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Abstract. A bounded linear operator between Banach spaces is called com-
pletely continuous if it carries weakly convergent sequences into norm convergent
sequences. Isolated is a universal operator for the class of non-completely-continuous
operators from L1 into an arbitrary Banach space, namely, the operator from L1 into
`∞ defined by

T0(f) =

�Z
rnf dµ

�
n≥0

,

where rn is the nth Rademacher function. It is also shown that there does not exist
a universal operator for the class of non-completely-continuous operators between
two arbitrary Banach space. The proof uses the factorization theorem for weakly
compact operators and a Tsirelson-like space.

Suppose that C is a class of (always bounded, linear, between Banach spaces)
operators so that an operator S is in C whenever the domain of S is the domain of
some operator in C and there exist operators A, B so that BSA is in C; the natural
examples of such classes are all the operators that do not belong to a given operator
ideal. A subset S of such a class C is said to be universal for C provided for each
U in C, some member of S factors through U ; that is, there exist operators A and
B so that BUA is in S. In case S is singleton; say, S = {S}; we say that S is
universal for C.

In order to study a class C of operators, it is natural to try to find a universal
subclass of C consisting of specific, simple operators. For certain classes, such a
subclass is known to exist. For example, Lindenstrauss and Pe lczyński, who intro-
duced the concept of universal operator, proved [LP] that the “summing operator”
from `1 to `∞, defined by {an}∞n=1 7→ {

∑n
k=1 ak}∞n=1, is universal for the class

of non-weakly-compact operators; while in [J] it was pointed out that the formal
identity from `1 to `∞ is universal for the class of non-compact operators.
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An operator between Banach spaces is called completely continuous if it car-
ries weakly convergent sequences into norm convergent sequences. The operator
from L1 into `∞ given by

T0(f) =
{∫

rnf dµ

}∞
n=0

,

where rn is the nth Rademacher function, is not completely continuous. We prove in
Corollary 4 that T0 is universal for the class of non-completely-continuous operators
from an L1-space; however, in Theorem 5 we show that there does not exist a
universal non-completely-continuous operator.

Throughout this paper, X denotes an arbitrary Banach space, X∗ the dual space
of X, and S(X) the unit sphere of X. The triple (Ω, Σ, µ) refers to the Lebesgue
measure space on [0, 1], Σ+ to the sets in Σ with positive measure, and L1 to
L1(Ω, Σ, µ). All notation and terminology, not otherwise explained, are as in [DU]
or [LT].

To crystalize the ideas in Theorem 1, we introduce some terminology. A system
A = {An

k ∈ Σ: n = 0, 1, 2, . . . and k = 1, . . . , 2n} is a dyadic splitting of A0
1 ∈ Σ+

if each An
k is partitioned into the two sets An+1

2k−1 and An+1
2k of equal measure for

each admissible n and k . Thus the collection πn = {An
k : k = 1, . . . , 2n} of sets

along the n th-level partition A0
1 with πn+1 refining πn and µ(An

k) = 2−nµ(A0
1). To

a dyadic splitting corresponds a (normalized) Haar system {hj}j≥1 along with its
natural blocking {Hn}n≥0 where

h1 = 1
µ(A0

1)
1A0

1
and h2n+k = 2n

µ(A0
1)

(1An+1
2k−1
− 1An+1

2k
)

for n = 0, 1, 2, . . . , k = 1, . . . , 2n, and Hn = {hj : 2n−1 < j ≤ 2n}. The usual Haar
system {h̃j} corresponds to the usual dyadic splitting

{[
k−1
2n , k

2n

)}
n,k

. Let L1(A)
be the closed subspace of L1 with basis {hj}j≥1.

A set N in the unit sphere of the dual of a Banach space X is said to norm a
subspace X0 within τ > 1 if for each x ∈ X0 there is x∗ ∈ N such that ‖x‖ ≤ τx∗(x).
It is well known and easy to see that a sequence {Xj}j>1 of subspaces of X forms
a finite dimensional decomposition with constant at most τ provided that for each
n ∈ N the space generated by {X1, . . . , Xn} can be normed by a set from S(X⊥n+1)
within τn > 1 where Πτn ≤ τ .

