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There are several generalizations of the space L1(R) of Lebesgue integrable func-
tions taking values in the real numbers R (and defined on the usual Lebesgue
measure space (Ω,Σ, µ) on [0, 1] ) to a space of strongly-measurable “integrable”
(suitably formulated) functions taking values in a Banach space X.

The most common generalization is the space L1(X) of Bochner-Lebesgue in-
tegrable functions. Using the fact [P1, Theorem 1.1] that a strongly-measurable
function is essentially separably-valued, one can easily extend Lebesgue’s Differen-
tiation Theorem from L1(R) to L1(X). Specifically [B; cf. DU, Theorem II.2.9], if
f ∈ L1(X), then

lim
h→0

1
h

∫ t+h

t

‖f(ω)− f(t)‖ dµ(ω) = 0

and so

lim
h→0

1
h

∫ t+h

t

f(ω) dµ(ω) = f(t)

for almost all t in Ω.
Another generalization of L1(R) is the space P1(X) of strongly-measurable Pettis

integrable functions. A function f : Ω → X is Pettis integrable if for each E ∈ Σ
there is an element xE ∈ X satisfying

x∗(xE) =
∫
E

x∗fdµ

for each x∗ in the dual space X∗ of X. The element xE is called the Pettis integral
of f over E and we write

P −
∫
E

f dµ = xE .

It is clear that L1(X) ⊂ P1(X), while the reverse inclusion holds if and only if X is
finite dimensional (see e.g. [DG]).

If f ∈ P1(X), then for each x∗ ∈ X∗ the function x∗f ∈ L1(R) and so there
exists a set A (which depends on x∗) of full measure such that

lim
h→0

1
h

∫ t+h

t

x∗f(ω) dµ(ω) = x∗f(t)
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for each t ∈ A. In his paper [P1] introducing the Pettis integral, Pettis phrased this
by saying that the Pettis integral of a function in P1(X) is pseudo-differentiable .
He closed his paper by asking whether the Pettis integral of a function f in P1(X)
enjoys the stronger property of being a.e. weakly differentiable ; that is, does there
necessarily exist a set A (independent of x∗) of full measure such that

lim
h→0

1
h

∫ t+h

t

x∗f(ω) dµ(ω) = x∗f(t)

for each t ∈ A and x∗ ∈ X∗, or such that (which is the same thing of course)

weak− lim
h→0

1
h
P −

∫ t+h

t

f(ω) dµ(ω) = f(t)

for each t ∈ A.
If X is finite dimensional, then the Pettis integral of a function in P1(X) is

a.e. weakly differentiable. R.S. Phillips [Ph] (for X = `2) and M.E. Munroe [M]
(for X = C[0, 1]) each constructed an example of a function in P1(X) whose Pettis
integral is not a.e. weakly differentiable. G.E.F. Thomas [T, p. 131] conjectured
that such a function in P1(X) exists for every infinite-dimensional Banach space X.

At the recent May 1993 Kent State University Functional Analysis Conference,
Joe Diestel requested a further investigation into Pettis’s question. Independently,
V. Kadets [K] recently constructed, for each infinite-dimensional Banach space X,
a function in P1(X) whose Pettis integral fails to be a.e. weakly differentiable;
specifically, it fails to be weakly differentiable on a set of positive, but not full,
measure.

The first theorem of this paper constructs, for each infinite-dimensional Banach
space X, a function in P1(X) whose Pettis integral is nowhere weakly differentiable.
This theorem also addresses the degree of nondifferentiability of the Pettis integral.
Our second theorem shows, for arbitrary Banach spaces, that the functions which
we construct are close to being optimal with respect to their degree of nondifferen-
tiability. The proof of this theorem uses a factorization theorem of Pisier [P]. From
these two theorems it follows (Corollaries 3 and 4) that the cotype of a space is
closely tied to the degree of nondifferentiability of the Pettis integral.

Theorem 2 was shown to us by Nigel Kalton in answer to a question posed in a
preliminary version of this paper. We are grateful to him for permission to include
this result here.

To state our first result we introduce the collection Ψ of all increasing functions
ψ : [0,∞)→ [0,∞) satisfying the growth condition

∞∑
n=1

ψ(2−pn−1)
√

2pn < ∞ , (†)
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for some increasing sequence {pn}∞n=0 of integers. Examples of functions in Ψ are

ψ(s) = s
1
2 +ε

,

ψ(s) = s
1
2

[
1

log (1/s)

]1+ε

and ψ(s) = s
1
2

[
1

log (1/s)

] [
1

log log (1/s)

]1+ε

for pn = n and any ε > 0.

