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Abstract. A Banach space X has the complete continuity property (CCP) if each

bounded linear operator from L1 into X is completely continuous (i.e., maps weakly

convergent sequences to norm convergent sequences). The main theorem shows that a

Banach space failing the CCP has a subspace with a �nite dimensional decomposition

which fails the CCP. If furthermore the space has some nice local structure (such as

fails cotype or is a lattice), then the decomposition may be strengthened to a bases.

1. introduction

Given a property of Banach spaces which is hereditary, it is natural to ask

whether a Banach space has the property if every subspace with a basis (or with a

�nite dimensional decomposition) has the property. The motivation for such ques-

tions is of course that it is much easier to deal with Banach spaces which have a

basis (or at least a �nite dimensional decomposition) than with general spaces. In

this note we consider these questions for the complete continuity property (CCP),

which means that each bounded linear operator from L1 into the space is com-

pletely continuous (i.e., carries weakly convergent sequences into norm convergent

sequences).

The CCP is closely connected with the Radon-Nikod�ym property (RNP). Since

a representable operator is completely continuous, the RNP implies the CCP; how-

ever, the Bourgain-Rosenthal space [BR] has the CCP but not the RNP. Bourgain

[B1] showed that a space failing the RNP has a subspace with a �nite dimensional

decomposition which fails the RNP. Wessel [W] showed that a space failing the CCP

has a subspace with a basis which fails the RNP. It is open whether a space has the

RNP (respectively, CCP) if every subspace with a basis has the RNP (respectively,

CCP).

Our main theorem shows that if X fails the CCP, then there is an operator

T : L1 ! X that behaves like the identity operator I : L1 ! L1 on the Haar func-

tions fhjg. Speci�cally, there is a sequence fx
�
ng in the unit ball of X� such that x�n
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keeps the image of each Haar function along the nth-level large (i.e., x�n(Th2n+k) >

� > 0 ) and the natural blocking fsp(Th2n+k : k = 1; : : : ; 2n)gn of the images of

the Haar functions is a �nite dimensional decomposition for some subspace X0.

Note that X0 fails the CCP since T is not completely continuous (T keeps the

Rachemacher functions larger than � in norm). Thus a space failing the CCP has

a subspace with a �nite dimensional decomposition which fails the CCP. In the

language of Banach space geometry, the theorem says that in any Banach space

which fails the CCP grows a separated �-tree with a di�erence sequence naturally

blocking into a �nite dimensional decomposition. If furthermore the space has some

nice local structure (such as fails cotype or is a lattice), then modi�cations produce

a separated �-tree growing inside a subspace with a basis.

Throughout this paper, X denotes an arbitrary Banach space, X� the dual space

of X, and S(X) the unit sphere of X. The triple (
;�; �) refers to the Lebesgue

measure space on [0; 1], �+ to the sets in � with positive measure, and L1 to

L1(
;�; �). All notation and terminology, not otherwise explained, are as in [DU].

The authors are grateful to Michel Talagrand and Peter Casazza for helpful

discussions.

2. operator view-point

A system A = fAn
k 2 �: n = 0; 1; 2; : : : and k = 1; : : : ; 2ng is a dyadic splitting

of A0
1 2 �+ if each An

k is partitioned into the two sets A
n+1
2k�1 and A

n+1
2k of equal mea-

sure for each admissible n and k . Thus the collection �n = fAn
k : k = 1; : : : ; 2ng of

sets along the n th-level partition A0
1 with �n+1 re�ning �n and �(An

k ) = 2�n�(A0
1).

To a dyadic splitting corresponds a (normalized) Haar system fhjgj�1 where

h1 =
1

�(A0
1)
1A0

1
and h2n+k =

2n

�(A0
1)
(1An+1

2k�1

� 1An+1
2k

)

for n = 0; 1; 2; : : : and k = 1; : : : ; 2n.

A set N in the unit sphere of the dual of a Banach space X is said to norm a

subspace X0 within � > 1 if for each x 2 X0 there is x
� 2 N such that jjxjj � �x

�(x).