To help demystify Theorem 1, we examine more closely the operator T0 : L1 → `∞

given above. This operator does more than just map the Rademacher functions {rn}
to the standard unit vectors {en} in `∞ (which suffices to guarantee that it is not
completely continuous). Let x∗n be the nth unit vector of `1, viewed as an element in
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the dual of `∞. For the usual dyadic splitting of the unit interval, rn is just the sum
of the Haar functions in Hn, properly normalized. Thus 1 = ‖T0rn‖ = x∗n(T0rn)
follows from the stronger condition that

x∗n(T0h) = δn,m for each h ∈ Hm .

Note that T ∗0 x∗n is just rn, which as a sequence in L∗1 is weak*-null and equivalent
to the unit vector basis of `1. Since T0 maps each element in Hn to en, the collec-
tion {sp T0Hn} forms a finite dimensional decomposition. Theorem 1 states that
each non-completely-continuous operator T on L1 behaves like the operator T0 in
the sense that there is some dyadic splitting of some subset of [0, 1] so that the
corresponding Haar system with T enjoys the above properties of the usual Haar
system with T0.

Theorem 1. Let Y be a subset of S(X∗) that norms X within some fixed constant
greater than one and let Y be a subspace of X∗ that contains Y . If the operator
T : L1 → X is not completely continuous and {τn}n≥0 is a sequence of numbers
larger than 1, then there exist

(A) a dyadic splitting A = {An
k}

(B) a sequence {x∗n}n≥0 in S(X∗) ∩ Y
(C) a finite set {z∗n,i}

pn
i=1 in S(X∗) for each n ≥ 0

such that for the Haar system {hj}j≥1 and the blocking {Hn}n≥0 corresponding to
A, for some δ > 0, and each n, m ≥ 0,

(1) x∗n(Th) = δ · δn,m for each h ∈ Hm

(2) {T ∗x∗n} is weak*-null in L∞

(3) {T ∗x∗n} is equivalent to the unit vector basis of `1

(4) {z∗n,i}
pn
i=1 norms sp(∪nj=0THj) within τn

(5) THn+1 ⊂ ⊥{z∗n,i}
pn
i=1 .

Note that condition (3) implies that {x∗n} is also equivalent to the standard unit
vector basis of `1. If Πτn is finite, then the last two conditions guarantee that
{sp THn}n≥0 forms a finite dimensional decomposition with constant at most Πτn.

The proof uses the following two standard lemmas.

Lemma 2. Let E = sp {xi}mi=0 be a finite dimensional subspace of a Banach space
X and let Y be a total subspace of X∗. For each ε > 0 there exists η > 0 such that
if y∗ ∈ X∗ satisfies |y∗(xi)| < η for each 1 ≤ i ≤ m, then there exists x∗ ∈ E⊥ of
norm 0 or ‖y∗‖ such that ‖x∗− y∗‖ < ε. Furthermore, if y∗ is in Y then x∗ can be
taken to be in Y.
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Proof of Lemma 2. Assume, without loss of generality, {xi}mi=0 is linearly indepen-
dent. Consider the isomorphism l : E → `m1 that takes xi to the i th unit basis
vector of `m1 and let P be a projection from X onto E that is w(Y)-continuous,
so that P ∗E∗ is a subspace of Y. Such a projection exists because Y is total.
Then x̃∗ ≡ y∗ · (IX − P ) is in E⊥ . It is easy to check that for η = ε

3 ‖l‖ ‖P‖ ,
if |y∗(xi)| < η for each i, then ‖x̃∗ − y∗‖ ≤ ε

3 . If ‖x̃∗‖ = 0, then let x∗ = x̃∗.
Otherwise, let x∗ = (‖y∗‖ / ‖x̃∗‖) x̃∗. Then ‖x∗−y∗‖ ≤ 2‖x̃∗−y∗‖. Thus x∗ does
what it should do.

Recall that the extreme points of B(L∞) are just the ±1-valued measurable
functions.

Lemma 3. If {fi}ni=0 is a finite subset of L1, {αi}ni=0 are scalars, and

S =
{

g ∈ B(L∞) :
∫

fig dµ = αi for each 0 ≤ i ≤ n

}
,

then ext S = S ∩ ext B(L∞), where ext denotes the extreme points of a set. Also,
if S is non-empty then so is ext S.

Specifically, we use the following version of this extreme point argument lemma.

Lemma 3′. If F = {f1, . . . , fn} and there exists g in B(L∞) ∩ F⊥ such that∫
f0g dµ ≥ α0 > 0, then there exists a ±1-valued function u in B(L∞) ∩ F⊥ such

that
∫

f0u dµ = α0.

