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Abstract. Several results are established about Banach spaces X which can be

renormed to have the uniform Kadec-Klee property. It is proved that all such spaces

have the complete continuity property. We show that the renorming property can be

lifted from X to the Lebesgue-Bochner space L2(X) if and only if X is super-re
exive.

A basis characterization of the renorming property for dual Banach spaces is given.

1. INTRODUCTION

A sequence fxng in a Banach space X is separated (respectively, "-separated) if

inffkxn � xm k : n 6= mg > 0 (respectively, � "). Recall that X has the Kadec-Klee

property if every separated weakly convergent sequence fxng in the closed unit ball

of X converges to an element of norm strictly less than one. We say that X has the

uniform Kadec-Klee (UKK) property (or that X has a UKK norm) if for each " > 0

there exists � > 0 such that every "-separated weakly convergent sequence fxng in

the closed unit ball of X converges to an element of norm less than 1��. This notion

was introduced by Hu� in [15]. Clearly, if X has the Schur property (that is, if weak

and norm sequential convergence are the same) or if X is uniformly convex then

X has the UKK property. While uniformly convex spaces are necessarily re
exive,

it turns out that many classical non-re
exive spaces, e.g. the Hardy spaces H1 of

analytic functions on the ball or on the polydisk [1], the Lorentz spaces Lp;1(�)

[5,9], and the trace class C1 [13,25], all have UKK norms.

The question of characterizing the Banach spaces which are isomorphic to uni-

formly convex spaces has been studied intensively. This paper takes up the related

question raised in [15]: under what conditions does a Banach space possess an
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equivalent norm with the UKK property? We call this property UKK-ability, and

a Banach space having this property is said to be UKK-able.

Recall that a Banach space X has the complete continuity property (CCP) if

every bounded linear operator from L1 into X is completely continuous (i.e., maps

weakly convergent sequences to norm convergent sequences). The CCP follows from

the Radon-Nikod�ym property (RNP) because representable operators from L1 into

X are completely continuous. While there are examples of spaces [8] with the Schur

(and hence the UKK) property but not the RNP, it is proved in Section 2 below

that UKK-ability implies the CCP. In Section 3 it is proved that the Lebesgue-

Bochner spaces Lp(X) (p > 1) are UKK-able if and only if X is super-re
exive (this

is the isomorphic version of a theorem of Partington [28]), from which the existence

of a B-convex space which fails to be UKK-able is deduced. In the fourth section

UKK-ability is discussed for Banach spaces with a basis (or a �nite-dimensional

decomposition). Using ideas of Prus [31] a basis characterization for the weak-star

version of UKK-ability is given for dual Banach spaces. It is also proved that the

space constructed by Gowers [10] which does not contain c0, `1, or any in�nite-

dimensional re
exive subspace is UKK-able.

We wish to mention that UKK renormings were recently considered by Lancien,

who earlier and independently proved Theorem 4 of this paper in his thesis [23].

Throughout the paper, X denotes an arbitrary Banach space, X� the dual space,

S(X) the unit sphere, and Ba(X) the closed unit ball of X. For any unexplained

terminology the reader is referred to [8] or [26].

Finally, we wish to thank Haskell Rosenthal for several enlightening conversations

about this subject matter during the conference on Banach space theory held in

Ascona in September, 1993.

2. UKK implies CCP

First we establish some notation. Let L1 denote the space of integrable functions

on [0; 1] with respect to Lebesgue measure �. Let

�
Ink = [k�1

2n
; k
2n

) : n = 0; 1; 2; : : : and k = 1; : : : ; 2n
	

be the usual dyadic splitting of [0; 1]. The Haar functions fhjgj�1 are de�ned by

h1 = 1I01 and h2n+k = 2n (1In+1
2k�1

� 1In+1
2k

)

for n = 0; 1; 2; : : : and k = 1; : : : ; 2n. The Rademacher functions frngn�0 are

de�ned by r0 = h1 and rn = 21�n
P2n�1

k=1 h2n�1+k for n � 1.
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Theorem 1. A UKK-able Banach space enjoys the CCP.

Proof. Let X be a Banach space failing the CCP. By the main result of [11] there is

a norm one operator T from L1 into X along with an " > 0 and a sequence fx�ngn�0

from S(X�) such that the following conditions hold:

(a) x�n (Th2n+k) > " for each n � 0 and k = 1; : : : 2n;

(b) the natural blocking Xn � span(Thj : 2n�1 < j � 2n) for n � 0 of the

images of the Haar functions forms a �nite-dimensional decomposition with

constant at most 2.