Theorem 1. Let X be an infinite-dimensional Banach space. For each ψ ∈ Ψ,
there exists f ∈ P1(X) such that∥∥∥∥P − ∫

I

f dµ

∥∥∥∥
X

> ψ (µ (I)) (‡)

for each interval I contained in [0, 1].

Remark. Taking ψ(t) = t
3
4 gives a Pettis integrable function f such that for each

t ∈ Ω,

lim
h→0

∥∥∥∥∥ 1
h
P −

∫ t+h

t

f(ω) dµ(ω)

∥∥∥∥∥
X

= ∞ .

If the Pettis integral of this f were weakly differentiable at t, then the above limit
would be finite.

Sketch of Proof. Let {Ink : n = 0, 1, . . . ; k = 1, . . . , 2n} be the dyadic intervals on
[0, 1], i.e.

Ink =
[
k − 1

2n
,
k

2n

)
.

Define inductively a collection {Ank : n = 0, 1, . . . ; k = 1, . . . , 2n} of disjoint sets of
strictly positive measure such that Ank ⊂ Ink (e.g. appropriately chosen “fat Cantor”
sets).

Fix K > 1. By a theorem of Mazur there is a basic sequence {xn} in X with
basis constant at most K. Take a blocking {Fn} of the basis with each sub-
space Fn of large enough dimension to find (using the finite-dimensional version
of Dvoretzky’s Theorem [D]) a 2n-dimensional subspace En of Fn such that the
Banach-Mazur distance between En and `2

n

2 is less than 2. Note that {En} forms
a finite-dimensional decomposition. Next find operators Tn : `2

n

2 → En such that
‖Tn‖ 6 2 and

∥∥T−1
n

∥∥ = 1. Let {unk : k = 1, . . .2n} be the standard unit vectors of
`2
n

2 and let enk ≡ Tnunk .
By the growth condition (†) on ψ, there is an increasing sequence {pn}∞n=0 of

integers, with p0 = 0, satisfying

∞∑
n=1

ψ(4 · 2−pn−1)
√

2pn < ∞ .
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Define f : [0, 1]→ X by

f(ω) =
∞∑
n=1

2n∑
k=1

cn
1Ank (ω)
µ(Ank)

enk ,

where
cm = 2K

[
ψ
(
4 · 2−pn−1

)]
· δm,pn ,

(here δj,k is the usual Kronecker delta symbol). Clearly, f is strongly measurable.
It is straightforward to verify that the Pettis integral of f is

P −
∫
E

f dµ =
∞∑
n=1

2n∑
k=1

cn

(∫
E

1Ank
µ(Ank)

dµ

)
enk . (∗)

Next fix an interval I ∈ Σ. Find a dyadic interval Imj ⊂ I such that 4 µ(Imj ) >
µ(I) and then find n such that pn−1 6 m < pn. Let P be the natural projection
from

∑
⊕Ej onto Epn . It follows that

2K
∥∥∥∥P − ∫

I

f dµ

∥∥∥∥
X

> cpn

[
2pn∑
k=1

∣∣∣∣∫
I

1Apnk
µ(Apnk )

dµ

∣∣∣∣2
] 1

2

,

and so since Apnk ⊂ I
pn
k ⊂ Imj ⊂ I for some k,

2K
∥∥∥∥P − ∫

I

f dµ

∥∥∥∥
X

> cpn = 2K ψ
(
4 · 2−pn−1

)
.

But ψ is increasing and 4 · 2−pn−1 > 4 · 2−m > µ(I) and so (‡) holds. Thus f
satisfies the statement of the theorem.

The functions in Ψ can be viewed as indicators of the degree of nondifferen-
tiability (i.e. the poor “averaging behavior”) of the indefinite Pettis integral. For
instance, taking

ψ(s) = s
1
2

[
1

log (1/s)

]1+ε

,

we deduce from Theorem 1 that there exists f ∈ P1(X) such that, not only do we
have

lim
h→0

∥∥∥∥∥ 1
h
P −

∫ t+h

t

f(ω) dµ(ω)

∥∥∥∥∥
X

= ∞ ,

but even worse,

lim
h→0

h
1
2 ·

[
log
(

1
h

)]1+ε
∥∥∥∥∥ 1
h
P −

∫ t+h

t

f(ω) dµ(ω)