Proof of Lemma 3. Consider, if there is one, a function g in S for which there exists
a subset A of positive measure and ε > 0 such that −1+ ε < g1A < 1− ε. Since the
set {f ∈ L∞ : | f | ≤ 1A}∩{fi}ni=0

⊥ is infinite dimensional, it contains a non-zero
element h of norm less than ε. But then g±h ∈ S and so g is not an extreme point
of S. Thus ext S = S ∩ ext B(L∞).

Since S convex and weak*-compact in L∞, if S is non-empty then so is ext S.
As for the last claim of the lemma, just note that if g ∈ B(L∞) ∩ F⊥ satisfies∫
f0g dµ ≡ β ≥ α0 > 0, then α0

β g is in the set S where αi = 0 for i > 0. By the
first part of the lemma, any extreme point u of S will do.

Although the proof of Theorem 1 is somewhat technical, the overall idea is simple.
Since T is not completely continuous, we start by finding a weakly convergent
sequence {gn} in L1 and norm one functionals y∗n such that δ0 ≤ y∗n (T gn). Each
x∗n will be a small perturbation of some y∗jn . Conditions (2) and (3) can be arranged
by standard arguments.

Now the proof gets technical. We begin by finding a subset A0
1 where the L∞

function (T ∗y∗n)gn, which in the motivating example of T0 is the function rn, is
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large in some sense. We then proceed by induction on the level n. Given a finite
dyadic splitting up to n th-level provides the subsets {Hm}nm=0 of corresponding
Haar functions. We need to split each An

k into 2 sets An+1
2k−1 and An+1

2k (thus finding
h2n+k) and find the desired functionals so that all works. It is easy to find the
functionals to satisfy condition (4). In the search for x∗n+1, apply Lemma 2 to the
set E given in (†) so that we need only to almost (within some η) satisfy (1-i′) for
some y∗j ; for then we can perturb y∗j to find x∗n+1 that satisfies (1-i′) exactly. Next,
for each An

k , apply Lemma 3′ with F as given in (‡) and f0 = T ∗y∗j 1Ank and g being
a small perturbation of gj1Ank . All is set up so that such a perturbation exists for a
j (dependent on n but independent of k) sufficiently large enough. Now Lemma 3′

gives that desired ±1-valued Haar-like function that yields the desired splitting of
the (n+1) th-level. The sets Fn

k are chosen exactly so that conditions (1-ii′), (1-iii′),
and (5′) hold.

Proof of Theorem 1. Let T : L1 → X be a norm one operator that is not completely
continuous. Then there is a sequence {gn} in L1 and a sequence {y∗n} in S(X∗)∩Y
satisfying:

(a) ‖gn‖L∞ ≤ 1
(b) gn is weakly null in L1

(c) δ0 ≤ y∗n (T gn) for some δ0 > 0 .

Using (a), (b), and (c) along with Rosenthal’s `1 theorem [cf. LT, Prop. 2.e.5], by
passing to a further subsequence, we also have that

(d) {T ∗y∗n} is equivalent to the standard unit vectors basis of `1.

Since B(L∞) is weak* sequentially-compact in L∞, by passing to a subsequence
and considering differences we may assume that

(e) T ∗y∗n is weak*-null in L∞,

where (d) allows normalization of the new y∗n’s so as to keep them in S(X∗) and,
used with care, (b) ensures that (c) still holds for some (new) positive δ0. But
{(T ∗y∗n) · gn} is also in B(L∞) and so, by passing to yet another subsequence, we
have that

(f) {(T ∗y∗n) · gn} → h weak* in L∞

for some h ∈ L∞.

Since
∫

hdµ ≥ δ0, the set A ≡ [h ≥ δ0] has positive measure. We may as-
sume, by replacing y∗n by −y∗n and gn by −gn when needed, that ‖T ∗y∗n |A ‖L∞ =
ess sup T ∗y∗n |A. So from (a) and (f) it follows that δ0 6 lim inf ess sup T ∗y∗n |A
while from (e) it follows that lim supµ[T ∗y∗n |A> δ0−η] < µ(A) for each 0 < η < δ0.
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Thus, since the closure of the set{∫
E

f dµ

µ(E)
: E ⊂ A, E ∈ Σ+

}
is the interval [ess inf f, ess sup f ], there is a subset A0

1 of A with positive measure
and j0 such that y∗j0T (1A0

1
) = δµ(A0

1) for some positive δ less than δ0, say δ ≡ δ0−3ε.

