NOWHERE WEAK DIFFERENTIABILITY OF THE PETTIS INTEGRAL

S.J. DILWORTH AND MARIA GIRARDI

Quaestiones Math. 18 (1995) 365-380

ABSTRACT. For an arbitrary infinite-dimensional Banach space \mathfrak{X} , we construct examples of strongly-measurable \mathfrak{X} -valued Pettis integrable functions whose indefinite Pettis integrals are nowhere weakly differentiable; thus, for these functions the Lebesgue Differentiation Theorem fails rather spectacularly. We also relate the degree of nondifferentiability of the indefinite Pettis integral to the cotype of \mathfrak{X} , from which it follows that our examples are reasonably sharp.

There are several generalizations of the space $L_1(\mathbf{R})$ of Lebesgue integrable functions taking values in the real numbers \mathbf{R} (and defined on the usual Lebesgue measure space (Ω, Σ, μ) on [0, 1]) to a space of strongly-measurable "integrable" (suitably formulated) functions taking values in a Banach space \mathfrak{X} .

The most common generalization is the space $L_1(\mathfrak{X})$ of Bochner-Lebesgue integrable functions. Using the fact [P1, Theorem 1.1] that a strongly-measurable function is essentially separably-valued, one can easily extend Lebesgue's Differentiation Theorem from $L_1(\mathbf{R})$ to $L_1(\mathfrak{X})$. Specifically [B; cf. DU, Theorem II.2.9], if $f \in L_1(\mathfrak{X})$, then

$$\lim_{h \to 0} \frac{1}{h} \int_t^{t+h} \|f(\omega) - f(t)\| d\mu(\omega) = 0$$

and so

$$\lim_{h \to 0} \frac{1}{h} \int_{t}^{t+h} f(\omega) \, d\mu(\omega) = f(t)$$

for almost all t in Ω .

Another generalization of $L_1(\mathbf{R})$ is the space $\mathcal{P}_1(\mathfrak{X})$ of strongly-measurable Pettis integrable functions. A function $f: \Omega \to \mathfrak{X}$ is Pettis integrable if for each $E \in \Sigma$ there is an element $x_E \in \mathfrak{X}$ satisfying

$$x^*(x_E) = \int_E x^* f d\mu$$

¹⁹⁹¹ Mathematics Subject Classification. 28A15, 46E40, 46G05.

The second author was supported in part by NSF DMS-9306460.

for each x^* in the dual space \mathfrak{X}^* of \mathfrak{X} . The element x_E is called the Pettis integral of f over E and we write

$$\mathcal{P} - \int_E f \, d\mu = x_E$$

It is clear that $L_1(\mathfrak{X}) \subset \mathcal{P}_1(\mathfrak{X})$, while the reverse inclusion holds if and only if \mathfrak{X} is finite dimensional (see e.g. [DG]).

If $f \in \mathcal{P}_1(\mathfrak{X})$, then for each $x^* \in \mathfrak{X}^*$ the function $x^* f \in L_1(\mathbf{R})$ and so there exists a set A (which depends on x^*) of full measure such that

$$\lim_{h \to 0} \frac{1}{h} \int_t^{t+h} x^* f(\omega) \, d\mu(\omega) = x^* f(t)$$

for each $t \in A$. In his paper [P1] introducing the Pettis integral, Pettis phrased this by saying that the Pettis integral of a function in $\mathcal{P}_1(\mathfrak{X})$ is *pseudo-differentiable*. He closed his paper by asking whether the Pettis integral of a function f in $\mathcal{P}_1(\mathfrak{X})$ enjoys the stronger property of being *a.e. weakly differentiable*; that is, does there necessarily exist a set A (*independent* of x^*) of full measure such that

$$\lim_{h \to 0} \frac{1}{h} \int_t^{t+h} x^* f(\omega) \, d\mu(\omega) = x^* f(t)$$

for each $t \in A$ and $x^* \in \mathfrak{X}^*$, or such that (which is the same thing of course)

weak
$$-\lim_{h \to 0} \frac{1}{h} \mathcal{P} - \int_{t}^{t+h} f(\omega) d\mu(\omega) = f(t)$$

for each $t \in A$.

If \mathfrak{X} is finite dimensional, then the Pettis integral of a function in $\mathcal{P}_1(\mathfrak{X})$ is a.e. weakly differentiable. R.S. Phillips [Ph] (for $\mathfrak{X} = \ell_2$) and M.E. Munroe [M] (for $\mathfrak{X} = C[0, 1]$) each constructed an example of a function in $\mathcal{P}_1(\mathfrak{X})$ whose Pettis integral is not a.e. weakly differentiable. G.E.F. Thomas [T, p. 131] conjectured that such a function in $\mathcal{P}_1(\mathfrak{X})$ exists for every infinite-dimensional Banach space \mathfrak{X} .

At the recent May 1993 Kent State University Functional Analysis Conference, Joe Diestel requested a further investigation into Pettis's question. Independently, V. Kadets [K] recently constructed, for each infinite-dimensional Banach space \mathfrak{X} , a function in $\mathcal{P}_1(\mathfrak{X})$ whose Pettis integral fails to be a.e. weakly differentiable; specifically, it fails to be weakly differentiable on a set of positive, but not full, measure.

