any sub-�-�eld of � such that the �-completion of (X; e�)

is (X;�). The support of a function f : X ! R is the set suppf � fx 2 X j f(x) 6= 0g. For an

arbitrary set S, let P(S) be the power set of S and #S be the cardinality of S. For K � P(S),

let �(K) be the smallest �-algebra containing K. For a function f on S, we follow the common

practice of also denoting by f the natural extension of the original f to P(S). Throughout this

paper, 1 < p < 1 is a �xed number with conjugate exponent q where 1=p + 1=q = 1. Let

p� = max (p; q). The dual space L�p of Lp(X;�; �) is isometrically isomorphic to Lq(X;�; �),

where g 2 Lq(X;�; �) is identi�ed with x�g 2 L�p by

x�g(f) = h f; g i =

Z
X

f g d� :

We say that f 2 Lp is orthogonal to g 2 Lq if h f; g i = 0.

3. Trees and Forests

We formulate the notation of a forest, which is a useful indexing set. A forest (F ; g; p; C;<)

consists of a countable set F , which has a (possibly empty) subset R of root elements, along

with a generation function g : F ! Z, a parent function p : F n R ! F , a children function

C : F ! P(F), and an age partial ordering < on F , all of which satisfy the following properties:

(F1) C(�) = f� 2 F j p(�) = �g ,

(F2) 0 6 #C(�) <1 for each � 2 F ,

(F3) if � 2 C(�) then g(�) = 1 + g(�) ,

(F4) the ordering < linearly orders C(�) for each � 2 F .

(F5) if g(�) < g(�) and pn(�) = pm(�) for some n;m > 0, then � < � ,

where the power functions pn of the parent function p are de�ned by p0 being the identity

function and pn(�) = p(pn�1(�)). If confusion is unlikely, we denote a forest (F ; g; p; C;<) by

just F . The given partial ordering extends to a linear ordering of the whole forest with (F4)

and (F5) still holding: it is only needed to extend the ordering as so to linearly order each
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kth-generation Fk of F where

Fk = f� 2 F j g(�) = kg :

Thus, henceforth, forests satisfy the additional property

(F6) the ordering < linearly orders the the whole forest .

One thinks of a parent element � 2 Fk on the kth-generation of F as spawning the children

elements � with � 2 C(�) � Fk+1. Root elements are denoted by � and have no parent. A

forest F that satis�es the additional property

(T1) if �; � 2 F , then there are n;m > 0 so that pn(�) = pm(�)

is called a tree. A tree has at most one root element; a rooted tree has exactly one root.

A leaf is an element that has no children. Let L be the set of leaves in F . On occasions it is

convenient to think of a leaf as repeating itself in the later generations, for this consider

F�

k = Fk

[ 2
4 [

j<k

L \ Fj

3
5 :

Let

Cl(�) =

8<
:C(�) if � =2 L

f�g if � 2 L :

De�ne the power functions Cn (resp. Cn
l (�)) of the function C (resp. Cl(�)) analogous to the

power functions pn. Note that for n 2 N,

Cn
l (�) = Cn(�)

[ n�1[
j=0

�
Cj(�)\ L

�
:

A countable union of disjoint trees is a forest. Conversely, any forest (F ; g; p; C;<) can be

expressed as a countable union of disjoint trees. To see this, consider the equivalence relation �

on F given by � � � if and only if (T1) holds. This relation induces a partition of F

F =
[
{2K

F({)(1)

into disjoint equivalence classes F({) where the indexing set K is the induced quotient space.

Each F({) is a tree.

The concept of a forest, which is fairly technical, is introduced to help simplify the construction

of wavelets from nested partitionings of X. Later we will reduce the general forest setting to

three canonical cases of trees.
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4. Partitions

We call a collection fX� j � 2 Fg from �+ a nested partitioning for X, with respect to the

forest F , if it satis�es the following partition properties:

(P1) X�1 \X�2 = ; if g(�1) = g(�2) and �1 6= �2 ,

(P2) X� \X� = ; if � 2 R and pn(�) 6= � for each n > 0 ,

(P3) if X� is not a leaf, then it can be written as the disjoint union

X� =
[

�2C(�)

X� ;

(P4) X = [fX� j � 2 Fg ,

(P5) �(fX� j � 2 Fg) = e� .