∥∥∥∥∥
X

= ∞
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for all t ∈ Ω.
The next theorem shows that Theorem 1 comes close to describing the worst

type of averaging behavior of the Pettis integral that can occur in an arbitrary
infinite-dimensional Banach space. In particular, it shows that, for spaces on which
the identity operator is (2, 1)-summing (i.e., spaces with the Orlicz property), The-
orem 1 fails to hold for the function ψ(s) = s

1
2 . Thus, the growth condition (†) on

ψ ∈ Ψ can not be replaced by ψ(s) = O(s
1
2 ) as s → 0. We do not know, however,

whether it can be replaced by ψ(s) = o(s
1
2 ) as s→ 0.

Theorem 2. If the identity operator on an infinite-dimensional Banach space X

is (q, 1)-summing for some 2 6 q <∞, then, for every f ∈ P1(X),∥∥∥∥∥P −
∫ t+h

t

f dµ

∥∥∥∥∥
X

= o
(
h

1
q

)
as h→ 0+ for µ-a.e. t.

The proof below, which uses a factorization theorem of Pisier [P], was pointed out
to us by Nigel Kalton.

Sketch of Proof. Fix f ∈ P1(X) for an infinite-dimensional Banach space X. Con-
sider the operator K : L∞ → X given by

K(g) = P −
∫

Ω

g(ω)f(ω) dµ(ω) .

We need to show that∥∥K (1[0,t+h]

)
−K

(
1[0,t]

)∥∥
X

= o
(
h

1
q

)
as h→ 0+ for µ-a.e. t. Fix ε > 0.

Since K is compact and since the dual of L∞ has the approximation prop-
erty, there is [e.g. DU, Thm. VIII.3.6] a decomposition K = K1 + K2, with
Ki ∈ L (L∞,X), such that K1 has finite rank and K2 has norm at most ε2. It
is enough to show that there is some constant A, which depends only on X and q,
such that for each i,

lim sup
h→0+

h−
1
q

∥∥Ki

(
1[0,t+h]

)
−Ki

(
1[0,t]

)∥∥
X
6 A ε , (♦)

on a set of µ-measure at least 1− εq.
Towards this, consider [see e.g. R] the natural surjective isometry τ : L∞ → C(∆)

for the appropriate extremally disconnected compact Hausdorff space ∆. Recall
that τ takes an indicator function of a Borel set in [0, 1] to an indicator function
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of a clopen set in ∆, say τ (1A) = 1
bA in such a way that if A ⊂ B ⊂ Ω, then

Â ⊂ B̂ ⊂ ∆ and B̂ \A = B̂ \ Â. Let K̂i be the composite map:

K̂i : C(∆) −→τ
−1

L∞ −→Ki X .

It can be shown that K1 satisfies∥∥K1

(
1[0,t+h]

)
−K1

(
1[0,t]

)∥∥
X

= O(h) µ–a.e.

and so (♦) holds for any q > 1.
Now we deal with K2. Fix 2 6 q < ∞. If the identity operator on X is (q, 1)-

summing, then [P, Cor. 2.7] there is a probability measure ν on the Borel sets of ∆
such that the operator K̂2 admits a factorization of the form

C(∆) −→bK2
X

↘J ↗T

Lq,1(ν)

where J is the natural inclusion map and T is a bounded linear operator with
operator norm at most C‖K̂2‖ ≤ Cε2, where C depends only on X and q. Here,
Lq,1(ν) is the usual Lorentz space of all real-valued ν-measurable functions f on ∆
for which the norm ‖f‖q,1 is finite, where

‖f‖q,1 =
∫ ∞

0

t
1
q−1f∗(t) dt

and f∗ is the non-increasing rearrangement of |f |. As above∥∥K2

(
1[0,t+h]

)
−K2

(
1[0,t]

)∥∥
X

=
∥∥K2

(
1(t,t+h]

)∥∥
X

=
∥∥∥K̂2

(
1 ̂(t,t+h]

)∥∥∥
X

6 Cε2
∥∥∥J (1 ̂(t,t+h]

)∥∥∥
Lq,1(ν)

.

