BOUNDING ZEROS OF H^2 FUNCTIONS VIA CONCENTRATIONS

MARIA GIRARDI

J. Math. Anal. Appl. 183 (1994) 605-612

ABSTRACT. It is well-known that the zeros $\{z_j\}$ of a function in the classical Hardy space H^2 satisfy $\sum 1 - |z_j| < \infty$; however, this sum can be arbitrarily large. We shall bound this sum by a constant that depends on the concentration of the function, a concept introduced by Beauzamy and Enflo.

1. INTRODUCTION

Consider a function $f: D \to \mathbb{C}$ in the classical Hardy space $H^2(D)$ where D is the open unit disk in the complex plane \mathbb{C} . It is well-known that the zeros $\{z_j\}$ of f satisfy $\sum 1 - |z_j| < \infty$. However, this sum can be arbitrarily large as seen by considering an appropriate Blaschke product.

Fix $1 \le p \le 2$ and consider the subset \mathcal{A}_p of H^2 where

$$\mathcal{A}_p = \{ f \in H^p(D) : f(z) = \sum_{j \ge 0} a_j z^j \text{ and } \sum_{j \ge 0} |a_j|^p < \infty \}.$$

Of course, \mathcal{A}_2 is just H^2 and \mathcal{A}_1 is the usual algebra $\mathcal{A}_+(T)$. For a function in \mathcal{A}_p with zeros $\{z_j\}$, we shall bound $\sum 1 - |z_j|$ by a constant that depends on the concentration of the function, a notation introduced by Beauzamy and Enflo [BE].

Now to recall basic facts and fix notation. For

$$f(z) = \sum_{j \ge 0} a_j z^j \in \mathcal{A}_p,$$

the l_p -norm of f is

$$\| f \|_{p} = \left[\sum_{j \ge 0} |a_{j}|^{p} \right]^{1/p},$$

Supported in part by the C.N.R.S. (France) and the N.S.F. (U.S.A.), by contracts D.G.A./-D.R.E.T. no 89/1377, E.T.C.A./C.R.E.A./20367/91 (Ministry of Defense, France) and by research contract EERP-FR 22, *Digital Equipment Corporation*. Research conducted while at the Institut de Calcul Mathématique, Université de Paris VII, 2 place Jussieu, 75251 Paris Cedex 05, France.

and the k-th partial sum $s_k(f)$ of f is

$$[s_k(f)](z) = \sum_{j=0}^k a_j z^j.$$

The function $f \in \mathcal{A}_p$ has concentration d at degree k (measured in ℓ_p -norm) if

$$d || f ||_p \leq || s_k(f) ||_p$$

where $0 < d \le 1$ and k is a non-negative integer. The largest d which satisfies the above condition is called the concentration factor.

An H^2 function f has a canonical factorization f(z) = F(z)B(z)S(z) into an outer function F, a Blaschke product B, and a singular part S. The measure M(f) of f is

$$M(f) = \exp\left[\int_0^{2\pi} \log|f(e^{i\theta})| \frac{d\theta}{2\pi}\right].$$

Recall $M(f) = |F(0)| \le ||F||_2 = ||f||_2$ and since $1 \le p \le 2$ furthermore $||f||_2 \le ||f||_p$.

For $0 \le \lambda \le 1$, let $f_{\lambda} : D \to \mathbb{C}$ be the function $f_{\lambda}(z) = f(\lambda z)$. Throughout this paper, we will assume that $f(0) \ne 0$ and enumerate the zero set $\{z_j\}$ of f so that

$$0 < |z_1| \le |z_2| \le \ldots < 1.$$

All notation and terminology, not otherwise explained, are as in [G] or [B2].