The partitioning (1) of the forest into trees provides a partition of X. For each { 2 K, let

X({) =
[

�2F({)

X� :

From the �rst three partition properties it follows that if {1 6= {2 then X({1) and X({2) are

disjoint. Thus X can be written as the disjoint union

X =
[
{2K

X({) :(2)

For each { 2 K, the subcollection fX� j � 2 F({)g is a nested partitioning for X({) with

respect to the tree F({). The partitions

�k({) = fX� j � 2 F
�

k \ F({)g

of X({) are nested for k 2 g(F({)). We will use the subcollection fX� j � 2 F({)g to build

wavelets on X({). Our wavelets � will then be the union of the wavelets on each X({). Thus,

for the time being, we will work with trees instead of forests. There are three types of nested

partitionings of X with respect to a tree T :

- Type I: R 6= ; and thus �(X) <1 ,

- Type II: �(X) <1 and R = ; ,

- Type III: �(X) = 1 and thus R = ; .

Each type is handled slightly di�erent. But before passing to the construction of the wavelets,

we clarify the above notations with the following examples.

Example 1. Let (X;�; �) be the Lebesgue measure space on X = [0; 1). Consider the Type I

tree (T ; g; p;<) where

(1) T = f(n; k) j n = 0; 1; : : : and 1 6 k 6 2ng,

(2) � = (0; 1),
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(3) g((n; k)) = n,

(4) C((n; k)) = f(n+ 1; 2k � 1); (n+ 1; 2k)g,

(5) (n+ 1; 2k � 1) < (n+ 1; 2k).

Let X(n;k) = [ 2�n (k � 1) ; 2�n (k) ).

Example 2. Let (X;�; �) be the Lebesgue measure space on X = R. Modify the tree from

Example 1 by taking n 2 Z and k 2 Z and let X(n;k) be formally as in Example 1. In these two

examples, each X(n;k) has two children. This example is of Type III.

Example 3. Let (X;�; �) be a weighted counting measure on X = N with 0 < �(n) < 1

for each n 2 N. Modify the tree from Example 1 by taking integers n 6 0 and k 2 N. Let

X(n;k) = X \ ( 2�n (k � 1) ; 2�n (k)]. Each X(0;k) = fkg is a leaf. This example is of Type II if

�(X) <1 and of Type III if �(X) = 1.

Example 4 (Logarithmic tree). Let M = f1; 2; : : : ;mg for some m 2 N. The tree Tlog on

M is uniquely determined by the following properties.

(1) It has l generations (0; � � � ; l � 1) where 2l�2 < m 6 2l�1.

(2) Each element of Tlog is a set of consecutive integers from M .

(3) It has one root element � = M and g(�) = 0.

(4) The (l � 1) generation consists of the leaves ff1g; f2g; : : : fmgg.

(5) Each element of Tlog with cardinality greater than 1 has two children and the cardinality

of the youngest child is equal to or one less than the cardinality of the older child.

This tree will be used in the general wavelet construction. The name logarithmic comes from

the fact that the number of generations behaves as the logarithm of #M .

Example 5 (Linear tree). Let M be as in the previous example. The tree Tlin on M is

uniquely determined by the following properties.

(1) It has m generations (0; � � � ;m� 1).

(2) Each element of Tlin is a set of consecutive integers of M .

(3) It has one root element � = M and g(�) = 0.

(4) The (m� 1) generation consists of the leaves ff1g; f2g; : : : fmgg.

(5) Each element of Tlin with cardinality greater than 1 has two children and the cardinality

of the youngest child is 1.

This example will also be used in the general wavelet construction. It is called linear since the

number of generations is proportional to the number of elements of M .

The previous two trees may be viewed as nested partitionings themselves.
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Figure 1. Subdividing a triangle.

Figure 2. Partitioning a sphere.

Example 6. Let (X = M;�; �) be a weighted counting measure on M = f1; 2; : : : ;mg with

0 < �(n) < 1 for each n 2 M . Each of the previous two examples gives a nested partitioning

fM� j � 2Mg of M by letting M� = �.

Example 7. Let (X;�; �) be the Lebesgue measure space on X = Rn for some n 2 N. Let

fX�g be the dyadic cubes in X. Each X� has 2n children. This example is of Type III.

Example 8. Let X be the sphere S2 in R3, endowed with the surface area measure. Consider

the icosahedron � centered at the origin along with the corresponding map

P : � ! S2 where P (v) = v= kvk
R3 :

We use P to push a partition of � out to a partition of S2. The 0 th-generation partition consists

of just X� = S2. Next obtain nested partitions of � by recursively subdividing each triangular

side. Figure 1 depicts a typical subdivision of a triangle. The image under P of these nested

partitions of � are nested partitions of S2, where each set of a partition is a spherical triangle.

Figure 2 shows the icosahedron (left), the icosahedron after 3 subdivisions (middle), and the

result after applying P to the middle polyhedron (right). The latter is the fourth generation of

the partitions on the sphere. This example is used in [19] as a starting point.

One can now consider a countable collection of disjoint measure spaces, each of which has a

nested partitioning with respect to a forest. It is possible to unite their forests into a new forest.

