BOUNDING ZEROS OF \(H^2 \) FUNCTIONS VIA CONCENTRATIONS

MARIA GIRARDI

Abstract. It is well-known that the zeros \(\{z_j\} \) of a function in the classical Hardy space \(H^2 \) satisfy \(\sum 1 - |z_j| < \infty \); however, this sum can be arbitrarily large. We shall bound this sum by a constant that depends on the concentration of the function, a concept introduced by Beauzamy and Enflo.

1. INTRODUCTION

Consider a function \(f : D \to \mathbb{C} \) in the classical Hardy space \(H^2(D) \) where \(D \) is the open unit disk in the complex plane \(\mathbb{C} \). It is well-known that the zeros \(\{z_j\} \) of \(f \) satisfy \(\sum 1 - |z_j| < \infty \). However, this sum can be arbitrarily large as seen by considering an appropriate Blaschke product.

Fix \(1 \leq p \leq 2 \) and consider the subset \(\mathcal{A}_p \) of \(H^2 \) where

\[
\mathcal{A}_p = \{ f \in H^p(D) : f(z) = \sum_{j \geq 0} a_j z^j \text{ and } \sum_{j \geq 0} |a_j|^p < \infty \}.
\]

Of course, \(\mathcal{A}_2 \) is just \(H^2 \) and \(\mathcal{A}_1 \) is the usual algebra \(\mathcal{A}_+(T) \). For a function in \(\mathcal{A}_p \) with zeros \(\{z_j\} \), we shall bound \(\sum 1 - |z_j| \) by a constant that depends on the concentration of the function, a notation introduced by Beauzamy and Enflo [BE].

Now to recall basic facts and fix notation. For

\[
f(z) = \sum_{j \geq 0} a_j z^j \in \mathcal{A}_p,
\]

the \(l_p \)-norm of \(f \) is

\[
\|f\|_p = \left[\sum_{j \geq 0} |a_j|^p \right]^{1/p},
\]

Supported in part by the C.N.R.S. (France) and the N.S.F. (U.S.A.), by contracts D.G.A./-D.R.E.T. no 89/1377, E.T.C.A./C.R.E.A./20367/91 (Ministry of Defense, France) and by research contract EERP- FR 22, *Digital Equipment Corporation*. Research conducted while at the Institut de Calcul Mathématique, Université de Paris VII, 2 place Jussieu, 75251 Paris Cedex 05, France.
and the k-th partial sum $s_k(f)$ of f is

$$[s_k(f)](z) = \sum_{j=0}^{k} a_j z^j.$$

The function $f \in A_p$ has concentration d at degree k (measured in ℓ_p-norm) if

$$d \parallel f \parallel_p \leq \parallel s_k(f) \parallel_p$$

where $0 < d \leq 1$ and k is a non-negative integer. The largest d which satisfies the above condition is called the concentration factor.

An H^2 function f has a canonical factorization $f(z) = F(z)B(z)S(z)$ into an outer function F, a Blaschke product B, and a singular part S. The measure $M(f)$ of f is

$$M(f) = \exp\left[\int_0^{2\pi} \log |f(e^{i\theta})| \frac{d\theta}{2\pi}\right].$$

Recall $M(f) = |F(0)| \leq \| F \|_2 = \| f \|_2$ and since $1 \leq p \leq 2$ furthermore $\| f \|_2 \leq \| f \|_p$.

For $0 \leq \lambda \leq 1$, let $f_\lambda : D \to \mathbb{C}$ be the function $f_\lambda(z) = f(\lambda z)$. Throughout this paper, we will assume that $f(0) \neq 0$ and enumerate the zero set $\{z_j\}$ of f so that

$$0 < |z_1| \leq |z_2| \leq \ldots < 1.$$

All notation and terminology, not otherwise explained, are as in [G] or [B2].

As motivation we examine a function $f \in A_p$ with concentration d at degree $k = 0$. For such a function we have that

$$d \parallel f \parallel_p \leq \parallel s_0(f) \parallel_p = |f(0)| = |F(0)| S(0) \prod_{j>0} |z_j|.$$

We know that the singular part S of an H^2 function satisfies $0 \leq S(0) \leq 1$. Thus

$$d \leq \prod_{j>0} |z_j|,$$

and since $1 - x \leq -\log x$ for $0 < x \leq 1$, we see that

$$\sum_{j>0} 1 - |z_j| \leq -\log d.$$

The first bound is essentially best possible. Consider the family of H^2 functions $\{f_\varepsilon(z) = z - \varepsilon : 0 < \varepsilon < 1\}$. For $1 \leq p \leq 2$, the function f_ε has concentration $d = \frac{\varepsilon}{1+\varepsilon}$ at degree 0. Thus

$$d \leq \prod_{j>0} |z_j| = \varepsilon \leq d(1 + \varepsilon).$$

We now extend these ideas for concentration at an arbitrary degree k.