As motivation we examine a function $f \in \mathcal{A}_p$ with concentration d at degree k = 0. For such a function we have that

$$d || f ||_{p} \le || s_{0}(f) ||_{p} = |f(0)| = |F(0)| S(0) \prod_{j>0} |z_{j}|$$

We know that the singular part S of an H^2 function satisfies $0 \le S(0) \le 1$. Thus

$$d \leq \prod_{j>0} |z_j|,$$

and since $1 - x \leq -\log x$ for $0 < x \leq 1$, we see that

$$\sum_{j>0} 1 - |z_j| \le -\log d$$

The first bound is essentially best possible. Consider the family of H^2 functions $\{f_{\varepsilon}(z) = z - \varepsilon : 0 < \varepsilon < 1\}$. For $1 \le p \le 2$, the function f_{ε} has concentration $d = \frac{\varepsilon}{1+\varepsilon}$ at degree 0. Thus

$$d \leq \prod_{j>0} |z_j| = \varepsilon \leq d(1+\varepsilon).$$

We now extend these ideas for concentration at an arbitrary degree k.

2. ZEROS OF FUNCTIONS IN \mathcal{A}_p

Beauzamy and Chou [BC] showed that the zeros $\{z_j\}$ of a polynomial with concentration d at degree k (measured in ℓ_1 -norm) satisfy

$$\frac{d^{k+3}}{2 9^{k+3} 3^{k^2}} \leq \prod_{j>k} |z_j|.$$

Actually, their product includes the zeros outside the unit disk as well. Theorem 2.1 extends this result to functions in \mathcal{A}_p and improves their constant. For our constant, we consider the function

$$\phi_{d,k}(r) \equiv \left[\frac{(1-r)r^k d}{e^{\frac{1+r}{2(1-r)}}}\right]^{\frac{1+r}{1-r}}$$

and let

$$\Phi_{d,k} \equiv \max_{0 < r < 1} \phi_{d,k}(r)$$

Recall that we enumerate a zero set $\{z_j\}$ so that $0 < |z_1| \le |z_2| \le \ldots < 1$. We now fix $1 \le p \le 2$.

Theorem 2.1. The zeros $\{z_j\}$ of a function in \mathcal{A}_p with concentration d at degree k (measured in ℓ_p - norm) satisfy

$$d \ \Phi_{d,k} \leq \prod_{j>k} |z_j|$$
 and thus $\sum_{j>0} 1 - |z_j| \leq k - \log (d \ \Phi_{d,k})$.

To compare with [BC], note that $\frac{d^{k+3}}{2 \ 9^{k+3} \ 3^{k^2}} < \frac{4d^3}{e^2 9^{k+1}} = d \ \phi_{d,k}(\frac{1}{3}) \leq d \ \Phi_{d,k}$. The proof uses the following lemma which extends a result of Beauzamy ([B1],

[B2]). The proof uses the following lemma which extends a result of Beauzamy ([B1],

Lemma 2.2. If a function f in \mathcal{A}_p has concentration d at degree k, then

$$\Phi_{d,k} \parallel f \parallel_p \leq M(f) .$$

As noted earlier $M(f) \leq || f ||_p$ since $1 \leq p \leq 2$.

Proof. Let $f(z) = \sum_{j\geq 0} a_j z^j$ be a function in \mathcal{A}_p with appropriate concentration. Normalize so that $|| f ||_p = 1$. Fix 0 < r < 1 and consider $z_0 \in D$ with $|z_0| = r$ along with its Möbius function $w(z) = \frac{z+z_0}{1+\overline{z}_o z}$ defined on \overline{D} . Jensen's formula and a change of variables give that

$$\begin{split} \log |f(z_0)| &\leq \int_0^{2\pi} \log |f(w(e^{i\theta}))| \frac{d\theta}{2\pi} \\ &= \int_0^{2\pi} \log |f(e^{i\theta})| \frac{1 - r^2}{|1 - \bar{z}_0 e^{i\theta}|^2} \frac{d\theta}{2\pi} \\ &\leq \frac{1 - r}{1 + r} \int_N \log |f(e^{i\theta})| \frac{d\theta}{2\pi} + \frac{1 + r}{1 - r} \int_P \log |f(e^{i\theta})| \frac{d\theta}{2\pi} \end{split}$$

where

$$N = \{ \ \theta \ : \ |f(e^{i\theta})| \le 1 \}$$
 and $P = \{ \ \theta \ : \ |f(e^{i\theta})| > 1 \}$