The main theorem of this paper constructs, for each infinite-dimensional Banach space \mathfrak{X} , a function in $\mathcal{P}_1(\mathfrak{X})$ whose Pettis integral is *nowhere* weakly differentiable. This theorem also addresses the degree of nondifferentiability of the Pettis integral. Our second theorem shows, for *arbitrary* Banach spaces, that the functions which we construct are close to being optimal with respect to their degree of nondifferentiability. From these two theorems it follows (Corollaries 3 and 4) that the cotype of a space is closely tied to the degree of nondifferentiability of the Pettis integral.

Theorem 2 was shown to us by Nigel Kalton in answer to a question posed in a preliminary version of this paper. We are grateful to him for permission to include this result here.

To state our main result we introduce the collection Ψ of all increasing functions $\psi: [0, \infty) \to [0, \infty)$ satisfying the growth condition

$$\sum_{n=1}^{\infty} \psi(2^{-p_{n-1}}) \sqrt{2^{p_n}} < \infty , \qquad (\dagger)$$

for some increasing sequence $\{p_n\}_{n=0}^{\infty}$ of integers. Examples of functions in Ψ are

$$\psi(s) = s^{\frac{1}{2}+\epsilon},$$

$$\psi(s) = s^{\frac{1}{2}} \begin{bmatrix} \frac{1}{\log(1/s)} \end{bmatrix}^{1+\epsilon} \quad \text{and} \quad \psi(s) = s^{\frac{1}{2}} \begin{bmatrix} \frac{1}{\log(1/s)} \end{bmatrix} \begin{bmatrix} \frac{1}{\log\log(1/s)} \end{bmatrix}^{1+\epsilon}$$

for $p_n = n$ and any $\epsilon > 0$.

Theorem 1. Let \mathfrak{X} be an infinite-dimensional Banach space. For each $\psi \in \Psi$, there exists $f \in \mathcal{P}_1(\mathfrak{X})$ such that

$$\left\| \mathcal{P} - \int_{I} f \, d\mu \right\|_{\mathfrak{X}} \ge \psi \left(\mu \left(I \right) \right) \tag{\ddagger}$$

for each interval I contained in [0, 1].

Remark. Taking $\psi(t) = t^{\frac{3}{4}}$ gives a Pettis integrable function f such that for each $t \in \Omega$,

$$\lim_{h \to 0} \left\| \frac{1}{h} \mathcal{P} - \int_t^{t+h} f(\omega) \, d\mu(\omega) \right\|_{\mathfrak{X}} = \infty \, .$$

If the Pettis integral of this f were weakly differentiable at t, then the above limit would be finite.

Proof. Let $\{I_k^n : n = 0, 1, \dots, k = 1, \dots, 2^n\}$ be the dyadic intervals on [0, 1], i.e.

$$I_k^n = \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right) \; .$$

Define inductively a collection $\{A_k^n : n = 0, 1, \dots; k = 1, \dots, 2^n\}$ of disjoint sets of strictly positive measure such that $A_k^n \subset I_k^n$ (e.g. appropriately chosen "fat Cantor" sets).

Fix K > 1. By a theorem of Mazur there is a basic sequence $\{x_n\}$ in \mathfrak{X} with basis constant at most K. Take a blocking $\{F_n\}$ of the basis with each subspace F_n of large enough dimension to find (using the finite-dimensional version of Dvoretzky's Theorem [D]) a 2^n -dimensional subspace E_n of F_n such that the Banach-Mazur distance between E_n and $\ell_2^{2^n}$ is less than 2. Note that $\{E_n\}$ forms a finite-dimensional decomposition. Next find operators $T_n: \ell_2^{2^n} \to E_n$ such that $\|T_n\| \leq 2$ and $\|T_n^{-1}\| = 1$. Let $\{u_k^n: k = 1, \ldots 2^n\}$ be the standard unit vectors of $\ell_2^{2^n}$ and let $e_k^n \equiv T_n u_k^n$.

By the growth condition (†) on ψ , there is an increasing sequence $\{p_n\}_{n=0}^{\infty}$ of integers, with $p_0 = 0$, satisfying

$$\sum_{n=1}^{\infty} \psi(4 \cdot 2^{-p_{n-1}}) \sqrt{2^{p_n}} < \infty$$

Define $f: [0,1] \to \mathfrak{X}$ by

$$f(\omega) = \sum_{n=1}^{\infty} \sum_{k=1}^{2^n} c_n \frac{1_{A_k^n}(\omega)}{\mu(A_k^n)} e_k^n ,$$

where

$$c_m = 2K \left[\psi \left(4 \cdot 2^{-p_{n-1}} \right) \right] \cdot \delta_{m,p_n} ,$$

(here $\delta_{j,k}$ is the usual Kronecker delta symbol). Clearly, f is strongly measurable.