Then the union of their nested partitionings forms a nested partitioning for the disjoint sum of
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the measure spaces (with respect to the new forest). In this fashion, it is possible to combine

the above examples.

Any measure space that has a nested partitioning is necessarily complete, separable, and

�-�nite.

Fact 9. Each complete, separable, �-�nite measure space has a nested partitioning.

To see this, note that a complete separable �-�nite measure space may be viewed as a disjoint

sum of complete separable measure spaces, with one space being purely atomic and the other

spaces being purely non-atomic and of �nite measure. As in Examples 3 and 6, one can build

a nested partitioning on the purely atomic space. On each of the purely non-atomic spaces of

�nite measure, using Example 1 and a theorem of Carath�eodory (cf. [22, I.B.1]), one can build

a nested partitioning (with care, separability guarantees (P5)). Then, as noted above, these

partitionings combine to give a nested partitioning for the entire space.

5. Construction of wavelets

Plant a tree T . Let fX� j � 2 T g be a nested partitioning for X with respect to T . We

are now ready to build on X our wavelets, which have as their basic building blocks the scaling

functions f'�g�2T where

'� = �(X�)�1=p 1X�
:

The wavelets will be indexed by a set G. The set G consists of a set G� along with possibly

one other element. When helpful, we will try to be consistent in the notation by denoting a

parent by �, a child by �, and an element of G by 
.

First we concentrate on G�. Each wavelet indexed by a 
 2 G� will be of the form

 
 = n


�
1P

�(P
)

�
1N


�(N
)

�
;(3)

for some sets P
 and N
 in e� with n
 chosen as to normalize  
 in Lp, thus,

n
 =

�
�(P
)1�p + �(N
)

1�p

��1=p
:

This resembles the de�nition of a Haar wavelet, but as �(P
) can di�er from �(N
), we refer to

it as an unbalanced Haar wavelet. It is constructed to have zero mean.

The set G� has the form

G� =
[
�2T

G(�) ;

where the set G(�) contains max(0;m�1) elements (m = #C(�)) and is constructed as follows.

The basic idea is to use G(�) to index those unbalanced Haar wavelets that will be supported on

X� and constant on X� where � 2 C(�). To do this, we build a mini-tree amongst the children.
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Figure 3. Mitrea wavelets (linear construction).

Enumerate the children of � as �i with i 2 M = f1; 2; � � � ;mg and �i < �i+1. Next consider a

tree TM that is either Tlin or Tlog. Let

G(�) = f(�; �) 2 f�g � TM j #C(�) = 2g :

Note that each element of TM has at most two children.

The element 
 = (�; �) 2 G(�) generates a wavelet  
 as in (3) with

P
 =
[
i2�1

X�i; and N
 =
[
i2�2

X�i ;

where �1 and �2 are the two children of �.

The remainder of G depends on the particular type of splitting.

- For Type I, let

G = G� [ f�g and  � = '� � �(X)�1=p 1X :

For later use, let P� = X and N� = ;.

- For Type II, let

G = G� [ f�g and  � = �(X)�1=p 1X ;

where � =2 G�. For later use, let P� = X and N� = ;.

- For Type III, let G = G�.

Finally, take

	 = f 
 j 
 2 Gg :(4)

We de�ne the following partial ordering on G. Any element in G� is less than an element in

G n G�. Next consider two elements in G�, say 
1 = (�1; �1) and 
2 = (�2; �2). Now 
1 < 
2

if either �1 < �2, or �1 = �2 and �1 < �2. Also de�ne the generation function on G� as

g((�; �)) = g(�).

Depending on the choices Tlin or Tlog for TM we refer to the respective construction as linear

or logarithmic. They will have the same theoretical properties; the advantage of the logarithmic

construction is that the support size of the wavelets is smaller and that the wavelets are have

more symmetry. In the setting of the examples in the previous section, the above construction

leads to well-known wavelets.
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Figure 4. Logarithmic construction.

- For Example 1 (resp. 2), 	 is the Haar system on [0; 1) (resp. R).

- For Example 3 (resp. 6), 	 is a Haar-like unconditional basis for `p (resp. `mp ).

- For Example 7 the linear construction leads to the Mitrea wavelets [1, 14]. The Mitrea

wavelets are the �rst example of higher dimensional compactly supported Haar-like

wavelets in the case of non-translation invariant measures. The basic idea, as depicted

in Figure 3 for the two dimensional case, is simple but extremely clever. Our linear

construction is inspired by the Mitrea wavelets. The setting of the Mitrea wavelets is

actually more general than presented here as the measure can be Cli�ord-algebra-valued.

- Again for Example 7, Figure 4 depicts the logarithmic construction in case n = 2.

Concluding, the basic idea behind constructing the unbalanced Haar wavelets in the case that

the number of children is greater than two is to build a mini-tree amongst the children as to

reduce it to the case of two children.