It is well known and easy to see that a sequence fXjg of subspaces of X forms a

�nite dimensional decomposition with constant at most � provided that for each

n 2 N the space generated by fX1; : : : ;Xng can be normed by a set from S(X?n+1)

within �n > 1 where ��n � � .

Theorem 1. If the bounded linear operator T : L1 ! X is not completely continu-

ous and f�ngn�0 is a sequence of numbers larger than 1, then there exists

(A) a dyadic splitting A = fAn
kg

(B) a sequence fx�tngn�0 in S(X�)

(C) a �nite set fy�n;ig
pn
i=1 in S(X�) for each n � 0

such that for the Haar system fhjgj�1 corresponding to A, for some � > 0, and

each n � 0

(1) x
�
tn
(Th2n+k) > � for k = 1; : : : ; 2n
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(2) fy�n;ig
pn
i=1 norms sp(Thj : 1 � j � 2n) within �n

(3) y
�
n;i(Th2n+k) = 0 for k = 1; : : : ; 2n and i = 1; : : : ; pn.

Note that if ��n is �nite, then conditions (2) and (3) guarantee that the natural

blocking fsp(Thj : 2
n�1

< j � 2n)gn�0 forms a �nite dimensional decomposition

with constant at most ��n.

The proof uses the following standard lemma which, for completeness, we shall

prove later.

Lemma 2. If A 2 �+ and fgig
n
i=1 is a �nite collection of L1 functions, then an

extreme point u of the set C � ff 2 L1 : jf j � 1A and
R
A
fgi d� = 0 for i =

1; : : : ; ng has the form juj = 1A.

Proof of Theorem 1. Let T : L1 ! X be a norm one operator that is not completely

continuous. Then there is a sequence frtg in L1 and a sequence fx�t g in S(X�)

satisfying:

(a) jjrtjjL
1

� 1

(b) rt converges to 0 weakly in L1

(c) 4� � x
�
t T rt for some � > 0 .

Consider T �x�t 2 L1. Since jjrt(T
�
x
�
t )jjL1 is at most 1, by passing to a subsequence

we may assume that frt(T
�
x
�
t )g converges to some function h in the weak-star

topology on L1. Since
R
h d� � 4� the set A0

1 � [h � 4�] is in �+. (Compare this

with [B2, proposition 5]).

We shall construct, by induction on the level n, a dyadic splitting of A0
1 along

with the desired functional. Fix n � 0.

Suppose we are given a �nite dyadic splitting fAm
k : m = 0; : : : ; n and k =

1; : : : ; 2mg of A0
1 up to n

th-level. This gives the corresponding Haar functions

fhj : 1 � j � 2ng. For each 1 � k � 2n, we shall partition An
k into 2 sets An+1

2k�1 and

A
n+1
2k of equal measure (thus �nding h2n+k) and �nd x

�
tn
2 S(X�) and a sequence

fy�n;ig
pn
i=1 in S(X�) such that conditions (1), (2), and (3) hold.

Find a �nite set fy�n;ig
pn
i=1 in S(X�) that norms sp(Thj : 1 � j � 2n) within �n .

Let

C
n
k �

ff 2 L1 : jf j � 1An
k
,

Z
An
k

f d� = 0 and

Z
An
k

(T �y�n;i)f d� = 0 for 1 � i � png:

Note that each C
n
k is a convex weakly compact subset of L1.

Since frtg tends weakly to 0, for large t there is a small perturbation ~rt of rt so

that ~rt1An
k
is in C

n
k for each k. To see this, put

F = sp
�
f1An

k
g [ f(T �y�n;i)1Ank : k = 1; : : : ; 2n and i = 1; : : : ; png

�
� L1 :

Now pick tn � t so large that for k = 1; : : : ; 2n and i = 1; : : : ; pn

(d)
R
An
k

rt(T
�
x
�
t ) d� � 2��n

(e)
��R


rtf d�

�� � �
3
�njjf jj for all f in F
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where �n = 2�n �(A0
1) � �(An

k). Condition (d) follows from the de�nition of A0
1

and the weak-star convergence of frt(T
�
x
�
t )g to h while condition (e) follows from

(b) and the fact that F is �nite dimensional.

