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ABSTRACT. A Banach space X has the complete continuity property (CCP) if each
bounded linear operator from Lj into X is completely continuous (i.e., maps weakly
convergent sequences to norm convergent sequences). The main theorem shows that a
Banach space failing the CCP has a subspace with a finite dimensional decomposition
which fails the CCP. If furthermore the space has some nice local structure (such as
fails cotype or is a lattice), then the decomposition may be strengthened to a bases.

1. INTRODUCTION

Given a property of Banach spaces which is hereditary, it is natural to ask
whether a Banach space has the property if every subspace with a basis (or with a
finite dimensional decomposition) has the property. The motivation for such ques-
tions is of course that it is much easier to deal with Banach spaces which have a
basis (or at least a finite dimensional decomposition) than with general spaces. In
this note we consider these questions for the complete continuity property (CCP),
which means that each bounded linear operator from [ into the space is com-
pletely continuous (i.e., carries weakly convergent sequences into norm convergent
sequences).

The CCP is closely connected with the Radon-Nikodym property (RNP). Since
a representable operator is completely continuous, the RNP implies the CCP; how-
ever, the Bourgain-Rosenthal space [BR] has the CCP but not the RNP. Bourgain
[B1] showed that a space failing the RNP has a subspace with a finite dimensional
decomposition which fails the RNP. Wessel [W] showed that a space failing the CCP
has a subspace with a basis which fails the RNP. It is open whether a space has the
RNP (respectively, CCP) if every subspace with a basis has the RNP (respectively,
CCP).

Our main theorem shows that if X fails the CCP, then there is an operator
T: L; — X that behaves like the identity operator I: Ly — L; on the Haar func-
tions {h;}. Specifically, there is a sequence {z } in the unit ball of X* such that z},
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keeps the image of each Haar function along the nti-level large (i.e., #* (Than 1 1) >
d > 0 ) and the natural blocking {sp(Thonir: k = 1,...,2")}, of the images of
the Haar functions is a finite dimensional decomposition for some subspace Xj.
Note that Xy fails the CCP since T is not completely continuous (7' keeps the
Rachemacher functions larger than ¢ in norm). Thus a space failing the CCP has
a subspace with a finite dimensional decomposition which fails the CCP. In the
language of Banach space geometry, the theorem says that in any Banach space
which fails the CCP grows a separated d-tree with a difference sequence naturally
blocking into a finite dimensional decomposition. If furthermore the space has some
nice local structure (such as fails cotype or is a lattice), then modifications produce
a separated d-tree growing inside a subspace with a basis.

Throughout this paper, X denotes an arbitrary Banach space, X* the dual space
of X, and S(X) the unit sphere of X. The triple (2, X, u) refers to the Lebesgue
measure space on [0,1], ¥ to the sets in ¥ with positive measure, and L; to
Li(Q,%, ). All notation and terminology, not otherwise explained, are as in [DU].

The authors are grateful to Michel Talagrand and Peter Casazza for helpful
discussions.

2. OPERATOR VIEW-POINT

A system A= {A} € ¥:n=0,1,2,... and k =1,... ,2"} is a dyadic splitting
of A} € ¥t if each A} is partitioned into the two sets Ag,j'_ll and Agljl of equal mea-
sure for each admissible n and k . Thus the collection m,, = {AZ: k=1,... ,2"} of
sets along the n *B-level partition A9 with 7,41 refining 7, and p(A?7) = 27" u(A?).
To a dyadic splitting corresponds a (normalized) Haar system {h;};>1 where

n

- _1 = 2
=gy lay and hange = iy (Lygn = Lage)

forn=0,1,2,... and k=1,... ,2".

A set N in the unit sphere of the dual of a Banach space X is said to norm a
subspace X within 7 > 1 if for each « € X, thereis * € N such that ||z|| < 72*().
It is well known and easy to see that a sequence {X;} of subspaces of X forms a
finite dimensional decomposition with constant at most 7 provided that for each
n € N the space generated by {X1,... ,X,} can be normed by a set from S(X;,)
within 7,, > 1 where II7,, < 7.

Theorem 1. If the bounded linear operator T': Ly — X is not completely continu-
ous and {7, }n>0 15 a sequence of numbers larger than 1, then there exists

(A) a dyadic splitting A = {A}}

(B) a sequence {z} }n>o0 in S(X*)

(C) a finite set {y, ; Prin S(X*) for eachmn >0
such that for the Haar system {h;};>1 corresponding to A, for some 6 > 0, and
eachm >0

(1) xf (Thonir) >0 fork=1,...,2"
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(2) {yn i tizy norms sp(Thy: 1 < j <27) within 7,

(3) yn,Z(Th2n+k) =0 fork=1,...,2" andi=1,...,p,.
Note that if IIt,, is finite, then conditions (2) and (3) guarantee that the natural
blocking {sp(Th;: 2"~! < j < 2™)},>¢ forms a finite dimensional decomposition
with constant at most 1l7,.