6. Properties of wavelets

Clearly 	 is normalized. Note that for each 
 2 G�,Z
X

 
 d� = 0 :(5)

If 
 and 
0 are in G, then Z
X

 
  
0 d� = 0 ;(6)

for if  
 and  
0 are not disjointly supported and 
 < 
0, then  
0 is constant on the support

of  
 . If � 2 T , then

spanf'� j � 2 Cl(�)g = spanf'�;  
 j 
 2 G(�)g ;(7)

and furthermore this extends over several generations for if i 2 N, then

spanf'� j � 2 C
i
l (�)g = span

n
'�;  
 j 
 2 [

i�1
j=0G(Cj(�))

o
:(8)

To see this, note that set containment in one direction (�) is clear; furthermore, in the right-

hand side (by (5) and (6)) and the left-hand side, the indicated functions that span the space

(of dimension #Ci
l (�)) can be viewed as an orthogonal basis.
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Since

Lp = clos spanf1A j A 2 �+g ;

and fX� j � 2 T g [ ; is a semi-ring that generates e�, it follows that (cf. [3, Theorem 11.4])

Lp = clos span �(9)

where

� = f'� j � 2 T g :

Note that Lp is separable since T is countable.

Lemma 10.

clos span 	 = Lp:

Proof. Fix an indicator function 1X�
with � 2 T . By (9), it su�ces to show that

1X�
2 clos span 	 :(10)

If � = �, then (10) clearly holds; thus, assume that � 6= �.

Consider � 2 T of the form � = pi(�) for some i > 0, along with the corresponding function

fi = 1X�
�
�(X�)

�(X�)
1X�

:

Towards showing that fi is in span 	, consider (8) with the same � and i as in this proof.

Clearly, fi is in the set on the left-hand side and so it is also in the set on the right-hand side.

Since fi and  
 have a vanishing integral (for 
 2 G�) while '� does not, fi does not have a

component along '�. Thus

fi 2 span
n
 
 j 
 2 [

i�1
j=0 G(Cj(�))

o
� span 	 :

Towards (10), consider the three types of nested partitionings separately.

- For Type I, pi(�) = � for some �nite i and 1X�
2 span 	.

- For Type II, the function 1X
pi(�)

tends to 1X in Lp-norm as i!1 and 1X 2 span 	.

- For Type III,

kfi � 1X�
kp = �(X�)�(Xpi(�))

�1=q ;

and �(Xpi(�)) tend to in�nity as i!1.

So for each of the three types, (10) holds.

11



Thus 	 satis�es (C1). Toward (C2), recall that a constant Kp exists so that for the usual

Haar functions fhkg
1
k=1 on [0; 1),






nX
k=1

�k ck hk







p

6 Kp







nX

k=1

ck hk







p

;

for all n 2 N, sequences fckg
n
k=1 in R, and �k = �1. This inequality (in an equivalent formu-

lation) is due to R.E.A.C. Paley [17]; the above formulation was noted by Marcinkiewicz [12].

Using martingale theory, Burkholder [5] generalized Paley's inequality to hold for martingale

di�erence sequences (such as the Haar functions) on [0; 1). Since the wavelets 	 can essentially

be viewed as a martingale di�erence sequence, we will call upon Burkholder's generalization.

We �rst recall some basic de�nitions.

Fix X0 2 �+ and a sub-�-�eld �0 of � that is generated by a partition � = fE1; : : : ; Eng

of X0 (thus X n X0 is an atom of �0). Consider g 2 L1(X;�; �) with supp g � X0. Then the

conditional expectation E(g j �0) of g with respect to �0 is

E(g j �0) =
nX
i=1

R
Ei
g d�

�(Ei)
1Ei

;

observing the convention that 0=0 is 0. A simple martingale, with respect to a non-decreasing

sequence f�ig
n
i=1 of sub-�-�elds of �, is a �nite sequence ffig

n
i=1 of simple functions with �nite

support that satisfy that fi is �i-measurable for 1 6 i 6 n and that E(fi+1 j �i) = fi for

1 6 i < n. Its corresponding martingale di�erence sequence fdig
n
i=1 is given by di = fi � fi�1

where f0 is just the null function, thus fk =
Pk

i=1 di.

Our setting calls for the following version of Burkholder's celebrated inequality.

Theorem 11 (Burkholder). If ffig
n
i=1 is a simple martingale with respect to a non-decreasing

sequence f�ig
n
i=1 of sub-�-�elds of �, then its corresponding martingale di�erence sequence

fdig
n
i=1 satis�es 






nX
i=1

�i ci di







p

6 (p� � 1)







nX
i=1

ci di







p

;(11)

for all n 2 N and all choices of ci 2 R and �i = �1.