Thus the L1-distance from rt to F
? � fg 2 L1 :

R


fg d� = 0 for each f 2 Fg

is at most � �n
3

. So there is ~rt 2 F
? such that jj~rt� rtjjL

1

is less than ��n and, as

with rt, is of L1-norm at most 1. Clearly ~rt1An
k
2 C

n
k for each k = 1; : : : ; 2n.

The functional T �x�t 2 L
�
1 attains its maximum on C

n
k at an extreme point unk

of Cn
k . By the lemma, unk = 1

A
n+1

2k�1

� 1
A
n+1

2k

for 2 disjoint sets An+1
2k�1 and A

n+1
2k

whose union is A
n
k . Furthermore, An+1

2k�1 and A
n+1
2k are of equal measure sinceR

An
k

u
n
k d� = 0.

Condition (3) holds since for i = 1; : : : ; pn and k = 1; : : : ; 2n

y
�
n;i(Th2n+k) = �

�1
n

Z
An
k

(T �y�n;i)u
n
k d� = 0 :

Condition (1) follows from the observations that

x
�
tn
(Th2n+k) = �

�1
n (T �x�tn)u

n
k � �

�1
n (T �x�tn)(~rt1Ank )

and

j(T �x�tn)(~rt1Ank )� (T �x�tn)(rt1Ank )j � jj~rt � rtjjL1 < � �n

and

(T �x�tn)(rt1Ank ) � 2��n :

Proof of Lemma 2. Fix a function f of C such that jf j 6= 1A. Find a positive �

and a subset B of A with positive measure such that jf1B j < 1� �.

Let ~� = B \ �. Consider the measures �i : ~� ! R given by �i(E) �
R
E
gi d�.

De�ne the measure � : ~�! R
n+1 by

�(E) = (�1(E); : : : ; �n(E); �(E)) :

Liapouno�'s Convexity Theorem gives a subset B1 of B satisfying

�(B1) =
1
2
�(B) + 1

2
�(;). Set B2 = B nB1. Note that

�i(B1) =
1
2
�i(B) = �i(B2) and �(B1) =

1
2
�(B) = �(B2)

for i = 1; : : : ; n. Set

f1 = f + � (1B1
� 1B2

) and f2 = f + � (1B2
� 1B1

) :

Clearly f1 and f2 are in C and f = 1
2
f1 +

1
2
f2. Thus f is not an extreme point of

C.
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3. geometric view-point

Consider a non-completely-continuous operator T : L1 ! X along with the corre-

sponding Haar system fhjg from Theorem 1. Let
�
I
n
k = [k�1

2n
;
k
2n
)
	
n;k

be the usual

dyadic splitting of [0; 1] with corresponding Haar functions f~hjgj�1. Consider the

map ~T � T � S where S : L1 ! L1 is the isometry that takes ~hj to hj . Theorem 1

gives that there is a sequence fx�ngn�0 in S(X
�) and a subspace X0 of X such that

(1) x
�
n(

~T ~h2n+k) > � for some � > 0

(2) fsp( ~T ~hj : 2
n�1

< j � 2n)gn�0 is a �nite dimensional decomposition of X0

with constant at most 1 + � .

The next corollary follows from the observation that ~T is not completely continuous

and ~T L1 � X0.

Corollary 3. A Banach space failing the CCP has a subspace with a �nite dimen-

sional decomposition (with constant arbitrarily close to 1) that fails the CCP.

A tree in X is a system of the form fxnk : n = 0; 1; : : : ; k = 1; : : : ; 2ng satisfying

x
n
k =

x
n+1
2k�1 + x

n+1
2k

2
:

Associated to a tree is its di�erence system fdjgj�1 where d1 = x
0
1 and

d2n+k =
x
n+1
2k�1 � x

n+1
2k

2
:

There is a one-to-one correspondence between the bounded linear operators T from

L1 into X and bounded trees fxnkg growing in X. This correspondence is realized

by T (~hj) = dj.

A tree is a �-Rademacher tree if jj
P2n

k=1 d2
n+kjj � 2n�. A tree is a separated �-

tree if there exists a sequence fx�ngn�0 in S(X
�) such that x�n(d2n+k) > �. Clearly,

a separated �-tree is also a �-Rademacher tree. The operator corresponding to a

�-Rademacher tree is not completely continuous since the image of the Rademacher

functions stay large in norm. Thus if a bounded �-Rademacher tree (or separated

�-tree) grows in X, then X fails the CCP.