Fix � > 0. Since

k T k = sup

�
T 1In

k

�(Ink )
: n = 0; 1; 2; : : : and k = 1; : : : ; 2n

�
;

there is a dyadic interval A = In�k� such that 1� � <



T � 1A

�(A)

�


. We now restrict

attention to this interval A.

Consider the sequence fxngn>n� from X given by

xn = T

�
(1 + rn)1A

�(A)

�
:

Clearly, the sequence fxng is contained in Ba(X) and converges weakly to T
�

1A
�(A)

�
.

Note that if n > n� then T (rn 1A) is in Xn. Thus condition (b) gives that for

m > n > n�,

kxn � xm k





T
�

(rn � rm)1A

�(A)

�



 1

2





T
�
rn 1A

�(A)

�



 :

For n > n�, each rn1A has the form

rn1A = 21�n
X
j2J

h2n�1+j

for an appropriate set J of cardinality 2n�1�(A). So condition (a) gives that

k T (rn1A) k 21�n
X
j2J

"

Thus the sequence fxngn>n� is "
2
-separated. Since � > 0 is arbitrary, it follows that

X does not have the UKK property. But since the CCP is an isomorphic property,

in fact it follows that X is not UKK-able. �
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Remark. Recall that a Banach space X has the point of continuity property (PCP)

if every bounded weakly-closed set A � X has non-empty relatively weakly-open

subsets of arbitrarily small diameter. Since the PCP is \separably determined"

(see [2] or [32]), whenever X fails the PCP there is a separable bounded weakly-

closed set A and an � > 0 such that every a 2 A belongs to the weak closure of

A n fx : kx � ak < 2�g. If, in addition, X does not contain `1, then by [27] and

[3] the weak topology on A is sequentially determined, and so every a 2 A is the

weak-limit of a sequence fxng � A n fx : kx � ak < 2�g. Clearly, fxng contains a

subsequence fxnkg which is �-separated. Arguing now as in Theorem 1, it follows

that X is not UKK-able. Thus we have proved the following result.

Proposition 2. If X is UKK-able and does not contain `1 then X has the PCP.

We thank Haskell Rosenthal for showing us this result and its proof. The

Bourgain-Rosenthal space [4] has the Schur property and fails the PCP (see [33]),

and so the requirement in Proposition 2 that X does not contain `1 cannot be

eliminated.

As a further application of the result from [11], we give a characterization of the

CCP for subspaces of Banach spaces with an unconditional basis: in this case the

failure of the CCP is equivalent to isomorphic containment of c0. Since L1(0; 1) fails

the CCP, this fact may be regarded as an extension of the theorem of Pe lczy�nski [29]

saying that L1(0; 1) does not embed into a space with an unconditional basis. The

result may also be obtained from a theorem of Wessel [35], although his methods

are somewhat di�erent. In fact, a stronger result is known: James [19, Theorem

4.5] has proved the same result for the PCP. He has also proved that there is no

corresponding result for the RNP by constructing a Banach space X, which is a

subspace of a space with an unconditional basis, such that X fails the RNP and X

does not contain c0 [20].

Theorem 3. Suppose that X embeds isomorphically into a Banach space with an

unconditional basis. Then either X contains c0 or X has the CCP.

Proof. Suppose that X fails the CCP and embeds into a space Y with an uncon-

ditional basis fyng with basis constant K. As in the proof of Theorem 1, there is

a norm one operator T : L1 ! X along with an " > 0 and a sequence fx�ng from

S(X�) satisfying conditions (a) and (b) above. Fix a sequence f
ngn�1 such that

0 < 
n < "(4K 2n)�1.

First we construct, by induction on n, two increasing sequences fkngn�1 and

fpngn�1 of positive integers such that for the sequence ffngn�1 in L1 de�ned by

fn = (f0 + : : : + fn�1) rkn
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(where f0 = r0) and for the blocking fYngn�1 of Y de�ned by

Yn = spfyj : pn�1 � j < png

(where p0 = 1) the following conditions hold:

(1) kTfn k > ";

(2) k f0 + : : : + fn k < 2;

(3) d(Tfn;Yn) < 
n.

Put k1 = 1 so that f1 = r1. Note that condition (a) gives (1), while (2) is clear.

Select p1 such that d(Tf1;Y1) < 
1.

For m � 1, assume that fkng
m
n=1 and fpng

m
n=1 have been chosen so that ffng

m
n=1

satisfy (1), (2), and (3). As k tends to in�nity, we have the following:

(i) k (f0 + : : : + fm) + (f0 + : : : + fm)rk kL1 ! k f0 + : : : + fm kL1
;

(ii) (f0 + : : : + fm)rk ! 0 weakly in L1 .