See [5, 6, 7] for the proof. If Lp(m) isometrically embeds into Lp(X;�; �), then any basis for

Lp(X;�; �) has, for each � > 0, a blocked basis that is (1 + �)-equivalent to the usual Haar basis

([15, 16] and [10]). Burkholder [4] showed that the unconditional basis constant of the usual

Haar basis is p� � 1. From these facts follow the below known fact.

Theorem 12 (Olevski��). If (X;�; �) is not purely atomic, then the unconditional basis con-

stant for any unconditional basis for Lp(X;�; �) is at least (p� � 1).

12



The following lemma is needed to apply Theorem 11 to �nite subsets of 	.

Lemma 13. Fix a �nite subset f
ig
n
i=1 from G that satis�es 
1 > 
2 > : : : > 
n. Let X0 2 �+

be such that sup 
i � X0 for each i. Consider the corresponding partitions

�i = fP
i ; N
i ; X0 n (P
i [N
i)g

of X0 and let �i = � (f�j j 1 6 j 6 ig). Then

(1)  
i is �i-measurable for i = 1; : : : ; n

(2) E( 
i+1 j �i) = 0 for i = 1; : : : ; n� 1.

Proof. Since  
i is constant on each of the sets P
i , N
i, and X0n(P
i[N
i), it is �i-measurable.

Fix 1 6 i < n and consider E( 
i+1 j �i). An atom A � X0 of �i has the form

A =
m\
k=1

Fk

where

Fk 2
i[

j=1

fP
j ; N
j ; X0 n (P
j [N
j)g

and 
i+1 < 
j for j = 1; : : : ; i. If 
i+1 < 
 2 G, then P
 (and likewise forN
 and forX0n(P
[N
))

is either disjoint from or contains the support of  
i+1 . Furthermore,
R
X
 
i+1 d� is zero. Thus

E( 
i+1 j �i) = 0, as needed.

Now plant a whole forest F . Let fX� j � 2 Fg be a nested partitioning for X with respect

to F . Keeping with the notation from Section 4, write X as the disjoint union of X({)'s. For

each { 2 K, the subcollection fX� j � 2 F({)g is a nested partitioning for X({) with respect

to the tree F({); thus, there are wavelets 	({) as in (4) on X({). Let

� =
[
{2K

	({) :

We are now able to state the main result of this paper.

Corollary 14. The wavelets � forms a normalized unconditional basis for Lp(X;�; �), with

Kp(�) 6 (p� � 1). If Lp is not purely atomic, then Kp(�) = (p� � 1).

Proof. In light of Lemma 10 and Theorem 12, it su�ces to show that (C2) holds with K = p��1

for the set �. Since X is the disjoint union of the X({)'s, for any f 2 Lp

kfk
p

p =
X
{2K



f 1X({)



p
p
:

13



Furthermore, for each { 2 K and 
 2 G

 
 1X({) =

8<
: 
 if 
 2 F({)

0 if 
 =2 F({) :

Thus it su�ces to show that (C2) holds with K = p� � 1 for each set 	({). Thus we assume,

without loss of generality, that F is a tree and denote � by just 	.

Keeping with previous notation, �x a �nite collection � � G and order � = f
ig
n
i=1 so that


1 > 
2 > : : : > 
n. Let f�ig
n
i=1 and f�ig

n
i=1 be as in the statement of Lemma 13. By

Theorem 11, it su�ces to show that the sequence ffig
n
i=1 given by

fi =
iX

j=1

 
j

is a simple martingale with respect to f�ig
n
i=1.

Lemma 13 gives that each fi is �i-measurable. If i < n, then by Lemma 13 and the linearity

of the conditional expectation operator

E(fi+1 j �i)�E(fi j �i) = E(fi+1 � fi j �i) = E( 
i+1 j �i) = 0 :

Since fi is �i-measurable, fi = E(fi j �i). Thus E(fi+1 j �i) = fi, as needed.

Since � is an unconditional basis for Lp, each ordering f 
ig
1
i=1 of � forms a basis for Lp.

Given an ordering f
ig, the basis constant Mp(f 
ig) is the smallest number M for which





nX
i=1

ci  
i







p

6M







mX
i=1

ci  
i







p

holds for all n;m 2 N with n < m and all choices of ci 2 R. Clearly, 1 6 Mp(f 
ig) 6 Kp(�).

In fact, if Pp(f�g) is the supremum of Mp(f 
ig) over all possible orderings of �, then Pp(f�g) 6

Kp(f�g) 6 2Pp(f�g). If Mp(f 
ig) = 1, then f 
ig is a monotone basis.

A rooted tree can be enumerate f
igi so that 
i > 
i+1.

Corollary 15. The wavelets 	 = f 
ig associated with a rooted tree form a monotone basis for

Lp when ordered so that 
i > 
i+1.