For bounding the last summand, note that

$$\int_{P} \log |f(e^{i\theta})| \frac{d\theta}{2\pi} \le \frac{1}{2} \int |f|^2 \frac{d\theta}{2\pi} = \frac{1}{2} ||f||^2 \le \frac{1}{2} ||f||_p^2 = \frac{1}{2}.$$

Choose z_0 such that $|f(z_0)| = \max \{|f(z)| : |z| = r\}$. Since

$$a_j = \int_0^{2\pi} \frac{f(re^{i\theta})}{r^j e^{ij\theta}} \frac{d\theta}{2\pi}$$
 and so $|a_j| \leq \frac{|f(z_0)|}{r^j}$

it follows that

$$\| s_k(f) \|_p \le \| s_k(f) \|_1 = \sum_{j=0}^k |a_j| \le |f(z_0)| \sum_{j=0}^k \frac{1}{r^j} \le |f(z_0)| r^{-k} \sum_{j=0}^\infty r^j = \frac{|f(z_0)|}{(1-r)r^k}.$$

Combining this with the concentration information on f we see that

$$(1-r)r^k d \leq |f(z_0)|$$
.

We now have that

$$\log \left((1-r)r^{k}d \right) - \frac{1+r}{2(1-r)} \leq \frac{1-r}{1+r} \int_{N} \log |f(e^{i\theta})| \frac{d\theta}{2\pi}$$

which gives that $\phi_{d,k}(r) \leq M(f)$, as needed.

Keeping with the previous notation, we observe a property of the measure. Lemma 2.3. If the H^2 function f has a k-th zero of modulus λ , then

$$M(f_{\lambda}) = \lambda^k |F(0)| S(0) \prod_{j>k} |z_j|.$$

Proof. Since f_{λ} is analytic on the closed unit disk \overline{D} , Jensen's formula provides that

$$M(f_{\lambda}) = \exp \int_{0}^{2\pi} \log |f_{\lambda}(e^{i\theta})| \frac{d\theta}{2\pi} = |f_{\lambda}(0)| \prod_{|z_{j}| < \lambda} \frac{\lambda}{|z_{j}|}.$$

Now just note that $|f_{\lambda}(0)| = |F(0)| S(0) \prod_{j>0} |z_j|$.

This last lemma is straightforward.

Lemma 2.4. If the function f in \mathcal{A}_p has concentration d at degree k and $0 < \lambda \leq 1$, then

(i) $d \parallel f_{\lambda} \parallel_{p} \leq \parallel s_{k}(f_{\lambda}) \parallel_{p}$ and (ii) $\lambda^{k} d \parallel f \parallel_{p} \leq \parallel s_{k}(f_{\lambda}) \parallel_{p}$.

Proof. Consider $f(z) = \sum_{j\geq 0} a_j z^j$ in \mathcal{A}_p with appropriate concentration. Define the function $h : (0,1] \to \mathbb{R}$ by

$$h(\lambda) = \frac{\|f_{\lambda}\|_{p}^{p}}{\|s_{k}(f_{\lambda})\|_{p}^{p}} \equiv 1 + \frac{\sum_{j=k+1}^{\infty} |a_{j}|^{p} \lambda^{pj-pk}}{\sum_{j=0}^{k} |a_{j}|^{p} \lambda^{pj-pk}}$$

Since h is an increasing function, $h(\lambda) \leq h(1) \leq d^{-p}$. This provides (i). Inequality (ii) follows from the observation that

$$\| s_k(f_{\lambda}) \|_p^p = \sum_{j=0}^k |a_j|^p \ \lambda^{jp} \ge \sum_{j=0}^k |a_j|^p \ \lambda^{kp} = \lambda^{kp} \ \| s_k(f) \|_p^p \ge \lambda^{kp} d^p \| f \|_p^p$$

The proof of Theorem 2.1 now proceeds with ease.