2. ZEROS OF FUNCTIONS IN A_p

Beauzamy and Chou [BC] showed that the zeros $\{z_j\}$ of a polynomial with concentration d at degree k (measured in ℓ_1-norm) satisfy

$$\frac{d^{k+3}}{2 \cdot 9^{k+3} \cdot 3^{k^2}} \leq \prod_{j>k} |z_j|.$$

Actually, their product includes the zeros outside the unit disk as well. Theorem 2.1 extends this result to functions in A_p and improves their constant. For our constant, we consider the function

$$\phi_{d,k}(r) \equiv \left[\frac{(1-r)r^k d}{e^{\frac{1}{1-r}}} \right]^{\frac{1}{1+r}}$$

and let

$$\Phi_{d,k} \equiv \max_{0<r<1} \phi_{d,k}(r).$$

Recall that we enumerate a zero set $\{z_j\}$ so that $0 < |z_1| \leq |z_2| \leq \ldots < 1$. We now fix $1 \leq p \leq 2$.

Theorem 2.1. The zeros $\{z_j\}$ of a function in A_p with concentration d at degree k (measured in ℓ_p-norm) satisfy

$$d \Phi_{d,k} \leq \prod_{j>k} |z_j| \quad \text{and thus} \quad \sum_{j>0} 1 - |z_j| \leq k - \log (d \Phi_{d,k}).$$

To compare with [BC], note that

$$\frac{d^{k+3}}{2 \cdot 9^{k+3} \cdot 3^{k^2}} < \frac{4d^2}{e^{4+1}} = d \phi_{d,k}(\frac{1}{2}) \leq d \Phi_{d,k}.$$

The proof uses the following lemma which extends a result of Beauzamy ([B1], [B2]).

Lemma 2.2. If a function f in A_p has concentration d at degree k, then

$$\Phi_{d,k} \| f \|_p \leq M(f).$$

As noted earlier $M(f) \leq \| f \|_p$ since $1 \leq p \leq 2$.

Proof. Let $f(z) = \sum_{j \geq 0} a_j z^j$ be a function in A_p with appropriate concentration. Normalize so that $\| f \|_p = 1$. Fix $0 < r < 1$ and consider $z_0 \in D$ with $|z_0| = r$ along with its Möbius function $w(z) = \frac{z + z_0}{1 + z \cdot z_0}$ defined on D. Jensen’s formula and a change of variables give that

$$\log |f(z_0)| \leq \int_0^{2\pi} \log |f(w(e^{i\theta}))| \frac{d\theta}{2\pi} = \int_0^{2\pi} \log |f(e^{i\theta})| \left| \frac{1 - r^2}{1 - \frac{z_0}{z} e^{i\theta}} \right| \frac{d\theta}{2\pi} \leq \frac{1 - r}{1 + r} \int_{\frac{1}{2}} \log |f(e^{i\theta})| \frac{d\theta}{2\pi} + \frac{1 + r}{1 - r} \int_{\frac{1}{2}} \log |f(e^{i\theta})| \frac{d\theta}{2\pi},$$
where
\[N = \{ \theta : |f(e^{i\theta})| \leq 1 \} \quad \text{and} \quad P = \{ \theta : |f(e^{i\theta})| > 1 \}. \]

For bounding the last summand, note that
\[
\int_P \log |f(e^{i\theta})| \frac{d\theta}{2\pi} \leq \frac{1}{2} \int |f|^2 \frac{d\theta}{2\pi} = \frac{1}{2} \| f \|_2^2 \leq \frac{1}{2} \| f \|_p^2 = \frac{1}{2}.
\]

Choose \(z_0 \) such that \(|f(z_0)| = \max \{|f(z)| : |z| = r\} \). Since
\[
a_j = \int_0^{2\pi} \frac{f(re^{i\theta})}{r^j e^{i\theta}} \frac{d\theta}{2\pi} \quad \text{and so} \quad |a_j| \leq \frac{|f(z_0)|}{r^j},
\]

it follows that
\[
\| s_k(f) \|_p \leq \| s_k(f) \|_1 = \sum_{j=0}^k |a_j| \leq |f(z_0)| \sum_{j=0}^k \frac{1}{r^j} \leq |f(z_0)| \frac{r^{-k} \sum_{j=0}^\infty r^j}{(1 - r)r^k} = \frac{|f(z_0)|}{(1 - r)r^k}.
\]

Combining this with the concentration information on \(f \) we see that
\[
(1 - r)r^k d \leq |f(z_0)|.
\]

We now have that
\[
\log ((1 - r)r^k d) - \frac{1 + r}{2(1 - r)} \leq \frac{1 - r}{1 + r} \int_N \log |f(e^{i\theta})| \frac{d\theta}{2\pi},
\]

which gives that \(\phi_{d,k}(r) \leq M(f) \), as needed.