Since the non-increasing rearrangement of J
(

1 ̂(t,t+h]

)
is just the indicator function

of the set
[
0, ν

(
̂(t, t+ h]

))
, we have

∥∥∥J (1 ̂(t,t+h]

)∥∥∥
Lq,1(ν)

= q
[
ν
(
̂(t, t+ h]

)] 1
q

,

and so

h−
1
q

∥∥K2

(
1[0,t+h]

)
−K2

(
1[0,t]

)∥∥
X
6 Cqε2

[
|β (t+ h)− β (t)|

h

] 1
q

,
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where β : [0, 1]→ R is given by β(t) = ν
(

[̂0, t]
)

. The function β is increasing and
hence differentiable µ-almost everywhere. Thus

lim sup
h→0+

h−
1
q

∥∥K2

(
1[0,t+h]

)
−K2

(
1[0,t]

)∥∥
X
6 C q ε2 [β′(t)]

1
q

for µ-a.e. t. From
∫ 1

0
β′(t) dt 6 β(1)− β(0) 6 1, it follows that µ [β′(t) > ε−q] 6 εq.

Thus, on a set of measure at least 1− εq,

lim sup
h→0+

h−
1
q

∥∥K2

(
1[0,t+h]

)
−K2

(
1[0,t]

)∥∥
X
6 C q ε ,

which implies (♦) for K2.

Recall that the identity operator on a space with finite cotype q is (q, 1)-summing.
Indeed, cotype plays a major rôle in the unfolding drama. To see this, consider
a space X which contains a finite-dimensional decomposition

∑
⊕En where the

Banach-Mazur distance between En and `2
n

p is less than M for each n for some
fixed 1 6 p 6 ∞ and M > 1. By modifying Mazur’s construction [see e. g. LT]
of a basic sequence and using the fact (a simple compactness argument suffices)
that finite representability of `p is inherited by subspaces of finite codimension, it
is possible to construct such a finite-dimensional decomposition in X whenever `p
is finitely representable in X. By the Maurey-Pisier Theorem [MP], `q0 is finitely
representable in X where 2 6 q0 6∞ and

q0 = inf {q : X has cotype q} .

In the same spirit as in the proof of Theorem 1 (and with similar notation), for
1 6 p 6 ∞ let Ψp be the collection of all increasing functions ψ : [0,∞) → [0,∞)
satisfying the growth condition

∞∑
n=1

ψ
(
2−pn−1

)
[2pn ]

1
p < ∞ (†p)

for some increasing sequence {pn}∞n=0 of integers (following the convention that
1/∞ is 0). For 1 6 p <∞, a typical function in Ψp is

ψ(s) = s
1
p+ε

with pn = n and for any ε > 0. For p =∞, (†p) reduces to the condition

lim
s→0+

ψ(s) = 0 .

Fix ψ ∈ Ψp and find an increasing sequence {pn}∞n=0 of integers, with p0 = 0,
satisfying

∞∑
n=1

ψ(4 · 2−pn−1) [2pn ]
1
p < ∞
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(again, 1/∞ is 0). Define f : [0, 1]→ X by

f(ω) =
∞∑
n=1

2n∑
k=1

cn
1Ank (ω)
µ(Ank)

enk ,

where
cm = 2K

[
ψ
(
4 · 2−pn−1

)]
· δm,pn ,

where K is the finite-dimensional decomposition constant. Minor variations of the
proof of Theorem 1 show that this function f satisfies∥∥∥∥P − ∫

I

f dµ

∥∥∥∥
X

> ψ (µ (I))

for each interval I contained in [0, 1].
Theorems 1 and 2, along with the above observations, give the following corol-

laries.

Corollary 3. Let X be an infinite-dimensional Banach space with finite cotype and
let q0 = inf{q : X0 has cotype q}. Then the following hold.

(1) If p > q0, then for each f ∈ P1(X), we have∥∥∥∥∥P −
∫ t+h

t

f dµ

∥∥∥∥∥
X

= o
(
h

1
p

)
as h→ 0+ for µ-a.e. t.

(2) If p < q0, then there is an f ∈ P1(X) such that∥∥∥∥∥P −
∫ t+h

t

f dµ

∥∥∥∥∥
X

> h
1
p

for all t ∈ [0, 1].

Corollary 4. For an infinite-dimensional Banach space X, the following are equiv-
alent.

(1) X fails cotype.
(2) For each ψ ∈ Ψ∞, there exists f ∈ P1(X) such that∥∥∥∥P − ∫

I

f dµ

∥∥∥∥
X

> ψ (µ (I))

for each interval I contained in [0, 1].

Remark. Note that Corollary 4 proves the existence of a reflexive Banach space
for which the Pettis integral has essentially no kind of differentiability property
whatsoever.

For further details and results along these lines, we refer the interested reader
to [DG2].
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