In any Banach space failing the CCP, a bounded �-Rademacher tree grows (see

[G1] for a direct proof); in fact, even a bounded separated �-tree grows (see [G2]

for an indirect proof). The proof of Theorem 1 is a direct proof that if X fails CCP

then a bounded separated �-tree, with a di�erence sequence naturally blocking into

a �nite dimensional decomposition, grows in X.

4. from decompositions to bases

As previously mentioned, we do not know whether a space failing the CCP

necessarily contains a subspace with a basis which fails the CCP. However, if the



GIRARDI and JOHNSON 6

space has some nice local properties, then the proof of Theorem 1 can be modi�ed

to show this is so.

We now introduce some local properties. A Banach space is said to have the

(K;n){local basis property if each of its n-dimensional subspaces has a �nite dimen-

sional superspace which has a basis with basis constant at most K. A Banach space

is said to have the (� � K) � property provided that each of its �nite codimen-

sional subspaces contains a �nite codimensional subspace which has, for each n, the

(K;n){local basis property. A Banach space is said to have the (���K)�property

provided that, for each n, each of its �nite codimensional subspaces contains a �-

nite codimensional subspace (depending on n) with the (K;n){local basis property.

Clearly, the (��K)�property implies the (���K)�property, but Szarek's spaces

[S] show that the properties are not equivalent. We do not know any example of a

space which fails the (� � �K)� property for all K.

Spaces failing cotype (i.e., containing `n1 uniformly for all n), have the (� �K)-

property. In fact, if X fails cotype and Z is a �nite codimensional subspace of

X, then for any �nite dimensional subspace W of X there is a �nite dimensional

subspace Y of Z such that W + Y has a basis with basis constant less than, say,

10. To see this, use the fact ([P], [JRZ]) that W is (1+ �)-complemented in a �nite

dimensional space which has a basis with basis constant less than 1 + � and embed

the complement to W in that space into Z \ ?
F , where F is a �nite subset of X�

which (1 + �)-norms W . This is possible because �nite codimensional subspaces of

X must contain `n1 uniformly for all n and hence [J] contain even (1+ �)-isomorphs

of `n1 for all n.

Banach lattices also enjoy the (��K)� property. By the above observation, we

need only consider lattices with cotype. Such a lattice X must be order continuous

since it contains no copy of c0. By a perturbation argument, it is enough to show

that if F is a �nite set of disjoint linear functionals, then F
? has the local basis

property with uniform constant. To see this, consider F = ff1; : : : ; fng. Let Xj

be the \support" of fj ; that is, let Xj be the complementary band to the band

fx 2 X : jfj jjxj = 0g. Notice that the Xj 's are disjoint since the fj's are disjoint.

Thus, F? is the disjoint sum of Y; Y1; : : : ; Yn, where each Yj is a one codimensional

subspace of the bandXj and Y is the intersection of the bands fx 2 X : jfj jjxj = 0g.

Corollary 4. If a Banach space X fails the CCP and enjoys the (���K)�property,
then X has a subspace with a basis that fails the CCP.

To see this, it is enough by the argument for Corollary 3 to observe that when

X has the (� � �K)� property Theorem 1 can be modi�ed by adding:

(D) �nite dimensional subspaces fGng
1
n=0 of X

changing (2) and (3) to:

(20) fy�n;ig
pn
i=1 norms sp([nk=0Gk) within �n

(30) Gn+1 �
?fy�n;ig

pn
i=1

and adding:

(4) fThj : 2
n�1

< j � 2ng � Gn
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(5) Gn has a basis with basis constant at most K.