Keeping with the previous notation, we observe a property of the measure.

Lemma 2.3. If the \(\mathcal{H}^2 \) function \(f \) has a \(k \)-th zero of modulus \(\lambda \), then
\[
M(f_\lambda) = \lambda^k |F(0)| \prod_{j > k} |z_j|.
\]

Proof. Since \(f_\lambda \) is analytic on the closed unit disk \(\overline{D} \), Jensen’s formula provides that
\[
M(f_\lambda) = \exp \int_0^{2\pi} \log |f_\lambda(e^{i\theta})| \frac{d\theta}{2\pi} = |f_\lambda(0)| \prod_{|z_j| < \lambda} \frac{\lambda}{z_j}.
\]

Now just note that \(|f_\lambda(0)| = |F(0)| S(0) \prod_{j > 0} |z_j| \). This last lemma is straightforward.
Lemma 2.4. If the function f in \mathcal{A}_p has concentration d at degree k and $0 < \lambda \leq 1$, then

$$(i) \; d \| f_\lambda \|_p \leq \| s_k(f_\lambda) \|_p \quad \text{and} \quad (ii) \; \lambda^k d \| f \|_p \leq \| s_k(f_\lambda) \|_p.$$

Proof. Consider $f(z) = \sum_{j \geq 0} a_j z^j$ in \mathcal{A}_p with appropriate concentration. Define the function $h : (0, 1] \to \mathbb{R}$ by

$$h(\lambda) = \frac{\| f_\lambda \|_p}{\| s_k(f_\lambda) \|_p} \equiv 1 + \frac{\sum_{j=k+1}^{\infty} |a_j|^p \lambda^{j-pk}}{\sum_{j=0}^{k} |a_j|^p \lambda^{j-pk}}.$$

Since h is an increasing function, $h(\lambda) \leq h(1) \leq d^{-p}$. This provides (i). Inequality (ii) follows from the observation that

$$\| s_k(f_\lambda) \|_p = \sum_{j=0}^{k} |a_j|^p \lambda^{j-p} \geq \sum_{j=0}^{k} |a_j|^p \lambda^{kp} = \lambda^{kp} \| s_k(f) \|_p \geq \lambda^{kp} d^p \| f \|_p.$$

The proof of Theorem 2.1 now proceeds with ease.

Proof of Theorem 2.1. Since $1 - x \leq -\log(x)$ for $0 < x \leq 1$, the second inequality follows from the first. Towards the first inequality, let the function $f \in \mathcal{A}_p$ have concentration d at degree k. We assume that f has more than k zeros for otherwise the theorem is vacuously true. Let the k^{th} zero z_k of f have modulus λ. The lemmas provide the following string of inequalities

$$\Phi_{d,k} \lambda^k d \| f \|_p \leq \Phi_{d,k} \| s_k(f_\lambda) \|_p \leq \Phi_{d,k} \| f_\lambda \|_p \leq M(f_\lambda) = \lambda^k |F(0)| S(0) \prod_{j > k} |z_j|.$$

As noted in the introduction, $S(0) \leq 1$ and $|F(0)| \leq \| f \|_p$. Thus

$$d \Phi_{d,k} \leq \prod_{j > k} |z_j|,$$

as needed.

We do not believe that the bound in Theorem 2.1 is best possible. An improvement in the constant $\Phi_{d,k}$ in Lemma 2.2 would improve the bound in Theorem 2.1.

3. General Comments

In general, it is not possible to bound from below the whole product $\prod_{j > 0} |z_j|$ of zeros $\{z_j\}_{j > 0}$ of a function in \mathcal{A}_p by a constant depending on the function’s concentration at degree k for $k > 0$. For example, consider the function $f(z) = (z^n + 1)(z^n - \epsilon)$ where $0 < \epsilon < 1$ and n is a positive integer. The whole product $\prod_{j > 0} |z_j|$ of zeros is ϵ yet f has concentration $\frac{1}{8}$ (measured in ℓ_p-norm) at degree n. Information on the zeros of $s_k(f)$ proves useful in this setting.
Theorem 3.1. If the function \(f \) in \(\mathcal{A}_p \) has concentration \(d \) at degree \(k \), then the zeros \(\{z_j\}_{j>0} \) of \(f \) and the zeros \(\{w_i\}_{i>0} \) of \(s_k(f) \) in the unit disk \(D \) satisfy

\[
\frac{d}{2^k} \leq \frac{\prod_{j>0} |z_j|}{\prod_{i>0} |w_i|}.
\]

Thus if in the above setting \(s_k(f) \) has no zeros in the unit disk \(D \), then

\[
\frac{d}{2^k} \leq \prod_{j>0} |z_j|.
\]