So there exists km+1 > km such that for fm+1 = (f0 + : : : + fm)rkm+1
the

following hold:

(iii) k f0 + : : : + fm + fm+1 kL1
< 2;

(iv) Tfm+1 is within 1
2

m+1 of some element from spfyj : pm � j <1g.

Now choose pm+1 such that d(Tfm+1;Ym+1) < 
m+1.

To verify condition (1), note that fm+1 has the form

fm+1 = f0

2
4 Y
j<m+1

(1 + rkj )

3
5 rm+1 :

The support of
Q

j<m+1(1 + rkj ) has measure 2�m and is the union of 2�m+km

dyadic intervals from fIkmi : 1 � i � 2kmg of the kthm -level. Thus, for some subset

J of integers with cardinality 2�m�1+km+1 , we have

fm+1 = 2m 1A rkm+1
= 2m

X
j2J

21�km+1 hj+2�1+km+1 :

Condition (a) gives that

kTfm+1 k > 2m 2�m�1+km+1 21�km+1 " = " :

This completes the induction. Let xn = Tfn. Condition (3) guarantees that fxng

is equivalent to some (unconditional) block basic sequence of fyng. Condition (2)

guarantees that kx1 + : : : + xn k � 3. Condition (1) just says that kxn k > ".

Thus, fxng is equivalent to the standard unit vector basis of c0. �
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3. UKK-ability of Lebesgue-Bochner spaces

In this section Lp(X) denotes the Lebesgue-Bochner space of strongly-measurable

X-valued functions de�ned on a separable non-atomic probability space, equipped

with the Lp-norm. In [28] Partington proved that if L2(X) is UKK (with its usual

norm) thenX is uniformly convex. The isomorphic version of this result was recently

proved by Lancien [23,24]. In this section we shall give a di�erent proof of Lancien's

result. In order to prove the theorem we require the following necessary condition

for X to be UKK-able, which is due to Hu� [15].

Fact. For � > 0, let B
(0)
� = Ba(X), and for n � 1 de�ne B

(n)
� (X) inductively thus:

B(n)
� (X) = fx 2 X : x = w � limfxkg; xk 2 B(n�1)

� ; kxj � xkk � � (j 6= k)g:

Suppose that X admits an equivalent UKK norm. Then, for each � > 0, B
(n)
� (X) = ;

for all su�ciently large n.

Theorem 4. Let 1 < p <1. Then Lp(X) admits an equivalent UKK norm if and

only if X is super-re
exive.

Proof. Suppose that X is not super-re
exive. Then, by a result of James [16], there

exists � > 0 such that for every N � 1 there is a dyadic martingale di�erence

sequence fdkg
N
k=0, with d0 = 0, adapted to the standard �ltration of f0; 1gN ,

such that the corresponding martingale takes its values in Ba(X) and such that

kdk(!)k � � for all k � 1 and for all ! 2 f0; 1gN . For a �xed integer N � 1, let

�N = [Nk=1N
k . We shall consider random variables de�ned on the Cantor group

f0; 1g�N with its associated Haar probability measure �. For each 1 � k � N and

for each (n1; n2; : : : ; nk) 2 Nk , we de�ne a random variable D(n1;:::;nk) thus:

D(n1;:::;nk)(!) = dk((!(n1); !(n1;n2); : : : ; !(n1;:::;nk); 0; : : : ; 0))

for each ! 2 f0; 1g�N . Observe that for each N�tuple (n1; n2; : : : ; nN ), the ran-

dom variables D(n1); D(n1;n2); : : : D(n1;:::;nN) have the same joint distribution as

d1; d2; : : : ; dN . Fix n1; : : : ; nN�1. For k � 1, let

Xk = (D(n1) + � � � + D(n1;:::;nN�1)) +D(n1;n2;:::;nN�1;k):

It is easily seen that fD(n1;:::;nN�1;k)g
1

k=1 is weakly null in Lp(X), and so fXkg

converges weakly to D(n1) + � � � + D(n1;:::;nN�1). Moreover, kXk(!)k � 1 for all !,

and so Xk 2 Ba(Lp(X)). For j 6= k, we have

�fXj = Xkg = �fkXj �Xkk � 2�g =
1

2
;
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and so kXj �XkkLp(X) > �. Hence B
(1)
� (Lp(X)) contains every random variable of

the form D(n1) + � � � + D(n1;:::;nN�1). Repeating this argument a total of N times

we see that B
(N)
� (Lp(X)) contains the zero random variable. Since this holds for

every N � 1, it follows from the Fact that Lp(X) does not admit a UKK norm.