The Pettis integral of f is easily computable; namely,

$$\mathcal{P} - \int_E f \, d\mu = \sum_{n=1}^{\infty} \sum_{k=1}^{2^n} c_n \left(\int_E \frac{1_{A_k^n}}{\mu(A_k^n)} \, d\mu \right) e_k^n \, . \tag{*}$$

To see this, first note that the growth condition on ψ guarantees that the above series does indeed converge to an element of \mathfrak{X} , since

$$\begin{split} \left\| \sum_{n=p}^{q} \sum_{k=1}^{2^{n}} c_{n} \left(\int_{E} \frac{1_{A_{k}^{n}}}{\mu(A_{k}^{n})} d\mu \right) e_{k}^{n} \right\|_{\mathfrak{X}} &= \left\| \sum_{n=p}^{q} \sum_{k=1}^{2^{n}} c_{n} \left(\int_{E} \frac{1_{A_{k}^{n}}}{\mu(A_{k}^{n})} d\mu \right) T_{n} u_{k}^{n} \right\|_{\mathfrak{X}} \\ &\leqslant 2 \sum_{n=p}^{q} c_{n} \left\| \sum_{k=1}^{2^{n}} \left(\int_{E} \frac{1_{A_{k}^{n}}}{\mu(A_{k}^{n})} d\mu \right) u_{k}^{n} \right\|_{\ell_{2}^{2^{n}}} \\ &= 2 \sum_{n=p}^{q} c_{n} \left[\sum_{k=1}^{2^{n}} \left| \int_{E} \frac{1_{A_{k}^{n}}}{\mu(A_{k}^{n})} d\mu \right|^{2} \right]^{\frac{1}{2}} \\ &\leqslant 2 \sum_{n=p}^{q} c_{n} \sqrt{2^{n}} , \end{split}$$

which approaches zero as $p, q \to \infty$. Now fix $E \in \Sigma$ and $x^* \in \mathfrak{X}^*$ and let $\epsilon_k^n = \operatorname{sign}(x^*e_k^n)$. Then

$$\sum_{k=1}^{2^{n}} |x^{*}e_{k}^{n}| = \left| \sum_{k=1}^{2^{n}} \epsilon_{k}^{n} x^{*} T_{n} u_{k}^{n} \right| \leq ||T_{n}^{*}|| ||x^{*}|| \left\| \sum_{k=1}^{2^{n}} \epsilon_{k}^{n} u_{k}^{n} \right\|_{\ell_{2}^{2^{n}}} \leq 2 ||x^{*}|| \left(\sqrt{2^{n}}\right) ,$$

and so

$$\begin{split} \int_{E} \sum_{n=1}^{\infty} \left| \sum_{k=1}^{2^{n}} c_{n} \frac{1_{A_{k}^{n}}}{\mu(A_{k}^{n})} x^{*}(e_{k}^{n}) \right| d\mu &= \sum_{n=1}^{\infty} \int_{E} \left| \sum_{k=1}^{2^{n}} c_{n} \frac{1_{A_{k}^{n}}}{\mu(A_{k}^{n})} x^{*}(e_{k}^{n}) \right| d\mu \\ &\leqslant \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n}} c_{n} \left(\int_{E} \frac{1_{A_{k}^{n}}}{\mu(A_{k}^{n})} d\mu \right) |x^{*}e_{k}^{n}| \\ &\leqslant \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n}} c_{n} |x^{*}e_{k}^{n}| \\ &\leqslant 2 ||x^{*}|| \sum_{n=1}^{\infty} c_{n} \left(\sqrt{2^{n}}\right) < \infty \;. \end{split}$$

Thus we may interchange the integral and summation below to see that

$$\begin{split} \int_{E} x^{*} f \, d\mu &= \int_{E} \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n}} c_{n} \, \frac{1_{A_{k}^{n}}}{\mu(A_{k}^{n})} \, x^{*}(e_{k}^{n}) \, d\mu \\ &= \sum_{n=1}^{\infty} \int_{E} \sum_{k=1}^{2^{n}} c_{n} \, \frac{1_{A_{k}^{n}}}{\mu(A_{k}^{n})} \, x^{*}(e_{k}^{n}) \, d\mu \, = \, x^{*} \left(\sum_{n=1}^{\infty} \sum_{k=1}^{2^{n}} c_{n} \, \left(\int_{E} \frac{1_{A_{k}^{n}}}{\mu(A_{k}^{n})} \, d\mu \right) e_{k}^{n} \right) \, , \end{split}$$

as needed for (*).

Fix an interval $I \in \Sigma$. Find a dyadic interval $I_j^m \subset I$ such that $4 \ \mu(I_j^m) \ge \mu(I)$ and then find *n* such that $p_{n-1} \le m < p_n$. Let *P* be the natural projection from $\sum \oplus E_j$ onto E_{p_n} . Since $||P|| \le 2K$,