The proof uses the following standard lemma which, for completeness, we shall
prove later.

Lemma 2. If A € % and {g;}"_, is a finite collection of L1 functions, then an
extreme point u of the set C = {f € Ly: |f| < 14 and [, fgidu = 0 fori =
L,...,n} has the form |u| = 14.

Proof of Theorem 1. Let T: L1 — X be a norm one operator that is not completely
continuous. Then there is a sequence {r;} in L; and a sequence {z}} in S(X*)
satisfying:

(@) [lrellp. <1

(b) r¢ converges to 0 weakly in L

(c) 46 < a} T ry for some § >0 .

Consider T*z} € Lo,. Since ||ri(T*x})||L.. is at most 1, by passing to a subsequence
we may assume that {r(7T*z})} converges to some function h in the weak-star
topology on Lo.. Since [ hdpu > 46 the set A} =[h > 46]is in £*. (Compare this
with [B2, proposition 5]).

We shall construct, by induction on the level n, a dyadic splitting of A} along
with the desired functional. Fix n > 0.

Suppose we are given a finite dyadic splitting {A7*: m = 0,... ,nand k =
1,...,2™} of AY up to n*h-level. This gives the corresponding Haar functions
{hj: 1 <j<2"} Foreachl <k < 2" we shall partition A} into 2 sets Ag,j'_ll and
AL of equal measure (thus finding hg.y%) and find 2} € S(X*) and a sequence
{yn or in S(X*) such that conditions (1), (2), and (3) hold.

Find a finite set {yy i}z, in S(X*) that norms sp(Th;: 1 < j < 2") within 7, .
Let

Cy =

{f€L1:|f|§1Az,/ fduannd/ (T™yy, ) fdp=0for 1 <i < pn}.
Az

n

Note that each C}' is a convex weakly compact subset of L.
Since {r.} tends weakly to 0, for large ¢ there is a small perturbation 7 of r; so
that 7;14» is in 7 for each k. To see this, put

F:sp({lAZ}U{(T”ynl)lAw k=1,...,2%andi=1,... ,pa}) C L1 .

Nowpickt =tsolargethatf0rk:1,...,2”andi:1,...,pn
fAnTt *x7)du > 20a,
\fgnfduk San|lf]| forall fin F
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where a,, = 27" p(A9) = u(A7). Condition (d) follows from the definition of A
and the weak-star convergence of {r:(T"z})} to h while condition (e) follows from
(b) and the fact that F' is finite dimensional.

Thus the L..-distance from r; to F+ = {g € Lo.: fQ fgdu =0 for each f € F}

b a,

is at most . So there is 7, € F+ such that ||F; — || is less than da,, and, as
with 7, is of Loo-norm at most 1. Clearly 74147 € CF for each k =1,... ,2™.

The functional Tz} € L attains its maximum on C} at an extreme point uj
of C7'. By the lemma, uj} = 1,041 — 1A;:1 for 2 disjoint sets Ag‘,j'_ll and A;‘,j'l

2k—1
whose union is Aj;. Furthermore, Ag,j'_ll and Ag,j' I are of equal measure since

IAZ up dp = 0.
Condition (3) holds since for i =1,... ,p, and k =1,... ,2"

ViasTharg) = o7 [ (g du=o0.

i
Condition (1) follows from the observations that
2y, (Thengr) = ot (T"af Ju > ot (T7xf )(Filay)
and
(T )(Felag) = (T7ag, ) (relag)| < [[Fe = rel[r, <0 an
and

T*z¥ Vrilan) > 20a, . [ ]
(T"xy )(relap) 2 26a,

Proof of Lemma 2. Fix a function f of C such that |f| # 14. Find a positive a
and a subset B of A with positive measure such that |flg| <1 — a.

Let ¥ = BN Y. Consider the measures \;: ¥ — R given by \;(E) = [z gi dp.
Define the measure X\: & — R*t1 by

AE) = (A(E), - s An(E), u(E))

Liapounoff’s Convexity Theorem gives a subset B; of B satisfying

A(B1) = 3A(B) + 5A(0). Set B, = B\ B;. Note that

Xi(Br) = Xi(B) = Ai(B2)  and  u(Bi) = zu(B) = u(B2)

1
2
forz=1,... ,n. Set

fi=f+a(lp, —1g,) and fo=f+a(lp, —18,) -

Clearly f; and f; arein C' and f = %fl + %fg Thus f is not an extreme point of
C. [ |
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3. GEOMETRIC VIEW-POINT

Consider a non-completely-continuous operator T': L; — X along with the corre-
sponding Haar system {h;} from Theorem 1. Let {If‘ = [kl K )}n , be the usual

27 1 2m
dyadic splitting of [0, 1] with corresponding Haar functions {Bj}jZL Consider the
map T =T o S where S: L1 — L is the isometry that takes ilj to h;. Theorem 1
gives that there is a sequence {z}, },,>0 in S(X*) and a subspace Xy of X such that
(1) x;(Ti12+k) > § for some § >0
(2) {sp(Th;: 2"~1 < j < 2™)},>0 is a finite dimensional decomposition of X,
with constant at most 1 4 7.