Conversely, suppose that X is super-re
exive. Then Lp(X) is also super-re
exive,

and so Lp(X) admits an equivalent uniformly convex (and hence UKK) norm. �

Corollary 5. There exists a uniformly non-octahedral (in particular, a B-convex)

space which does not admit an equivalent UKK norm.

Proof. Let X be the non-re
exive uniformly non-octahedral space constructed by

James [17]. It is well-known that the property of being uniformly non-octahedral

lifts from X to L2(X). On the other hand, since X is non-re
exive, it follows from

Theorem 4 that L2(X) does not admit an equivalent UKK norm. �

Remarks. 1. Similarly, if X is non-re
exive and of type two, [18], then L2(X) is of

type two but not UKK-able.

2. In [14] it is proved that if L2(X) has the CPCP (which is the PCP for convex

sets) then X has the RNP. Corollary 5 can also be proved by combining this theorem

with Proposition 2 above.

3. Since (
P
1

n=1

L
`n
1

)
2

has the UKK property [15] it follows that the UKK

property does not imply any non-trivial super-property. On the other hand, every

Banach space which is super-UKK-able is necessarily B-convex (since L1(0; 1) is

not UKK-able), and by Corollary 5 there exist Banach spaces which are B-convex

but not super-UKK-able. Clearly, every super-re
exive space is super-UKK-able,

and so one is led to pose the following question: is super-UKK-ability equivalent to

super-re
exivity? A positive answer to this question would follow from a positive

answer to the corresponding question for the super-CPCP, which was raised in [14].

4. UKK-ability for spaces with a basis

In [31] Prus characterizes re
exive UKK-able Banach spaces in terms of their

basic sequences. While some results in [31] rely heavily on the weak compactness

of the unit ball, using methods from [31] some partial information is obtained in

this section concerning UKK-ability of non-re
exive Banach spaces with a basis.

In particular, we prove that the space constructed by Gowers which is hereditarily

non-re
exive and contains no copy of c0 or `1 does admit an equivalent UKK norm.

First we recall some notation from [31]. Let feng be a basic sequence in a Banach

space X with coe�cient functional sequence fe�ng in X�. An element x 2 [en] �

spanfeng is said to be a block if supp(x) = fn : e�n(x) 6= 0g is �nite. A family fXng

of �nite-dimensional subspaces of [en] is a blocking of feng provided there exists an
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increasing sequence of integers fnkg, n1 = 1, such that Xk = [ei]
nk+1�1
i=nk

for each

k. We say that the blocks y1; y2; : : : ; yn are disjoint (with respect to the blocking

fXkg) and write y1 < y2 < � � � < yn if

minfm : yi 2

mX
j=1

Xjg < maxfm : yi+1 2

1X
j=m

Xjg

for i = 1; 2; : : : n � 1. Finally, we say that, for 1 � p; q � 1, the blocking fXng

satis�es a (p; q)�estimate provided there exist positive constants c and C such that

c

 
nX
i=1

kyik
p

!1=p

�







nX
i=1

yi






 � C

 
nX
i=1

kyik
q

!1=q

for all disjoint blocks y1; y2; : : : yn. The following result is essentially due to Prus.

The reader is referred to [31, p.517] for the proof.

Theorem 6. Let X be a Banach space with a basis feng. If there exists a blocking

fXng of the basis which satis�es a (p; 1)�estimate for some p < 1 then X admits

an equivalent UKK norm.

In fact, the equivalent norm constructed on X in Theorem 6 makes the blocking

fXngmonotone and boundedly complete; and so, under this renorming X is isometric

to the dual space of Y = [e�n] � X�. Moreover, X has the weak-star UKK property

with respect to its predual Y. (The weak-star UKK is in general stronger than

the UKK property: it is de�ned in the obvious way by considering all �-separated

weak-star convergent sequences.) Thus, in looking for a converse to Theorem 6, it

is appropriate to consider dual Banach spaces with the weak-star UKK property.

To that end, say that a basis feng of a Banach space X is weakly nearly uniformly

smooth (WNUS) if there exists c > 0 such that for every normalized block basic

sequence fxng there exists k > 1 such that kx1 + xkk < 2 � c. We shall use the

following result, which is again essentially due to Prus. The reader is referred to

[31, pp.512-513] for the proof.

Theorem 7. Let feng be a WNUS basis for a Banach space X. Then feng has a

blocking fXng which satis�es an (1; q)�estimate for some q > 1.

We can now prove the converse of Theorem 6.

Theorem 8. Suppose that X� has a basis and that X�, with its usual dual norm,

has the weak-star UKK property. Then X� has a basis which admits a blocking

satisfying a (p; 1)�estimate for some p <1.