$$2K \left\| \mathcal{P} - \int_{I} f \, d\mu \right\|_{\mathfrak{X}} \geq \left\| P \left(\mathcal{P} - \int_{I} f \, d\mu \right) \right\|_{\mathfrak{X}}$$
$$= c_{p_{n}} \left\| \sum_{k=1}^{2^{p_{n}}} \left(\int_{I} \frac{1_{A_{k}^{p_{n}}}}{\mu(A_{k}^{p_{n}})} \, d\mu \right) e_{k}^{p_{n}} \right\|_{\mathfrak{X}}$$
$$\geq c_{p_{n}} \left\| \sum_{k=1}^{2^{p_{n}}} \left(\int_{I} \frac{1_{A_{k}^{p_{n}}}}{\mu(A_{k}^{p_{n}})} \, d\mu \right) u_{k}^{p_{n}} \right\|_{\ell_{2}^{2^{p_{n}}}}$$
$$= c_{p_{n}} \left[\sum_{k=1}^{2^{p_{n}}} \left| \int_{I} \frac{1_{A_{k}^{p_{n}}}}{\mu(A_{k}^{p_{n}})} \, d\mu \right|^{2} \right]^{\frac{1}{2}},$$

and so since $A_k^{p_n} \subset I_k^{p_n} \subset I_j^m \subset I$ for some k,

$$2K \left\| \mathcal{P} - \int_{I} f \, d\mu \right\|_{\mathfrak{X}} \geq c_{p_{n}} = 2K \, \psi \left(4 \cdot 2^{-p_{n-1}} \right)$$

But ψ is increasing and $4 \cdot 2^{-p_{n-1}} \ge 4 \cdot 2^{-m} \ge \mu(I)$ and so

$$\left\| \mathcal{P} - \int_{I} f \, d\mu \right\|_{\mathfrak{X}} \ge \psi \left(\mu \left(I \right) \right)$$
.

Thus f satisfies the statement of the theorem.

The functions in Ψ can be viewed as indicators of the degree of nondifferentiability (i.e. the poor "averaging behavior") of the indefinite Pettis integral. For instance, taking

$$\psi(s) = s^{\frac{1}{2}} \left[\frac{1}{\log\left(1/s\right)} \right]^{1+\epsilon},$$

we deduce from Theorem 1 that there exists $f \in \mathcal{P}_1(\mathfrak{X})$ such that, not only do we have

$$\lim_{h \to 0} \left\| \frac{1}{h} \mathcal{P} - \int_t^{t+h} f(\omega) \, d\mu(\omega) \right\|_{\mathfrak{X}} = \infty ,$$

but even worse,

$$\lim_{h \to 0} h^{\frac{1}{2}} \cdot \left[\log \left(\frac{1}{h} \right) \right]^{1+\epsilon} \left\| \frac{1}{h} \mathcal{P} - \int_{t}^{t+h} f(\omega) \, d\mu(\omega) \right\|_{\mathfrak{X}} = \infty$$

for all $t \in \Omega$.

The next theorem shows that Theorem 1 comes close to describing the *worst* type of averaging behavior of the Pettis integral that can occur in an *arbitrary* infinite-dimensional Banach space. In particular, it shows that, for spaces on which the identity operator is (2, 1)-summing (i.e., spaces with the Orlicz property), Theorem 1 fails to hold for the function $\psi(s) = s^{\frac{1}{2}}$. Thus, the growth condition (\dagger) on $\psi \in \Psi$ can not be replaced by $\psi(s) = O(s^{\frac{1}{2}})$ as $s \to 0$. We do not know, however, whether it can be replaced by $\psi(s) = o(s^{\frac{1}{2}})$ as $s \to 0$.

Theorem 2. If the identity operator on an infinite-dimensional Banach space \mathfrak{X} is (q, 1)-summing for some $2 \leq q < \infty$, then, for every $f \in \mathcal{P}_1(\mathfrak{X})$,

$$\left\| \mathcal{P} - \int_{t}^{t+h} f \, d\mu \right\|_{\mathfrak{X}} = o\left(h^{\frac{1}{q}}\right)$$

as $h \to 0^+$ for μ -a.e. t.

The proof below, which uses a factorization theorem of Pisier [P], was pointed out to us by Nigel Kalton. *Proof.* Fix $f \in \mathcal{P}_1(\mathfrak{X})$ for an infinite-dimensional Banach space \mathfrak{X} . Consider the operator $K: L_{\infty} \to \mathfrak{X}$ given by

$$K(g) = \mathcal{P} - \int_{\Omega} g(\omega) f(\omega) \, d\mu(\omega)$$

We need to show that

$$\left\| K\left(\mathbf{1}_{[0,t+h]}\right) - K\left(\mathbf{1}_{[0,t]}\right) \right\|_{\mathfrak{X}} = o\left(h^{\frac{1}{q}}\right)$$

as $h \to 0^+$ for μ -a.e. t. Fix $\epsilon > 0$.

Since K is compact and since the dual of L_{∞} has the approximation property, there is [e.g. DU, Thm. VIII.3.6] a decomposition $K = K_1 + K_2$, with $K_i \in \mathcal{L}(L_{\infty}, \mathfrak{X})$, such that K_1 has finite rank and K_2 has norm at most ϵ^2 . It is enough to show that there is some constant A, which depends only on \mathfrak{X} and q, such that for each i,

$$\limsup_{h \to 0^+} h^{-\frac{1}{q}} \left\| K_i \left(\mathbf{1}_{[0,t+h]} \right) - K_i \left(\mathbf{1}_{[0,t]} \right) \right\|_{\mathfrak{X}} \leqslant A \epsilon , \qquad (\diamondsuit)$$

on a set of μ -measure at least $1 - \epsilon^q$.