Proof. Fix n 2 N and a sequence fcig
n+1
i=1 from R. By Corollary 14, it su�ces to show that






nX
i=1

ci  
i







p

6







n+1X
i=1

ci  
i







p

:

Consider the sub-�-�eld �n = � (f�j j 1 6 j 6 ng) as in the statement of Lemma 13 with X0 =

X. It follows from Lemma 13 that
Pn

i=1 ci  
i is �n-measurable and that E( 
n+1 j �n) = 0.

14



Thus

nX
i=1

ci  
i = E

 
nX
i=1

ci  
i j �n

!

= E

 
nX
i=1

ci  
i j �n

!
+ cn+1E

�
 
n+1 j �n

�

= E

 
n+1X
i=1

ci  
i j �n

!
:

The result now follows from the fact that conditional expectation is a contraction on Lp.

7. Dual basis and characterization

Consider the coordinate functionals f e 
 j 
 2 Gg of the unconditional basis �, which are

(uniquely) determined by the condition h 
0 ; e 
 i = �

0 . Since Lp is re
exive, f e 
 j 
 2 Gg
forms an unconditional basis for the dual space Lq(X;�; �) . Thus, if f 2 Lp and g 2 Lq, then

f =
X

2G

h f; e 
 i  
 and g =
X

2G

h 
 ; g i e 
 ;(12)

where the convergence is unconditional.

It follows from (6) that e 
 is a multiple of  
 . Straightforward calculations give that if 
 2 G�

then e 
 = en

�

1P

�(P
)

�
1N


�(N
)

�
;

where

en
 =

�
n
(�(P
)

�1 + �(N
)
�1)

��1
;

and if � 2 G then e � = �(X)�1=q 1X ;

while if � 2 G then e � = �(X)�1=q 1X :

It follows from Corollary 14 that 1 6



 e 





q
6 2(p� � 1) for each 
 2 G. If 
 2 G n G�, then


 e 





q
= 1. For a �xed 
 2 G�,




 e 




q

= en

�
�(P
)1�q + �(N
)1�q

�1=q

;

which need not be one. We examine this a little closer. Let

r = �(P
)=�(N
) and N(p; r) =



 e 





q
:
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Then

N(p; r) = (1 + r1�p)1=p (1 + r1�q)1=q (1 + r�1)�1:

The following properties of N(p; r) hold for 1 < p <1 and 0 < r <1:

(1) N(p; r) = N(q; r),

(2) N(p; r) = N(p; 1=r),

(3) N(p; 1) = N(2; r) = 1,

(4) 1 6 N(p; r) 6 2,

(5) for any �xed p, limr!1N(p; r) = 1,

(6) for any �xed r, limp!1N(p; r) = 2 (1 + r�1)�1.

These easily can be veri�ed. The uniform bound in (4) follows from bounding each factor which

yields 21=p 21=q 1. Thus the norm of the coordinate functional is always less than 2, while the

last property shows that it can be arbitrarily close to 2. If p = 2 or if �(P
) = �(N
) for each


 2 G�, then the dual basis is normalized.

Following the reasoning in [13, Chapter 6], we now derive a criterion, connected with the

absolute value of the coe�cients c
 , to determine whether a formal series
P
c
  
 belongs to Lp.

Towards this, we consider the Cantor group � � f�1; 1gG of all sequences � (indexed by G)

of �1, along with its coordinate functionals e
 : � ! f�1; 1g determined by � = fe
(�)g
2G,

and its product (i.e. Bernoulli probability) measure �.

For each � in �, let T� : Lp ! Lp be the continuous (by (C2)) linear operator determined by

T�  
 = e
(�) 
 :

Consider a function f 2 Lp of the form

f =
X

2�

c
  
(13)

for some �nite subset � of G. So if � 2 � and x 2 X then

(T�f)(x) =
X

2�

e
(�) c
  
(x) :

It follows from (C2) that

K�p
p kfk

p

p 6 kT� fk
p

p 6 Kp
p kfk

p

p(14)

where Kp is the unconditional basis constant of �.