Proof of Theorem 2.1. Since $1 - x \leq -\log(x)$ for $0 < x \leq 1$, the second inequality follows from the first. Towards the first inequality, let the function $f \in \mathcal{A}_p$ have concentration d at degree k. We assume that f has more than k zeros for otherwise the theorem is vacuously true. Let the k^{th} zero z_k of f have modulus λ . The lemmas provide the following string of inequalities

$$\begin{split} \Phi_{d,k} \lambda^k d \parallel f \parallel_p &\leq \Phi_{d,k} \parallel s_k(f_\lambda) \parallel_p \\ &\leq \Phi_{d,k} \parallel f_\lambda \parallel_p \leq M(f_\lambda) = \lambda^k |F(0)| |S(0)| \prod_{j>k} |z_j| \end{split}$$

As noted in the introduction, $S(0) \leq 1$ and $|F(0)| \leq ||f||_p$. Thus

$$d \Phi_{d,k} \leq \prod_{j>k} |z_j|$$
,

as needed.

We do not believe that the bound in Theorem 2.1 is best possible. An improvement in the constant $\Phi_{d,k}$ in Lemma 2.2 would improve the bound in Theorem 2.1.

3. General Comments

In general, it is not possible to bound from below the whole product $\prod_{j>0} |z_j|$ of zeros $\{z_j\}_{j>0}$ of a function in \mathcal{A}_p by a constant depending on the function's concentration at degree k for k > 0. For example, consider the function $f(z) = (z^n + 1)(z^n - \epsilon)$ where $0 < \epsilon < 1$ and n is a positive integer. The whole product $\prod_{j>0} |z_j|$ of zeros is ϵ yet f has concentration $\frac{1}{8}$ (measured in ℓ_p -norm) at degree n. Information on the zeros of $s_k(f)$ proves useful in this setting. **Theorem 3.1.** If the function f in \mathcal{A}_p has concentration d at degree k, then the zeros $\{z_j\}_{j>0}$ of f and the zeros $\{w_i\}_{i>0}$ of $s_k(f)$ in the unit disk D satisfy

$$rac{d}{2^k} ~\leq~ rac{\prod_{j>0} |z_j|}{\prod_{i>0} |w_i|}$$
 .

Thus if in the above setting $s_k(f)$ has no zeros in the unit disk D, then

$$\frac{d}{2^k} \leq \prod_{j>0} |z_j|.$$

Proof. Consider a function f in \mathcal{A}_p with the appropriate concentration, i.e.

$$d \parallel f \parallel_p \leq \parallel s_k(f) \parallel_p$$

From Jensen's Formula it follows [cf. M] that for the polynomial $s_k(f) : D \to \mathbb{C}$ we have

$$\frac{\|s_k(f)\|_p}{2^k} \leq M(s_k(f)) = \frac{|s_k(f)(0)|}{\prod_{i>0} |w_i|}.$$

Basic properties of the canonical factorization $f = F \cdot B \cdot S$ of f give that

$$\frac{|f(0)|}{\prod_{j>0}|z_j|} = |F(0)| S(0) \le |F(0)| \le ||F||_2 = ||f||_2 \le ||f||_p$$

The theorem now follows.

We may view any function $f \in H^p$ as a function in the classical Lebesgue space $L^p(T)$ with norm $|||f|||_p$. Beauzamy and Enflo [BE, Cor 7] showed that if the polynomials f_1 and f_2 in \mathcal{A}_2 have concentration d_i at degree k_i (respectively), then

$$rac{d_1^6\,d_2^6}{3e^{15}9^{3(k_1+k_2+2)}} \parallel f_1 \parallel_2 \parallel f_2 \parallel_2 \leq \ |||f_1\,f_2|||_1$$

The following theorem improves on this result.