Towards this, consider [see e.g. R] the natural surjective isometry $\tau: L_{\infty} \to C(\Delta)$ for the appropriate extremally disconnected compact Hausdorff space Δ . Recall that τ takes an indicator function of a Borel set in [0, 1] to an indicator function of a clopen set in Δ , say $\tau(1_A) = 1_{\widehat{A}}$ in such a way that if $A \subset B \subset \Omega$, then $\widehat{A} \subset \widehat{B} \subset \Delta$ and $\widehat{B \setminus A} = \widehat{B} \setminus \widehat{A}$. Let \widehat{K}_i be the composite map:

$$\widehat{K}_i : C(\Delta) \xrightarrow{\tau^{-1}} L_{\infty} \xrightarrow{K_i} \mathfrak{X}$$

First we deal with K_1 . We assume, without loss of generality, that K_1 is of rank one. So the mapping \hat{K}_1 is of the form

$$\widehat{K}_1(\varphi) = \left[\int_\Delta \varphi \, d\lambda\right] x$$

for some norm one element x in \mathfrak{X} and a finite regular signed Borel measure λ on Δ . Thus

$$\begin{split} \left\| K_1\left(\mathbf{1}_{[0,t+h]}\right) - K_1\left(\mathbf{1}_{[0,t]}\right) \right\|_{\mathfrak{X}} &= \left\| \widehat{K}_1\left(\mathbf{1}_{[\widehat{0,t+h}]}\right) - \widehat{K}_1\left(\mathbf{1}_{[\widehat{0,t}]}\right) \right\|_{\mathfrak{X}} \\ &= \left| \lambda\left([\widehat{0,t+h}]\right) - \lambda\left([\widehat{0,t}]\right) \right| \\ &= \left| \alpha(t+h) - \alpha(t) \right| \;, \end{split}$$

where $\alpha: [0,1] \to \mathbb{R}$ is given by $\alpha(t) = \lambda\left(\widehat{[0,t]}\right)$. Since $\widehat{[0,t]} \subset \widehat{[0,t+h]}$ for positive h, the function α is of bounded variation and so is differentiable μ -almost everywhere. Thus, $\|K_1(1_{[0,t+h]}) - K_1(1_{[0,t]})\|_{\mathfrak{X}} = O(h) \mu$ -a.e. and so (\Diamond) holds for any q > 1.

Now we deal with K_2 . Fix $2 \leq q < \infty$. If the identity operator on \mathfrak{X} is (q, 1)-summing, then [P, Cor. 2.7] there is a probability measure ν on the Borel sets of Δ such that the operator \widehat{K}_2 admits a factorization of the form

where J is the natural inclusion map and T is a bounded linear operator with operator norm at most $C \| \widehat{K}_2 \| \leq C \epsilon^2$, where C depends only on \mathfrak{X} and \mathfrak{q} . Here, $L_{q,1}(\nu)$ is the usual Lorentz space of all real-valued ν -measurable functions f on Δ for which the norm $\| f \|_{q,1}$ is finite, where

$$\|f\|_{q,1} = \int_0^\infty t^{\frac{1}{q}-1} f^*(t) \, dt$$

and f^* is the non-increasing rearrangement of |f|. As above

$$\begin{aligned} \left\| K_2 \left(\mathbf{1}_{[0,t+h]} \right) - K_2 \left(\mathbf{1}_{[0,t]} \right) \right\|_{\mathfrak{X}} &= \left\| K_2 \left(\mathbf{1}_{(t,t+h]} \right) \right\|_{\mathfrak{X}} \\ &= \left\| \widehat{K}_2 \left(\mathbf{1}_{\widehat{(t,t+h]}} \right) \right\|_{\mathfrak{X}} \\ &\leqslant C \epsilon^2 \left\| J \left(\mathbf{1}_{\widehat{(t,t+h]}} \right) \right\|_{L_{q,1}(\nu)} \end{aligned}$$

Since the non-increasing rearrangement of $J\left(1_{(t,t+h]}\right)$ is just the indicator function of the set $\left[0, \nu\left(\widehat{(t,t+h]}\right)\right)$, we have

$$\left\|J\left(1_{(\widehat{t,t+h}]}\right)\right\|_{L_{q,1}(\nu)} = q \left[\nu\left((\widehat{t,t+h}]\right)\right]^{\frac{1}{q}},$$

and so

$$h^{-\frac{1}{q}} \| K_2 \left(1_{[0,t+h]} \right) - K_2 \left(1_{[0,t]} \right) \|_{\mathfrak{X}} \leq Cq\epsilon^2 \left[\frac{|\beta \left(t+h \right) - \beta \left(t \right)|}{h} \right]^{\frac{1}{q}}$$

where $\beta: [0,1] \to \mathbb{R}$ is given by $\beta(t) = \nu(\widehat{[0,t]})$. The function β is increasing and hence differentiable μ -almost everywhere. Thus

$$\lim_{h \to 0^+} \sup_{h \to 0^+} h^{-\frac{1}{q}} \| K_2 \left(\mathbf{1}_{[0,t+h]} \right) - K_2 \left(\mathbf{1}_{[0,t]} \right) \|_{\mathfrak{X}} \leqslant C q \epsilon^2 [\beta'(t)]^{\frac{1}{q}}$$