Put x∗0 = y∗j0 and H0 ≡ {h1} =
{

1A0
1
/µ(A0

1)
}
.

We shall construct, by induction on the level n, a dyadic splitting of A0
1 along

with the desired functionals. Towards this, take a decreasing sequence {εn}n≥0 of
positive numbers such that ε0 < ε and

∑
εn < δ0

2K where K is the basis constant
of {T ∗y∗n}. The sequence {x∗n} will be chosen such that ‖x∗n − y∗jn‖ ≤ εn for some
increasing sequence {jn}n of integers, which will ensure conditions (2) and (3).
Note that condition (1) is equivalent to the following 3 conditions holding

(1-i) x∗n(Th) = 0 for h ∈ Hm and 0 ≤ m < n

(1-ii) x∗m(Th) = 0 for h ∈ Hn and 0 ≤ m < n

(1-iii) x∗n(Th) = δ for h ∈ Hn

for each n. Clearly these three conditions hold for n = 0. Fix n ≥ 0.
Suppose that we are given a finite dyadic splitting {Am

k : m = 0, . . . , n and k =
1, . . . , 2m} of A0

1 up to n th-level, which gives the subsets {Hm}nm=0 of corresponding
Haar functions. Thus we can find a finite set {z∗n,i}

pn
i=1 in S(X∗) such that {z∗n,i}

pn
i=1

norms sp(∪nj=0THj) within τn. Suppose that we are also given {x∗m}nm=0 in Y ∩
S(X∗) such that the three subconditions of (1) hold and if k = 1, 2, . . . , n then
‖x∗k − y∗jk‖ ≤ εk for some jk.

We shall find x∗n+1 along with jn+1 > jn such that ‖x∗n+1 − y∗jn+1
‖ ≤ εn+1 and

we shall partition, for each 1 ≤ k ≤ 2n, the set An
k into 2 sets An+1

2k−1 and An+1
2k of

equal measure (thus finding h2n+k and so finding the corresponding set {Hn+1})
such that

(1-i′) x∗n+1(Th) = 0 for h ∈ Hm and 0 ≤ m < n + 1
(1-ii′) x∗m(Th) = 0 for h ∈ Hn+1 and 0 ≤ m < n + 1
(1-iii′) x∗n+1(Th) = δ for h ∈ Hn+1

(5′) THn+1 ⊂ ⊥{z∗n,i}
pn
i=1 .

Towards this, apply Lemma 2 to

(†) E ≡ {Th : h ∈ Hm , 0 ≤ m ≤ n}

and εn+1 to find the corresponding ηn+1. Let

(‡) Fn
k = {1Ank } ∪ {T

∗x∗m1Ank }
n
m=0 ∪ {T ∗z∗n,i1Ank }

pn
i=1 ⊂ L1
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and Fn = sp
[
∪2n

k=1F
n
k

]
.

Pick j ≡ jn+1 > jn so large that for k = 1, . . . , 2n

(g)
∣∣(T ∗y∗j )h

∣∣ < ηn+1 for all h ∈ ∪nm=0Hm

(h)
∣∣∫

Ω
gjf dµ

∣∣ ≤ ε
3
‖f‖ for all f in Fn

(i)
∫
Ank

T ∗y∗j · gj dµ ≥ (δ0 − ε) µ(An
k) .

Condition (g) follows from (e), condition (h) follows from (b) and the fact that Fn

is finite dimensional, condition (i) follows from (f) and the definition of A.
By Lemma 2 and (g), there is x∗n+1 ∈ S(X∗) ∩ Y such that ‖x∗n+1 − y∗jn+1

‖ is at
most εn+1 and x∗n+1Th = 0 for each h ∈ ∪nm=0Hm. Thus (1-i′) holds.

Condition (h) gives that the L∞-distance from gj to

F⊥n ≡ {g ∈ L∞ :
∫

Ω

fg dµ = 0 for each f ∈ Fn}

is at most ε
3 . So there is g̃j ∈ F⊥n ∩ B(L∞) such that ‖g̃j − gj‖L∞ is less than ε.