Theorem 3.2. Fix $1 \le p_1, p_2 \le 2$. If $f_i \in \mathcal{A}_{p_i}$ has concentration d_i at degree k_i , then

$$\Phi_{d_1,k_1} \Phi_{d_2,k_2} \| f_1 \|_{p_1} \| f_2 \|_{p_2} \leq M(f_1 f_2) .$$

Theorem 3.2 follows directly from Lemma 2.2 and the observation that $M(f_1)M(f_2) = M(f_1f_2)$. Recall that for any function $g \in H^2$

$$M(g) \leq |||g|||_1$$

Also

$$\frac{d_1^6 d_2^6}{3e^{15}9^{3(k_1+k_2+2)}} < \frac{16 \ d_1^2 d_2^2}{e^4 \ 9^{k_1+k_2+2}} = \phi_{d_1,k_1}\left(\frac{1}{3}\right)\phi_{d_2,k_2}\left(\frac{1}{3}\right) \leq \Phi_{d_1,k_1} \ \Phi_{d_2,k_2} \ .$$

Thus Theorem 3.2 gives (with a better constant) the result of Beauzamy and Enflo.

It is well-known that there exists positive constants k_n^p and K_n^p such that if f is a polynomial of degree n then

$$k_n^p \parallel f \parallel_p \leq M(f) \leq K_n^p \parallel f \parallel_p$$

Lemma 2.2 gives that if $f \in \mathcal{A}_p$ has concentration d at degree k, then

$$\Phi_{d,k} \parallel f \parallel_p \leq M(f) \leq \parallel f \parallel_p$$
.

Thus Lemma 2.2 may be thought of as extending these well-known inequality from polynomials (with a certain degree) to \mathcal{A}_p functions (with a certain concentration).

Of course, the settings of most interest are \mathcal{A}_1 and \mathcal{A}_2 . We worked in \mathcal{A}_p with $1 \leq p \leq 2$ as to provide unity in presentation. For p > 2, the definitions are valid but then the space \mathcal{A}_p is not as natural; the $\sum |a_j|^p$ being finite implies that the corresponding function $f(z) = \sum_{j\geq 0} a_j z^j$ is in H^p if and only if $1 \leq p \leq 2$.

Our method of proof does not extend directly to the case of p > 2. Our proofs use the fact that if $1 \le p \le 2$ and f is in \mathcal{A}_p then $M(f) \le \|f\|_p$. However, this basic inequality is not valid for p > 2, even in a wider sense. Specifically [cf. BN], there is a sequence of polynomials $\{f_n\}$ such that $M(f_n) \sim \sqrt{n}$ and f_n is of degree n with coefficients of modulus 1 (thus $\|f_n\|_p^p = n+1$). For this sequence of polynomials, $\frac{\|f_n\|_p}{M(f_n)}$ tends to 0.

This sequence also demonstrates that, for p > 2, one does not even have the motivating bound (dependent on the concentration at degree k = 0) on the product of the zeros of a function in \mathcal{A}_p . For since $|f_n(0)| = 1$, the modulus of the product of the zeros of f_n is $[M(f_n)]^{-1}$, which grows like $n^{-1/2}$. However, at degree k = 0, the function f_n has concentration $[n + 1]^{-1/p}$.

References

- [B1]. Bernard Beauzamy, Jensen's inequality for polynomials with concentration at low degrees, Numer. Math. 49 (1986), 221-225.
- [B2]. Bernard Beauzamy, Estimates for H^2 functions with concentration at low degrees and applications to complex symbolic computations, J. Reine Angew. Math. 433 (1992).
- [BC]. Bernard Beauzamy and Sylvia Chou, On the zeros of polynomials with concentration at low degrees, (to appear).
- [BE]. Bernard Beauzamy and Per Enflo, Estimations de produits de polynômes, J. Number Theory 21 (1985), 390-412.
- [BN]. E. Beller and D. J. Newman, An extremal problem for the geometric mean of polynomials, Proc. Amer. Math. Soc. 39 (1973), 313-317.
- [G]. John B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- [M]. K. Mahler, An application of Jensen's formula to polynomials, Mathematika (1960), 98-100.

CURRENT ADDRESS: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208