for μ -a.e. t. From $\int_0^1 \beta'(t) dt \leq \beta(1) - \beta(0) \leq 1$, it follows that $\mu[\beta'(t) \ge \epsilon^{-q}] \leq \epsilon^q$. Thus, on a set of measure at least $1 - \epsilon^q$,

$$\limsup_{h \to 0^+} h^{-\frac{1}{q}} \|K_2\left(\mathbf{1}_{[0,t+h]}\right) - K_2\left(\mathbf{1}_{[0,t]}\right)\|_{\mathfrak{X}} \leqslant C q \epsilon ,$$

which implies (\Diamond) for K_2 .

Recall that the identity operator on a space with finite cotype q is (q, 1)-summing. Indeed, cotype plays a major rôle in the unfolding drama. To see this, consider a space \mathfrak{X} which contains a finite-dimensional decomposition $\sum \oplus E_n$ where the Banach-Mazur distance between E_n and $\ell_p^{2^n}$ is less than M for each n for some fixed $1 \leq p \leq \infty$ and M > 1. By modifying Mazur's construction [see e. g. LT] of a basic sequence and using the fact (a simple compactness argument suffices) that finite representability of ℓ_p is inherited by subspaces of finite codimension, it is possible to construct such a finite-dimensional decomposition in \mathfrak{X} whenever ℓ_p is finitely representable in \mathfrak{X} . By the Maurey-Pisier Theorem [MP], ℓ_{q_0} is finitely representable in \mathfrak{X} where $2 \leq q_0 \leq \infty$ and

$$q_0 = \inf \{q: \mathfrak{X} \text{ has cotype } q\}$$
.

In the same spirit as in the proof of Theorem 1 (and with similar notation), for $1 \leq p \leq \infty$ let Ψ_p be the collection of all increasing functions $\psi: [0, \infty) \to [0, \infty)$ satisfying the growth condition

$$\sum_{n=1}^{\infty} \psi \left(2^{-p_{n-1}} \right) \left[2^{p_n} \right]^{\frac{1}{p}} < \infty$$
 (†_p)

for some increasing sequence $\{p_n\}_{n=0}^{\infty}$ of integers (following the convention that $1/\infty$ is 0). For $1 \leq p < \infty$, a typical function in Ψ_p is

$$\psi(s) = s^{\frac{1}{p} + \epsilon}$$

with $p_n = n$ and for any $\epsilon > 0$. For $p = \infty$, (\dagger_p) reduces to the condition

$$\lim_{s \to 0^+} \psi(s) = 0$$

Fix $\psi \in \Psi_p$ and find an increasing sequence $\{p_n\}_{n=0}^{\infty}$ of integers, with $p_0 = 0$, satisfying

$$\sum_{n=1}^{\infty} \psi(4 \cdot 2^{-p_{n-1}}) \left[2^{p_n}\right]^{\frac{1}{p}} < \infty$$

(again, $1/\infty$ is 0). Define $f: [0,1] \to \mathfrak{X}$ by

$$f(\omega) = \sum_{n=1}^{\infty} \sum_{k=1}^{2^n} c_n \frac{1_{A_k^n}(\omega)}{\mu(A_k^n)} e_k^n ,$$

where

$$c_m = 2K \left[\psi \left(4 \cdot 2^{-p_{n-1}} \right) \right] \cdot \delta_{m,p_n} ,$$

where K is the finite-dimensional decomposition constant. Minor variations of the proof of Theorem 1 show that this function f satisfies

$$\left\| \mathcal{P} - \int_{I} f \, d\mu \right\|_{\mathfrak{X}} \geq \psi \left(\mu \left(I \right) \right)$$

for each interval I contained in [0, 1].

Theorems 1 and 2, along with the above observations, give the following corollaries.

Corollary 3. Let \mathfrak{X} be an infinite-dimensional Banach space with finite cotype and let $q_0 = \inf\{q: \mathfrak{X}_0 \text{ has cotype } q\}$. Then the following hold.

(1) If $p > q_0$, then for each $f \in \mathcal{P}_1(\mathfrak{X})$, we have

$$\left\| \mathcal{P} - \int_{t}^{t+h} f \, d\mu \right\|_{\mathfrak{X}} = o\left(h^{\frac{1}{p}}\right)$$

as $h \to 0^+$ for μ -a.e. t.

(2) If $p < q_0$, then there is an $f \in \mathcal{P}_1(\mathfrak{X})$ such that

$$\left\| \mathcal{P} - \int_{t}^{t+h} f \, d\mu \right\|_{\mathfrak{X}} \geq h^{\frac{1}{p}}$$

for all $t \in [0, 1]$.

Corollary 4. For an infinite-dimensional Banach space \mathfrak{X} , the following are equivalent.

- (1) \mathfrak{X} fails cotype.
- (2) For each $\psi \in \Psi_{\infty}$, there exists $f \in \mathcal{P}_1(\mathfrak{X})$ such that

$$\left\| \mathcal{P} - \int_{I} f \, d\mu \right\|_{\mathfrak{X}} \geq \psi \left(\mu \left(I \right) \right)$$

for each interval I contained in [0, 1].