Clearly g̃j1Ank ∈ Fn
k
⊥ ∩ B(L∞) for each admissible k. By condition (i), for each

admissible k, ∫
Ω

(
T ∗x∗n+1

)
·
(
g̃j1Ank

)
dµ ≥ δµ(An

k)

and so, by Lemma 3, there exists a function unk ∈ B(L∞) ∩ Fn
k
⊥ such that

(∗)
∫

Ω

(
T ∗x∗n+1

)
· (unk) dµ = δµ(An

k)

and unk is of the form 1An+1
2k−1
− 1An+1

2k
for 2 disjoint sets An+1

2k−1 and An+1
2k whose

union is An
k . Furthermore, An+1

2k−1 and An+1
2k are of equal measure since 1Ank ∈ Fn

k .
Since unk ∈ Fn

k
⊥, conditions (1-ii′) and (5′) hold. Condition (1-iii′) is just (∗).

Theorem 1 contains much information. For example, the next corollary crystal-
lizes the role of the previously mentioned operator T0.

Corollary 4. If the operator T : L1 → X is not completely continuous, then there
exist an isometry A and an operator B such that the following diagram commutes.

L1 −→T X

A ↑ ↓ B

L1 −→T0
`∞

Furthermore, if X is separable, then T0 and B may be viewed as operators into c0.

Proof of Corollary 4. Let j1 be the natural injection of L1(A) into L1, let X0 be
the norm closure of T (j1 L1 (A)), and let x̃∗n be the restriction of x∗n to X0.
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Since {T ∗x∗n} is weak*-null in L∞, x̃∗n is weak*-null in X∗0. Thus the mapping
U : `1 → X∗0 that take the n th unit basis vector of `1 to x̃∗n is weak* to weak*
continuous and so U is the adjoint of the operator S : X0 → c0 where S(x) =
(x̃∗n (x))n≥0.

Consider the (commutative) diagram:

L1 −→T X

j1 ↑ ↑ j2

L1(A) −→TA X0

R ↑ ↓ S

L1 −→ c0 −→j3 `∞

where R : L1 → L1(A) is the natural isometry that takes a usual Haar function h̃j

in L1 to the corresponding associated Haar function hj in L1(A), the maps ji are
the natural injections, and TA is such that the upper square commutes.

For an arbitrary space X, since `∞ is injective, the operator j3S extends to an
operator S̃ : X→ `∞. For a separable space X, since c0 is separably injective, this
extension S̃ may be view as taking values in c0.

Let A = j1R and B = 1
δ S̃. Then BTA(h̃j) = 1

δ (x̃∗n (Thj))n≥0. Property 1 of
Theorem 1 gives that BTA = T0.

Corollary 4 says that, viewed as an operator into `∞ (respectively, into c0), T0

is universal for the class of non-completely-continuous operators from L1 into an
arbitrary (respectively, separable) Banach space.

Theorem 5. There does not exist a universal operator for the class of non-
completely-continuous operator.

The proof of the nonexistence of such an operator uses the existence of a factoriza-
tion through a reflexive space for a weakly compact operator.

Proof. Suppose that there did exist a universal non-completely-continuous opera-
tor, say T1 : X → Z where X and Z are Banach spaces. Then there is a sequence
{xn} in X of norm one elements that converge weakly to zero but whose images
{T1xn} are uniformly bounded away from zero. Furthermore, by passing to a sub-
sequence, we also have that {T1xn} is a basic sequence in Z.
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The first step of the proof uses T1 to construct a “nice” universal non-completely
continuous operator. By Corollary 7 in [DFJP], there exists a reflexive space Y with
a normalized unconditional basis {yn} such that the map S : Y → X that sends yn

to xn is continuous. Consider the map U : Z → `∞ that sends z to (z∗n(z)) where
{z∗n} is a bounded sequence in Z∗ such that {T1xn, z

∗
n} is a biorthogonal system.

The map IY ≡ UT1S sends yn to the n th unit vector of `∞. The reflexivity of
Y guarantees that IY is not completely continuous. Since IY factors through the
universal operator T1, the operator IY must also be universal. We now work with
this “nice” operator IY .

For any linearly independent finite set {xk}nk=1, let D{xk}nk=1 be the norm of the
operator from the span of {xk}nk=1 to `n1 that sends xk to the k th unit vector of `n1 .
Set dn = D{yk}nk=1. Reflexivity of Y gives that dn tends to infinity. Let T be a
(reflexive) Tsirelson-like space with normalized unconditional basis {tn} such that
for all finite subsets F of natural numbers,

D{tn}n∈F ≤ max
{
2,
√

d|F |

}
,

where | F | is the cardinality of F . For example, {tn} can just be an appropriately
chosen subsequence of the usual basis of the usual Tsirelson space [cf. CS, Chap-
ter I]. Consider the non-completely-continuous map IT : T → `∞ that sends tn to
the n th unit vector of `∞. By the universality of IY , there exists maps A and B

such that the following diagram commutes.