Since T�f(x) is product (�� �)-measurable, Tonelli's Theorem gives that

Z
�

kT�fk
p

p d�(�) =

Z
X

Z
�

������
X

2�

e
(�) c
  
(x)

������
p

d�(�) d�(x) :(15)
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Khinchin's inequality (cf. [23]) gives strictly positive constants cp and Cp so that

cp kfa
gk`2 6

0
@Z

�

������
X

2�

a
 e
(�)

������
p

d�(�)

1
A

1=p

6 Cp kfa
gk`2(16)

for each sequence fa
g
2� of real numbers. Combining (16) and (15) yields

cpp

Z
X

j(Af)(x)j
p
d�(x) 6

Z
�

kT�fk
p

p d�(�) 6 Cp
p

Z
X

j(Af)(x)j
p
d�(x)(17)

where

(Af)(x) =

0
@X

2�

jc
j
2
j 
(x)j

2

1
A

1=2

:(18)

Next, integrate inequality (14) over �, note that �(�) = 1, and use (17) to see that

cpK
�1
p kAfkp 6 kfkp 6 Kp Cp kAfkp :(19)

Consider any ordering f 
ig
1
i=1 of � and a function f 2 Lp. The functions

fn =
nX
i=1

c
i  
i where c
i = h f; e 
i i
are of the form in (13) and thus satisfy (19). Furthermore, ffng converges in Lp-norm to f

and f(Afn)g is a �-a.e. increasing sequence of non-negative Lp-functions. Thus the (non-linear)

mapping A in (18) extends to a mapping from Lp to Lp. Now follows the below characterization.

Theorem 16. If 1 < p <1, then

X

2G

c
  
 2 Lp ()

0
@X

2G

jc
j
2
j 
(x)j

2

1
A

1=2

2 Lp :

8. Multiresolution analysis

Wavelets are closely related to the concept of multiresolution analysis [9, 11, 13]. Traditionally

wavelets are the translates and dilates of one particular function. Since we work with arbitrary

partitions and non-translation invariant measures, our wavelets cannot be the translates and

dilates of one function. In fact, they are a special case of so-called \second generation wavelets".

The basic idea of second generation wavelets is to give up the translation and dilation structure

of wavelets, but to keep their desirable properties such as multiresolution analysis and fast

transform algorithms. In this section we show how the unbalanced Haar wavelets �t into this

concept. The fast wavelet transform will give us an algorithm to compute the coe�cients in the

expansions (12).
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We de�ne two new sets as

S(
) = Cl(�) if 
 2 G(�) and S�(�) = G(�) if � 2 Cl(�) :

Now consider (7). The basis f'� j � 2 Cl(�)g has dual basis

fe'� j � 2 Cl(�)g ;

where e'� is a multiple of '� and ke'�kq = 1, while the other basis f'�;  
 j 
 2 G(�)g has dual

basis

fe'�; e 
 j 
 2 G(�)g ;

where e 
 is as in Section 7. The basis functions in the above two bases are related as follows:

(R1) for � 2 F and 
 2 G�,

'� =
X

�2Cl(�)

h�;� '� and  
 =
X

�2S(
)

g
;� '�

where

h�;� = h'�; e'� i and g
;� = h 
; e'� i
(R2) for � 6= �,

'� = ehp(�);� 'p(�) +
X


2S�(�)

eg
;�  

where eh�;� = h'�; e'� i and eg
;� = h'�; e 
 i :

For k 2 g(F), let Gk = f
 2 G� j g(
) = kg and consider the subspaces Vk and Wk of Lp, where

Vk = clos span f'� j � 2 F
�

kg and Wk = clos span f 
 j 
 2 Gkg :

Note that the indicated functions not only span, but also provide an unconditional basis for,

these subspaces. The dual basis for this basis of Vk is given by

fe'� j � 2 F�

kg

while the dual basis for this basis of Wk is given by

f e 
 j 
 2 Gkg :
By viewing F�

k�1 [ F
�
k as a two-generation forest, it follows that

Vk = Vk�1 �Wk�1(20)

and that Vk has another basis

f'� j � 2 F
�

k�1g [ f 
 j 
 2 Gk�1g

18



with dual basis

fe'� j � 2 F�

k�1g [ f
e 
 j 
 2 Gk�1g :

A function f 2 Vk has a representation as

f =
X
�2F�

k

a� '� with a� = h f; e'� i(21)

as well as, by (20),

f =
X

�2F�

k�1

a� '� +
X


2Gk�1

c
  
(22)

with

a� = h f; e'� i and c
 = h f; e 
 i :
The relations between the di�erent representations follow from simple linear algebra arguments.

To simplify notation, assume that the forest has no leaves, indeed, just replace each Fk with F�
k .

Combining (21) and (R2) and identifying coe�cients results in

a� =
X

�2C(�)

eh�;� a� and c
 =
X

�2S(
)

eg
;� a� ;(23)

where g(�) = k and g(�) = g(
) = k � 1. Similarly, combining (22) and (R1) results in

a� = hp(�);� ap(�) +
X


2S�(�)

g
;� c
 :(24)

Next consider a function f 2 Vn with n �xed. Given the scaling function coe�cients a�

with g(�) = n, we can recursively use (23) to calculate all wavelet coe�cients c
 on the older

generations where g(
) < n. Conversely, given the coe�cients a� with g(�) = m along with

all the wavelet coe�cients c
 where m 6 g(
) < n, we can recursively use (24) to �nd the

coe�cients a� on the younger generation where g(�) = n.