Remark. Note that Corollary 4 proves the existence of a *reflexive* Banach space for which the Pettis integral has essentially no kind of differentiability property whatsoever.

Theorem 1 can be reformulated by considering the indefinite Pettis integral

$$g(t) = \mathcal{P} - \int_0^t f(\omega) \, d\mu(\omega) \; ,$$

and then expressing (\ddagger) as

$$\|g(s) - g(t)\| \ge \psi(|s - t|) . \tag{\ddagger}$$

Corollary 4 shows that if g is the indefinite integral of a Pettis-integrable function taking values in a space failing cotype, then there are (essentially) no restrictions on ψ in (‡'). Since g(t) is always *continuous* [P1, Thm. 2.5], it is not unreasonable to inquire, in the case of an arbitrary infinite-dimensional Banach space, whether there are any restrictions on ψ which are attributable merely to the continuity of g as opposed to the additional fact that g is an indefinite Pettis integral. Our final result answers this question with a resounding no.

Theorem 5. Let \mathfrak{X} be an infinite-dimensional Banach space and let $\psi \in \Psi_{\infty}$. Then there exists a continuous function $f: \Omega \to \mathfrak{X}$ such that

$$\|f(s) - f(t)\|_{\mathfrak{X}} \geq \psi(|s - t|)$$

for each s and t in Ω .

Remark. As Ralph Howard pointed out, Theorem 5 does not hold if \mathfrak{X} is finitedimensional. In fact, if f is a continuous function taking values in \mathbb{R}^n and satisfying the lower estimate given above, then an easy Hausdorff dimension argument (see e.g. [Kah]) shows that the function ψ must satisfy $\liminf_{t\to 0} \psi(t)t^{\epsilon-1/n} < \infty$ for every $\epsilon > 0$.

Proof. Find an increasing sequence $\{p_n\}_{n=0}^{\infty}$ of integers with $p_0 = 0$ such that $\sum_n \psi(2^{-p_n})$ is finite and fix K > 1. Keeping with the notations and ideas of Theorem 1, find a finite-dimensional decomposition $\{E_n\}$ in \mathfrak{X} and, to avoid excessive superscripts, let $J_k^n = I_k^{p_n}$ and likewise $\tilde{e}_k^n = e_k^{p_n}$ and $\tilde{u}_k^n = u_k^{p_n}$ for each admissible n and k.

Consider the continuous piecewise-linear function

$$f_{n}(\omega) = \sum_{k=1}^{2^{p_{n}}} 2^{p_{n}} \left[\left(\frac{k}{2^{p_{n}}} - \omega \right) \tilde{e}_{k}^{n} + \left(\omega - \frac{k-1}{2^{p_{n}}} \right) \tilde{e}_{k+1}^{n} \right] 1_{J_{k}^{n}}(\omega).$$

If $\omega \in J_k^n$, then $f_n(\omega)$ is of the form $\alpha \ \tilde{e}_k^n + (1-\alpha) \ \tilde{e}_{k+1}^n$ for some $0 \leq \alpha \leq 1$. Thus the norm of $f_n(\omega)$ is at most 2 for each $\omega \in \Omega$. Define $f: \Omega \to \mathfrak{X}$ by

$$f(\omega) = \sum_{n=2}^{\infty} c_n f_n(\omega) ,$$

where

$$c_{n+2} = 2 K \psi (2^{-p_n})$$
.

Since each f_n is uniformly continuous and

$$\left\|\sum_{n=p}^{q} c_n f_n(\omega)\right\| \leq 2 \sum_{n=p}^{q} c_n,$$

the choice of $\{p_n\}$ guarantees not only that $f(\omega)$ is indeed in \mathfrak{X} for each $\omega \in \Omega$ but also that f is uniformly continuous.

Fix $s, t \in \Omega$. Find p_n such that $2^{-p_n} < |s-t| \leq 2^{-p_{n-1}}$. Since s and t are in neither the same nor adjacent intervals of the partition $\{J_k^{n+1}\}_k$ of Ω , for appropriate distinct integers k-1, k, j, and j+1,

$$f_{n+1}(s) = \alpha \tilde{e}_{k-1}^{n+1} + (1-\alpha) \tilde{e}_{k}^{n+1}$$

$$f_{n+1}(t) = \beta \tilde{e}_{j}^{n+1} + (1-\beta) \tilde{e}_{j+1}^{n+1}$$

for some $0 \leq \alpha, \beta \leq 1$ and so

$$\|f_{n+1}(s) - f_{n+1}(t)\|_{\mathfrak{X}} \geq \|\alpha \ \tilde{u}_{k-1}^{n+1} + (1-\alpha) \ \tilde{u}_{k}^{n+1} - \beta \ \tilde{u}_{j}^{n+1} - (1-\beta) \ \tilde{u}_{j+1}^{n+1}\|_{\ell_{2}}$$
$$= \left[(\alpha)^{2} + (1-\alpha)^{2} + (\beta)^{2} + (1-\beta)^{2} \right]^{\frac{1}{2}}$$
$$\geq 1.$$

Let P be the natural projection from $\sum \oplus E_j$ onto $E_{p_{n+1}}$. Since ψ is increasing, we see that

$$2 K \| f(s) - f(t) \|_{\mathfrak{X}} \geq \| P(f(s) - f(t)) \|_{\mathfrak{X}}$$

= $c_{n+1} \| (f_{n+1}(s) - f_{n+1}(t)) \|_{\mathfrak{X}}$
 $\geq c_{n+1}$
= $2 K \psi (2^{-p_{n-1}})$
 $\geq 2 K \psi (|s-t|)$.