T −→IT `∞

A ↑ ↓ B

Y −→IY `∞

Since each IY(yn) is of norm one, there exists δ > 0 such that δ < ‖ITAyn‖ for
each n. Each Ayn is of the form

Ayn =
∞∑
m=1

αn,m tm

and so there is a sequence {m(n)}n of natural numbers such that δ <| αn,m(n) |.
Since {yn} tends weakly to zero, for each m the set of all n for which m(n) = m is
finite. Thus by replacing Y with the closed span of a suitable subsequence of {yn},
we may assume that the m(n)’s are distinct.

Let T∗ be the subspace of T spanned by {tm(n)}n. Since {yn} and {tm(n)} are
both unconditional bases, by the diagonalization principle [cf. LT, Prop. 1.c.8],
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the correspondence yn 7→ αn,m(n)tm(n) extends to an operator D : Y → T∗.
Since {tm(n)} is an unconditional basis and δ <| αn,m(n) |, the correspondence
αn,m(n) tm(n) 7→ tm(n) extends to an operator M : T∗ → T∗.

By the definition of dn, there exists a sequence {βni }ni=1 such that
∑n
i=1 | βni |= 1

and

‖
n∑
i=1

βni yi‖Y =
1
dn

.

By the choice of T , for large n,

1√
dn
≤ ‖

n∑
i=1

βni tm(i)‖T∗ .

Since MD : Y → T∗ maps yn to tm(n),

‖
n∑
i=1

βni tm(i)‖T∗ ≤ ‖MD‖ ‖
n∑
i=1

βni yi‖Y .

This gives that
1√
dn
≤ ‖MD‖

dn
,

which cannot be since dn tends to infinity.

The first two paragraphs of the proof of Theorem 5 yield part (a) of the next
proposition. Part (b) follows from similar considerations and the Gurarii-James
theorem [Ja, Thm. 2].

Proposition 6.

(a) Let S be the collection of all formal identity operators into `∞ from re-
flexive sequence spaces for which the unit vectors form a normalized uncon-
ditional basis. Then S is universal for the class of all non-completely-
continuous operators.

(b) The collection {I : `p → `∞ ; 1 < p < ∞} of formal identity operators
is universal for the class of all non-completely-continuous operators whose
domain is superreflexive.

Recall that a Banach space X has the Radon-Nikodým Property (RNP) [respec-
tively, is strongly regular, has the Complete Continuity Property (CCP)] if each
bounded linear operator from L1 into X is representable [respectively, strongly reg-
ular, completely continuous]. The books [DU], [GGMS], and [T] contain splendid
surveys of these properties. Here we only recall that a representable operator is
strongly regular and a strongly regular operator is completely continuous. The first
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paragraph of the proof of Theorem 1 uses elementary methods to construct, from
an operator T : L1 → X that is not completely continuous, a copy of `1 in the
closed span of a norming set of X. On a much deeper level, the following fact is
well-known.

Fact. The following are equivalent.

(1) `1 embeds into X.
(2) L1 embeds into X∗.
(3) X∗ fails the CCP.
(4) X∗ is not strongly regular.

The well-known equivalence of (1) and (2) was shown by Pe lczyński [P, for sep-
arable X] and Hagler [H, for non-separable X]. The other downward implications
follow from the definitions. Bourgain [B] used a non-strongly-regular operator into
a dual space to construct a copy of `1 in the pre-dual. Here the authors wish to
formalize the following essentially known fact which, to the best of our knowledge,
has not appeared in print as such.

Fact. The following are equivalent.

(1) X has trivial type.
(2) X fails super CCP.
(3) X is not super strongly regular.

Proof. To see that (1) implies (2), recall that X has trivial type if and only if `1 is
finitely representable in X and that L1 is finitely representable in `1. Thus, if X has
trivial type, then L1 is finitely representable in X and so X cannot have the super
CCP. Property (3) formally follows from (2). Towards seeing that (3) implies (1),
consider a space X that is not strongly regular. From the above fact it follows that
`1 embeds into X∗. Thus X∗ has trivial type, which implies the same for X.
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