Proof. Consider a function \(f \) in \(\mathcal{A}_p \) with the appropriate concentration, i.e.

\[
d \parallel f \parallel_p \leq \parallel s_k(f) \parallel_p.
\]

From Jensen’s Formula it follows [cf. M] that for the polynomial \(s_k(f) : D \to \mathbb{C} \) we have

\[
\frac{\|s_k(f)\|_p}{2^k} \leq M(s_k(f)) = \left| \frac{s_k(f)(0)}{\prod_{i>0} |w_i|} \right|.
\]

Basic properties of the canonical factorization \(f = F \cdot B \cdot S \) of \(f \) give that

\[
\frac{|f(0)|}{\prod_{j>0} |z_j|} = |F(0)| S(0) \leq |F(0)| \leq \|F\|_2 = \|f\|_2 \leq \|f\|_p.
\]

The theorem now follows. \(\blacksquare \)

We may view any function \(f \in \mathcal{H}^p \) as a function in the classical Lebesgue space \(L^p \) (\(T \)) with norm \(\|f\|_p \). Beauzamy and Enflo [BE, Cor 7] showed that if the polynomials \(f_1 \) and \(f_2 \) in \(\mathcal{A}_2 \) have concentration \(d_i \) at degree \(k_i \) (respectively), then

\[
\frac{d_1^2 d_2^2}{3e^{15} \mathbb{S}^{(k_1+k_2+2)}} \parallel f_1 \parallel_2 \parallel f_2 \parallel_2 \leq \|f_1 f_2\|_1.
\]

The following theorem improves on this result.

Theorem 3.2. Fix \(1 \leq p_1, p_2 \leq 2 \). If \(f_i \in \mathcal{A}_{p_i} \) has concentration \(d_i \) at degree \(k_i \), then

\[
\Phi_{d_1, k_1} \Phi_{d_2, k_2} \parallel f_1 \parallel_{p_1} \parallel f_2 \parallel_{p_2} \leq M(f_1 f_2).
\]

Theorem 3.2 follows directly from Lemma 2.2 and the observation that \(M(f_1) M(f_2) = M(f_1 f_2) \). Recall that for any function \(g \in \mathcal{H}^2 \)

\[
M(g) \leq \|g\|_1.
\]

Also

\[
\frac{d_1^2 d_2^2}{3e^{15} \mathbb{S}^{(k_1+k_2+2)}} < \frac{16 d_1^2 d_2^2}{e^4 \mathbb{S}^{(k_1+k_2+2)}} = \phi_{d_1, k_1} \left(\frac{1}{3} \right) \phi_{d_2, k_2} \left(\frac{1}{3} \right) \leq \Phi_{d_1, k_1} \Phi_{d_2, k_2}.
\]
Thus Theorem 3.2 gives (with a better constant) the result of Beauzamy and Enflo.

It is well-known that there exists positive constants k_n^p and K_n^p such that if f is a polynomial of degree n then

$$k_n^p \| f \|_p \leq M(f) \leq K_n^p \| f \|_p.$$

Lemma 2.2 gives that if $f \in A_p$ has concentration d at degree k, then

$$\Phi_{d,k} \| f \|_p \leq M(f) \leq \| f \|_p.$$

Thus Lemma 2.2 may be thought of as extending these well-known inequality from polynomials (with a certain degree) to A_p functions (with a certain concentration).

Of course, the settings of most interest are A_1 and A_2. We worked in A_p with $1 \leq p \leq 2$ as to provide unity in presentation. For $p > 2$, the definitions are valid but then the space A_p is not as natural; the $\sum |a_j|^p$ being finite implies that the corresponding function $f(z) = \sum_{j \geq 0} a_j z^j$ is in H^p if and only if $1 \leq p \leq 2$.

Our method of proof does not extend directly to the case of $p > 2$. Our proofs use the fact that if $1 \leq p \leq 2$ and f is in A_p then $M(f) \leq \| f \|_p$. However, this basic inequality is not valid for $p > 2$, even in a wider sense. Specifically [cf. BN], there is a sequence of polynomials $\{f_n\}$ such that $M(f_n) \sim \sqrt{n}$ and f_n is of degree n with coefficients of modulus 1 (thus $\| f_n \|_p = n + 1$). For this sequence of polynomials, $\| f_n \|_{M(f_n)}$ tends to 0.

This sequence also demonstrates that, for $p > 2$, one does not even have the motivating bound (dependent on the concentration at degree $k = 0$) on the product of the zeros of a function in A_p. For since $|f_n(0)| = 1$, the modulus of the product of the zeros of f_n is $[M(f_n)]^{-1}$, which grows like $n^{-1/2}$. However, at degree $k = 0$, the function f_n has concentration $[n + 1]^{-1/p}$.

References

Current address: Department of Mathematics, University of South Carolina, Columbia, SC 29208