Thus f satisfies the statement of the theorem.

Remark. Theorem 5 really only uses the existence of a basic sequence inside \mathfrak{X} , while Theorem 1 makes full use of Dvoretzky's Theorem.

We close with a few observations. [DG, Ex. 3] constructs, for each fixed infinitedimensional Banach space \mathfrak{X} , a strongly-measurable \mathfrak{X} -valued function that is Pettis integrable but not Bochner-Lebesgue integrable; however, that function *is* Bochner-Lebesgue integrable over *any* interval not containing 0. Theorem 1 pushes this construction a bit further to give a Pettis integrable function that *is not* Bochner-Lebesgue integrable over *any* interval.

Consider the collection $K(\mu, \mathfrak{X})$ of the μ -continuous countably additive \mathfrak{X} -valued vector measure with relatively compact range. If f is in $\mathcal{P}_1(\mathfrak{X})$, then the corresponding measure $\nu_f(E) = \mathcal{P} - \int_E f d\mu$ is in $K(\mu, \mathfrak{X})$ [cf. DU, Thm. VIII.1.5]. The measure $\nu_f(E)$ is of bounded semi-variation; furthermore, $\nu_f(E)$ is of bounded variation if and only if f is in $L_1(\mathfrak{X})$ [cf. DU, Thm. II.2.4, Cor. 2.5]. Theorem 1 (consider the measure ν_f corresponding to f as above) and [JK, Theorem 2] both construct, for each fixed infinite-dimensional Banach space \mathfrak{X} , a vector measure in $K(\mu, \mathfrak{X})$ that is of bounded semi-variation but of infinite variation on every interval. The measure in [JK, Theorem 2] cannot arise, however, as an indefinite Pettis integral, while the measure from Theorem 1 is (of course) precisely an indefinite Pettis integral.

References

- [B]. S. Bochner, Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind, Fund. Math. 20 (1933), 262–276.
- [DU]. J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R.I., 1977.
- [DG]. S.J. Dilworth and Maria Girardi, Bochner vs. Pettis norms: examples and results, Banach Spaces (Bor-Luh Lin and William B. Johnson, ed.), Contemp. Math., vol. 144, American Mathematical Society, Providence, Rhode Island, 1993, pp. 69-80.
- [D]. A. Dvoretzky, Some results on convex bodies and Banach spaces, Proceedings of the International Symposium on Linear spaces, Jerusalem, 1961, pp. 123-160.
- [JK]. Liliana Janicka and Nigel J. Kalton, Vector Measures of Infinite Variation, Bull. Polish Acad. Sci. Math. XXV (1977), no. 3, 239–241.
- [K]. V.M. Kadets, Non-Differentiable Indefinite Pettis Integrals, Quaestiones Math. (to appear).
- [Kah]. Jean-Pierre Kahane, Some random series of functions, Cambridge Stud. Adv. Math., vol. 5, Cambridge Univ. Press, Cambridge-New York, 1985.
- [LT]. J. Lindenstrauss and L.Tzafriri, Classical Banach Spaces I, Springer-Verlag, New York-Berlin, 1977.
- [MP]. B. Maurey and G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés geométriques des espace de Banach, Studia Math. 58 (1976), 45-90.
 - [M]. M. Evans Munroe, A note on weak differentiability of Pettis integrals, Bull. Amer. Math. Soc. 52 (1946), 167–174.
- [P1]. B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277– 304.
- [P2]. B.J. Pettis, Differentiation in Banach spaces, Duke Math. J. 5 (1939), 254-269.
- [Ph]. R.S. Phillips, Integration in a convex linear topological space, Trans. Amer. Math. Soc. 47 (1940), 114–145.
- [P]. Gilles Pisier, Factorization of Operators Through $L_{p\infty}$ or L_{p1} and Non-Commutative Generalizations, Math. Ann. 276 (1986), 105–136.
- [R]. Walter Rudin, Functional Analysis, McGraw-Hill, Inc., New York, 1991.
- [T]. G. Erik F. Thomas, Totally summable functions with values in locally convex spaces, Measure Theory (A. Bellow and D. Kölzow, eds.), Lecture Notes in Math., vol. 541, Springer-Verlag, New York-Berlin, 1976, pp. 115-131.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208, U.S.A.

CURRENT ADDRESS: DEPARTMENT OF MATHEMATICS, BOWLING GREEN STATE UNIVERSITY, BOWLING GREEN, OHIO 43403, U.S.A.

E-mail address: dilworth@math.scarolina.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208, U.S.A.

E-mail address: girardi@math.scarolina.edu