To achieve these modi�cations, at the �rst stage in the proof of Theorem 1, let

G0 = sp(Th1). Then in the inductive step in the proof, choose fy�n;ig
qn
i=1 so that

(20) holds and, by appealing to the (���K)�property, enlarge the set to fy�n;ig
pn
i=1

where pn � qn so that ?fy�n;ig
pn
i=1 has the (K; 2

n){local basis property. Proceed as

before and then, after selecting An+1
k (thereby de�ning hj for j = 2n+1; : : : ; 2n+1),

choose a �nite dimensional space Gn+1 such that fThj : 2
n
< j � 2n+1g � Gn+1 �

?fy�n;ig
pn
i=1 and Gn+1 has a basis with basis constant at most K.

In the last years, geometric properties such as the CCP have allowed a deeper

understanding of the RNP. Two such properties are the Point of Continuity property

(PCP) and the Convex Point of Continuity property (CPCP). We refer the reader

to [GGMS] for the de�nitions and a survey of these properties; here we merely recall

that the RNP implies the PCP, which implies the CPCP, which in turn implies the

CCP.

Relevant for this paper is Bourgain's result [B3, prop. 5.4] that a space failing

the PCP has a subspace with a �nite dimensional decomposition which fails the

PCP. Similar to the situation with the CCP, additional local structure on the space

can help to sharpen the decomposition to a basis.

Proposition 5. If a Banach space X fails the PCP and enjoys the (� � K) �
property, then X has a subspace with a basis which fails the PCP.

To see this, it is convenient for us to Rosenthal's exposition of Bourgain's result

[R, Remark, pg. 315]. In a space X failing the PCP, Rosenthal �nds a \bad"

bounded subset U of X and � > 0 and then constructs by induction on n, for a

given sequence f�ng of numbers larger than one with �nite product

(A) �nite subsets fDng
1
n=1 of U

(B) �nite dimensional subspaces fFng
1
n=1 of X

(C) a �nite set fx�n;ig
pn
i=1 in S(X�) for each n � 1

such that, for Hn � sp(x�n;i)
pn
i=1,

(1) Dn � Dn+1

(2) Dn � F1 + : : : + Fn

(3) fx�n;ig
pn
i=1 norms sp([nj=1Fj) within �n

(4) Fn+1 �
?
Hn

(5) for every d 2 Dn and n| 1
n
neighborhood V of d, there is a d0 2 Dn+1\V

such that jjd� d
0jj > �.

He then considers the set D � [1n=1Dn. By construction, each relatively weakly

open neighborhood of D has diameter at least � and fFng
1
n=1 forms a �nite dimen-

sional decomposition (with constant at most ��n) of a subspace which contains

D.

If X also enjoys the (� � K) � property, then Rosenthal's construction can be

modi�ed by adding:

(D) �nite dimensional subspaces fGng
1
n=1 of X
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and changing (3) and (4) to:

(30) fx�n;ig
pn
i=1 norms sp([nj=1Gj) within �n

(40) Gn+1 �
?
Hn

and adding:

(6) Fn � Gn

(7) Gn has a basis with constant at most K.

To accomplish this, at the �rst stage of his construction, let G1 = F1. Then, in the

inductive step, when given Dn, fFjg
n
j=1, fGjg

n
j=1, and fx

�
n;ig

qn
i=1 satisfying (2), (3

0),

and (6), appeal to the (��K)� property to �nd fx�n;ig
pn
i=1 with pn � qn such that

?fx�n;ig
pn
i=1 has the (K;m)-local basis property for all m. Put Hn = spfx�n;ig

pn
i=1.

Proceed as in Rosenthal's argument to �nd the �nite dimensional subspace Fn+1
of ?Hn. The (� �K) � property then provides the desired Gn+1. Clearly this is

su�cient.

Bourgain [B3, thm. 5.7; B1, thm. 1] also showed that a space failing the RNP

has a subspace with a �nite dimensional decomposition which fails the RNP. The

argument is split into two cases. In the �rst case, Bourgain shows that a space

failing not only the RNP but also the CPCP has a subspace with a �nite dimensional

decomposition which fails the RNP. It immediately follows from the last proposition

that if such a space also enjoys the (��K)� property, then it has a subspace with

a basis which fails the RNP. In the second case, Bourgain shows that a space which

fails the RNP but has the CPCP contains a subspace with a �nite dimensional

decomposition which fails the RNP. His argument is rather delicate; the above

technique for passing from a �nite dimensional decomposition to a basis seems not

to work.
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