Proof. By [21] we may suppose that X has a shrinking basis, so that fe�ng is a basis

for X�. We shall show that feng has a blocking which satis�es an (1; q)�estimate
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for some q > 1, whence by a duality argument [30] the basis fe�ng of X� has a

blocking which satis�es a (p; 1)� estimate, where 1
p

+ 1
q

= 1. By Theorem 7, it

su�ces to prove that feng is WNUS. Choose � > 0 corresponding to � = 1
4

in the

de�nition of the weak-star UKK property; clearly, we may assume that � < 1
4
. Let

fxkg be a normalized block basis with respect to feng. Select x�k 2 Ba(X�) such

that x�k(x1+xk) = kx1+xkk. By passing to a subsequence and using the weak-star

sequential compactness of Ba(X�) we may assume that fx�kg converges weak-star to

x� 2 Ba(X�). Hence there exists k0 such that j(x�k � x�)(x1)j < �=2 for all k > k0.

The proof now divides into two cases.

Case 1. There exists k > k0 such that jx�(xk)j < �=2 and kx�k � x�k < 1
2
. Then

kx1 + xkk = x�k(x1 + xk)

= x�(x1 + xk) + (x�k � x�)(x1 + xk)

� jx�(x1)j+ jx�(xk)j+ j(x�k � x�)(x1)j+ kx�k � x�k

< 1 +
�

2
+
�

2
+

1

2
�

7

4
:

Case 2. kx�k � x�k � 1
2

for all k > k0. It follows from the weak-star lower semi-

continuity of the norm and from the weak-star convergence of fx�kg to x� that fx�kg

has a subsequence which is 1
4
-separated. Hence, by the weak-star UKK property,

kx�k < 1� �. So, provided k > k0, we have

kx1 + xkk = x�k(x1 + xk)

� jx�(x1)j+ j(x�k � x�)(x1)j+ jx�k(xk)j

� (1� �) +
�

2
+ 1

� 2�
�

2
:

So in both cases we have shown that X is WNUS. �

Remark. With only straightforward modi�cations to the proofs, Theorems 6, 7

and 8 remain valid if \basis" is replaced by \�nite-dimensional decomposition"

throughout.

Next we show that the space discovered by Gowers [10], which contains no copy

of c0, `1, or any in�nite-dimensional re
exive Banach space, admits a UKK norm.

To see this, we require the following criterion for a basis to admit a (p; 1)�estimate

(cf. [22]).
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Proposition 9. Let X be a Banach space with a basis feng. Suppose that there

exists 0 < c < 2 such that ckx + yk � kxk + kyk for all disjoint blocks x; y 2 X.

Then feng satis�es a (p; 1)�estimate for some p <1.

Proof. Consider the basic sequence fe�ng in X�. First we show that if x�; y� are

disjoint blocks in Ba([e�n]), then kx� + y�k � c. Indeed, to derive a contradiction,

suppose that there exist such blocks with kx� + y�k > c. We may suppose that

supp(x�)� n < supp(y�). Select z 2 Ba(X) with (x�+ y�)(z) > c. Write z = x+ y,

where supp(x)� n < supp(y). Then

c < (x� + y�)(z)

= x�(x) + y�(y)

� kxk + kyk

� ckx + yk

� c;

which is a contradiction. By an argument of Gurarii and Gurarii [12] (see e.g. [7])

it now follows that fe�ng satis�es an (1; q)�estimate for some q > 1, and hence by

duality that feng satis�es a (p; 1)�estimate for some p <1. �

Corollary 10. The space constructed by Gowers (without c0, `1, or a re
exive

subspace) admits a UKK norm.

Proof. Let f(x) =
p

log2(x+ 1). From the de�nition of the norm [10] it is clear

that for disjoint blocks x1; x2; : : : ; xn with respect to the basis feng of the space

one has 





nX
i=1

xi






 � 1

f(n)

nX
i=1

kxik:

In particular, if x1 < x2, then

ckx1 + x2k � kx1k+ kx2k

for c =
p

log2 3 < 2. So by Proposition 9 feng satis�es a (p; 1)�estimate for some

p <1, whence by Theorem 6 the space admits a UKK norm. �

Remarks. 1. It can be shown (see e.g. [6]) that without passing to a blocking the

basis of the Gowers space satis�es a (p; 1)�estimate for every p > 1.

2. The original Tsirelson space [34] is re
exive and has the property that `n
1

is

representable on blocks in every in�nite-dimensional subspace. So, by the results

of [30], no in�nite-dimensional subspace is UKK-able.
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