These operations form the so-called \fast wavelet transform". Since all summations in the

transform are �nite, it can easily be implemented on a computer. One only needs to build a

forest data structure that satis�es all the forest properties of Section 3. This can be done nicely

using an object-oriented programming language.

The way the algorithm is described, the number of operations for the calculation of the wavelet

coe�cients c
 with 
 2 G(�) is O(m2). Actually, by using the hierarchy of TM , one can reduce

this to O(m). In Example 7 (dyadic cubes on Rn) we have m = 2n and this di�erence can

become important. We do not include the details of this algorithm as they are straightforward.
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9. Euclidean spaces

One of the original motivations for the construction of the unbalanced Haar wavelets was their

use in practical applications; thus, we take a closer look at the case where X is a subset of Rn.

Consider the topology induced by the Euclidean distance d on Rn. Let X be a Borel set

of Rn and B(X) be the Borel subsets of X. Consider a �-�nite measure � on B(X) and let

(X;M(X); �) be the �-completion of (X;B(X); �). A common practical example is a weighted

measure � where d� = w dm for the Lebesgue measure m on X and a non-negative Lebesgue

measurable function w; if w is a non-zero constant function, then M(X) are just the Lebesgue

measurable subsets of X.

Assume that we start with (X;M(X); �). Next we are given subsets fX� j � 2 Fg of X

that satisfy the partition properties from Section 4. Such subsets usually are determined by the

application; numerical solvers for integral and di�erential equations often recursively subdivide

an original domain X into the X�'s, as illustrated in Example 8. Keeping with the previous

notation, �(fX� j � 2 Fg) = e� and the �-completion of (X; e�) is (X;�). We would like an

easily veri�able condition on fX� j � 2 Fg that would guarantee that � = M(X); for then,

the corresponding wavelets form an unconditional basis for Lp(X;M(X); �). Towards this, two

useful measurement are the diameter of S � Rn given by

diamS = sup
x; y2S

d (x; y)

and the (�-)essential diameter of S 2 M(X) given by

ess diam S = inf fdiamY j Y � S ; Y 2 M(X) ; �(S n Y ) = 0g :

If X� is in B(X) for each � 2 F and if for each x 2 X

inf
�2F
x2X�

diamX� = 0 ;(25)

then e� = B(X) and so � = M(X). It is possible to relax condition (25).

Proposition 17. If X� is in M(X) for each � 2 F and if for each x 2 X

inf
�2F
x2X�

ess diam X� = 0 ;(26)

then � = M(X).

As customary, for y 2 Rn and � > 0, let

N�(y) = fx 2 X j d(x; y) < �g :
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Proof. Since e� �M(X), it su�ces to show that B(X) � �. Towards this, �x any � and � with

0 < � < � and y 2 Rn. It su�ces to �nd a set N� 2 � so that N�(y) � N� � N�(y).

For each x 2 N�(y), �nd decreasing sequences fX�n(x)gn and fY�n(x)gn along with a sequence

fy�n(x)gn so that

(1) x 2 X�n(x)

(2) y�n(x) 2 Y�n(x) � X�n(x)

(3) �
�
X�n(x) n Y�n(x)

�
= 0

(4) limn diamY�n(x) = 0

(5) limn y�n(x) = y0(x) for some y0(x) 2 Rn .

If d(y; y0(x)) < �, then pick �n(x) so that

Y�n(x) � N�(y)

and if d(y; y0(x)) > �, then pick �n(x) so that

Y�n(x) � [N�(y)]
C
:

Since

N�(y) �
[

x2N�(y)

X�n(x)

there is a countable subset fxi j i 2 Jg of N�(y) such that

N�(y) �
[
i2J

Xi

where X�n(xi) = Xi. Likewise, set Y�n(xi) = Yi. Let J0 = fi 2 J j d(y; y0(xi)) < �g and

N� =

" [
i2J

(Xi n Yi) \ N� (y)

# [ " [
i2J0

Yi

#
:

Then N�(y) � N� � N�(y) and N� 2 M(X). Thus N�(y) 2 �, as needed.

The use of the unbalanced Haar wavelets in applications is still somehow limited. The reason

is that they are non-smooth and that they have only one vanishing moment; i.e. the integral of a

wavelet vanishes, but the integral of a wavelet multiplied with a non-constant polynomial need

not vanish. Consequently, the convergence of the expansion (12) is slow for a smooth function f .

In [21, 20] the \lifting scheme" is described, which given one initial multiresolution analysis, can

allows you to build a second, more performant one, in the sense that the wavelets have more

vanishing moments or more smoothness. The Haar wavelets constructed in this paper are a

perfect example for such an initial multiresolution analysis.
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