The next corollary follows from the observation that T is not completely continuous
and 17" L, C X,.

Corollary 3. A Banach space failing the CCP has a subspace with a finite dimen-
sional decomposition (with constant arbitrarily close to 1) that fails the CCP.

A treein X is a system of the form {2} :n=0,1,... ; k=1,...,2"} satisfying
n+1 n+1
n_ Top_1 T Ty
=y

Associated to a tree is its difference system {dj}j21 where d; = QL'(I) and

n+1 n+1
Lop—1 — Top

2

d271, _I_ k

There is a one-to-one correspondence between the bounded linear operators T' from
L, into X and bounded trees {z}} growing in X. This correspondence is realized
by T'(h;) = d;.

A tree is a §-Rademacher tree if || Zi:l donypl| > 2™6. A treeis a separated §-
treeif there exists a sequence {z}, },,>0 in S(X*) such that =, (danyr) > 9. Clearly,
a separated d-tree is also a J-Rademacher tree. The operator corresponding to a
0-Rademacher tree is not completely continuous since the image of the Rademacher
functions stay large in norm. Thus if a bounded §-Rademacher tree (or separated
d-tree) grows in X, then X fails the CCP.

In any Banach space failing the CCP, a bounded J-Rademacher tree grows (see
[G1] for a direct proof); in fact, even a bounded separated d-tree grows (see [G2]
for an indirect proof). The proof of Theorem 1 is a direct proof that if X fails CCP
then a bounded separated §-tree, with a difference sequence naturally blocking into
a finite dimensional decomposition, grows in X.

4. FROM DECOMPOSITIONS TO BASES

As previously mentioned, we do not know whether a space failing the CCP
necessarily contains a subspace with a basis which fails the CCP. However, if the
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space has some nice local properties, then the proof of Theorem 1 can be modified
to show this is so.

We now introduce some local properties. A Banach space is said to have the
(K, n)-local basis property if each of its n-dimensional subspaces has a finite dimen-
sional superspace which has a basis with basis constant at most K. A Banach space
is said to have the (x — K) — property provided that each of its finite codimen-
sional subspaces contains a finite codimensional subspace which has, for each n, the
(K, n)-local basis property. A Banach space is said to have the (x* —K) — property
provided that, for each n, each of its finite codimensional subspaces contains a fi-
nite codimensional subspace (depending on n) with the (K, n)-local basis property.
Clearly, the (x — K') — property implies the (x % —K ) — property, but Szarek’s spaces
[S] show that the properties are not equivalent. We do not know any example of a
space which fails the (x x —K) — property for all K.

Spaces failing cotype (i.e., containing 7 uniformly for all n), have the (x — K)-
property. In fact, if X fails cotype and Z is a finite codimensional subspace of
X, then for any finite dimensional subspace W of X there is a finite dimensional
subspace Y of Z such that W + Y has a basis with basis constant less than, say,
10. To see this, use the fact ([P], [JRZ]) that W is (1 4 €)-complemented in a finite
dimensional space which has a basis with basis constant less than 1 + ¢ and embed
the complement to W in that space into Z N +F, where F is a finite subset of X*
which (1 + €)-norms W. This is possible because finite codimensional subspaces of
X must contain ¢Z, uniformly for all n and hence [J] contain even (1 4 ¢)-isomorphs
of £ for all n.

Banach lattices also enjoy the (x — K) — property. By the above observation, we
need only consider lattices with cotype. Such a lattice X must be order continuous
since it contains no copy of c¢g. By a perturbation argument, it is enough to show
that if F' is a finite set of disjoint linear functionals, then F+ has the local basis
property with uniform constant. To see this, consider F' = {f1,..., fo}. Let X;
be the “support” of f;; that is, let X; be the complementary band to the band
{z € X :|f;||z| = 0}. Notice that the X,’s are disjoint since the f;’s are disjoint.
Thus, F+ is the disjoint sum of Y, Y7, ...,Y,,, where each Y; is a one codimensional
subspace of the band X; and Y is the intersection of the bands {z € X : | f;||z| = 0}.

Corollary 4. If a Banach space X fails the CCP and enjoys the (xx— K )—property,
then X has a subspace with a basis that fails the CCP.

To see this, it is enough by the argument for Corollary 3 to observe that when
X has the (x * —K) — property Theorem 1 can be modified by adding:

(D) finite dimensional subspaces {G,,}22, of X
changing (2) and (3) to:

(2") {yn.:}iz, norms sp(Up_yGy) within 7,

(3") Gny1 C L{yfb,z’ -
and adding:

(4) {Th;:2"' <j<2"} C @G,
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(5) G, has a basis with basis constant at most K.

To achieve these modifications, at the first stage in the proof of Theorem 1, let
Gy = sp(Thy). Then in the mductlve step in the proof, choose {y;: ;}i, so that
(2') holds and, by appealing to the (** —K) — property, enlarge the set to {y; ;}7",

where p,, > g, so that +{y* ,}! i Pr . has the (K, 2")-local basis property. Proceed as

before and then, after selectlng AZ+1 (thereby defining h; for j = 2" +1,...,2"*1)
choose a finite dimensional space G,41 such that {Th;: 2" < j < 2”"’1} CGpy1 C
L{yn o and G,41 has a basis with basis constant at most K. ]

In the last years, geometric properties such as the CCP have allowed a deeper
understanding of the RNP. T'wo such properties are the Point of Continuity property
(PCP) and the Convex Point of Continuity property (CPCP). We refer the reader
to [GGMS] for the definitions and a survey of these properties; here we merely recall
that the RNP implies the PCP, which implies the CPCP, which in turn implies the
CCP.

Relevant for this paper is Bourgain’s result [B3, prop. 5.4] that a space failing
the PCP has a subspace with a finite dimensional decomposition which fails the
PCP. Similar to the situation with the CCP, additional local structure on the space
can help to sharpen the decomposition to a basis.

Proposition 5. If a Banach space X fails the PCP and enjoys the (x — K) —
property, then X has a subspace with a basis which fails the PCP.

To see this, it is convenient for us to Rosenthal’s exposition of Bourgain’s result
[R, Remark, pg. 315]. In a space X failing the PCP, Rosenthal finds a “bad”
bounded subset U of X and § > 0 and then constructs by induction on n, for a
given sequence {7,} of numbers larger than one with finite product

(A) finite subsets {D,,}52, of U
(B) finite dimensional subspaces {F,}22; of X
(C) a finite set {a:* Pr in S(X*) for each n > 1

such that, for H,, = Sp( ;H)l 13

(1) D, C Dn—l—l

(2) D,C Fi+...+ F,

(3) =5, P norms sp(

(4) nt1 C J_H

(5) for every d € D,, and n— L neighborhood V of d, thereis ad' € D,,;1 NV
such that ||d — d'|| > é.

He then considers the set D = U;2;D,,. By construction, each relatively weakly
open neighborhood of D has diameter at least § and {Fn}nzl forms a finite dimen-
sional decomposition (with constant at most II7,) of a subspace which contains
D.

If X also enjoys the (x — K) — property, then Rosenthal’s construction can be

modified by adding:
(D) finite dimensional subspaces {G,,}22, of X

?_1F;) within 7,
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and changing (3) and (4) to:
(3") {fﬁ,z’ fr ) morms Sp(Ug?ZlGj) within 7,
(4) Gny1 C TH,

and adding:

(6) F,, C Gy,
(7) G, has a basis with constant at most K.

To accomplish this, at the first stage of his construction, let G; = F;. Then, in the
inductive step, when given D,,, {F;}7_;, {G;}}—,, and {z}, , }{~| satisfying (2), (3'),
and (6), appeal to the (x — K) — property to find {xj‘m}f;l with p,, > ¢, such that
+{z% ;}i~, has the (K,m)-local basis property for all m. Put H, = sp{z} }\=;.
Proceed as in Rosenthal’s argument to find the finite dimensional subspace F,,
of LH,,. The (¥ — K) — property then provides the desired G, 1. Clearly this is
sufficient. [ |

Bourgain [B3, thm. 5.7; B1, thm. 1] also showed that a space failing the RNP
has a subspace with a finite dimensional decomposition which fails the RNP. The
argument is split into two cases. In the first case, Bourgain shows that a space
failing not only the RNP but also the CPCP has a subspace with a finite dimensional
decomposition which fails the RNP. It immediately follows from the last proposition
that if such a space also enjoys the (x — K') — property, then it has a subspace with
a basts which fails the RNP. In the second case, Bourgain shows that a space which
fails the RNP but has the CPCP contains a subspace with a finite dimensional
decomposition which fails the RNP. His argument is rather delicate; the above
technique for passing from a finite dimensional decomposition to a basis seems not
to work.
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