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Abstract. A Banach space has the complete continuity property if all its bounded

subsets are midpoint Bocce dentable. We show that a lemma used in the original

proposed proof of this result if false; however, we give a proof to show that the result

is indeed true.

1. introduction

Throughout this paper, X denotes an arbitrary Banach space, X� the dual space

of X, B(X) the closed unit ball of X, and S(X) the unit sphere of X. The triple

(
;�; �) refers to the Lebesgue measure space on [0; 1], �+ to the sets in � with

positive measure, and L1 to L1(
;�; �). The �-�eld generated by a partition � of

[0; 1] is �(�). The conditional expectation of f 2 L1 given a �-�eld B is E(f jB).

A Banach space X has the complete continuity property (CCP) if each bounded

linear operator from L1 into X is Dunford-Pettis (i.e. carries weakly convergent

sequences onto norm convergent sequences). Since a representable operator is

Dunford-Pettis, the CCP is a weakening of the Radon-Nikod�ym property (RNP).

Recall that a Banach space has the RNP if and only if all its bounded subsets are

dentable. A subset D of X is dentable if for each � > 0 there is x in D such that

x =2 co (fy 2 D : k x � y k� �g) . Midpoint Bocce dentability is a weakening of

dentability. The subset D is midpoint Bocce dentable if for each � > 0 there is a

�nite subset F of D such that for each x� in B(X�) there is x in F satisfying:

if x = 1
2
z1 +

1
2
z2 with zi 2 D then j x�(x� z1) j � j x�(x� z2) j < �:

The following theorem is presented in [G1].

1991 Mathematics Subject Classi�cation. 47B38, 46B20, 46B22, 28B99.

Typeset by AMS-TEX



GIRARDI and HU 2

theorem 1. X has the CCP if each bounded subset of X is midpoint Bocce dentable.

Our purpose in writing this note is to show that Lemma 2.9 in [G1] (which was

used in [G1] to prove Theorem 1) is false and to provide a proof of the theorem.

Lemma 2.9 asserts that if A is in �+ and f in L1(�) is not constant a.e. on A,

then there is an increasing sequence f�ng of positive �nite measurable partitions

of A such that �([�n) = � \A and for each n

�

�[n
E : E 2 �n and

R
E
f d�

�(E)
�

R
A
f d�

�(A)

o�
=
�(A)

2
:

Example 2 shows that Lemma 2.9 is false.

EXAMPLE 2. Let f = 3�[0; 1
4
) � �[ 1

4
;1]. Then

R


f d� = 0. Suppose that f�ng

is an increasing sequence of positive �nite measurable partitions of [0; 1] such that

for each n

�

�[n
E : E 2 �n and

R
E
f d�

�(E)
� 0

o�
=

1

2
:

Then �([�n) 6= �.

proof. Consider the martingale ffng given by

fn(�) = E(f j�(�n)) =
X
E2�n

R
E
f d�

�(E)
�E (�) :

For each n 2 N put

Pn =
[n

E : E 2 �n and

Z
E

f d� � 0
o

and Qn = Pn \ ( 1
4
; 1] :

Since �(Pn) =
1
2
, we have that �(Qn) �

1
4
. Thus

Z



j fn � f j d� �

Z
Qn

j fn � f j d� �

Z
Qn

(fn ��1) d�

�

Z
Qn

1 d� = �(Qn) �
1

4
:

We know that such a martingale E(f j�(�n)) converges in L1 norm to E(f j�([�n)).

But E(f j�) = f . Thus �([�n) 6= �. �

The error in the proof of Lemma 2.9 occurred in assuming that if A is in �+ and

f�ng is an increasing sequence of positive measurable partitions of A such that for
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each n and each E in �n the �(E) � �n with limn �n = 0, then �([�n) = �\A. This

seemingly sound assertion is not true as shown by the following counterexample.

EXAMPLE 3. For n 2 N and 1 � i � 2n, de�ne

En
i =

�
i� 1

2n+1
;

i

2n+1

�
[

�
1

2
+
i� 1

2n+1
;
1

2
+

i

2n+1

�

and

�n = fEn
i : 1 � i � 2ng :

Clearly f�ng is an increasing sequence of positive measurable partitions of [0; 1]

such that for each n and each E in �n the �(E) = 2�n. Let f = �[0; 1
2
). An easy

computation shows that E(f j�(�n)) = 1
2
�[0;1]. We know that such a martin-

gale E(f j�(�n)) converges in L1 norm to E(f j�([�n)). But E(f j�) = f . Thus

�([�n) 6= �. �

2. proof of theorem

Our proof of Theorem 1 uses the following observations. For f in L1 and A in

�, the average value and the Bocce oscillation of f on A respectively are

mA(f) �

R
A
f d�

�(A)

and

Bocce-osc f
��
A

�

R
A
jf �mA(f)j d�

�(A)

observing the convention that 0/0 is 0.

LEMMA 4. Fix A in � and f in L1. There is a subset E of A with 2�(E) = �(A)

and
1

2
Bocce-osc f

��
A

� j mE(f)�mA(f) j :

Furthermore, for each subset E of A with 2�(E) = �(A),

j mE(f)�mA(f) j � Bocce-osc f
��
A
:

proof. Without loss of generality, A = 
 and
R


f d� = 0 and

R


j f j d� = 1.

With this normalization, Bocce-osc f
��
A

= 1 and j mE(f) �mA(f) j = j

mE(f) j . Let P = [f � 0] and N = [f < 0].
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The �rst claim now reads that 1
2
� 2 j

R
E
f d� j for some subset E of measure

one half. Wlog �(P ) � 1
2
. Partition P into 2 sets, P1 and P2, of equal measure

such that
R
P2
f d� �

R
P1
f d�. Note that

1 =

Z



j f j d� =

Z
P

f d� +

Z
N

�f d�

= 2

Z
P

f d� = 2

�Z
P1

f d�+

Z
P2

f d�

�
� 4

Z
P1

f d� :

Since �(P1) �
1
2
� �(P ), we can �nd a set E such that P1 � E � P and �(E) = 1

2
.

For such a set E
1

4
�

Z
P1

f d� �

Z
E

f d� ;

as needed.

Normalized, the second claim reads that for each subset E of measure 1
2

2

����
Z
E

f d�

���� � 1 :

Fix a subset E of measure 1
2
. Wlog

R
E\N

�f d� �
R
E\P

f d� . So

����
Z
E

f d�

���� =

����
Z
E\P

f d� +

Z
E\N

f d�

���� �

����
Z
E\P

f d�

���� �

Z
P

j f j d� = 1
2
;

as needed. �

A subset K of L1 satis�es the Bocce criterion if for each � > 0 and B in �+

there is a �nite collection F of subsets of B each with positive measure such that

for each f in K there is an A in F satisfying

(�) Bocce-osc f
��
A
< � :

Lemma 4 provides an equivalent formulation of the Bocce criterion; namely we can

replace condition (�) by the condition

(��)

if the subset E of A has half the measure of A, then j mE(f)�mA(f) j < � :

We now attack the proof of Theorem 1. Our proof follows mainly the proof in

[G1].
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proof of theorem 1. Let all bounded subsets of X be midpoint Bocce dentable.

Fix a bounded linear operator T from L1 into X. It su�ces to show that the subset

T �(B(X�)) of L1 satis�es the Bocce criterion (this is a necessary and su�cient

condition for T to be Dunford-Pettis [G2]). To this end, �x � > 0 and B in �+.

Consider the vector measure F from � into X given by F (E) = T (�E). For

x� 2 X�

mE(T
�x�) =

x�F (E)

�(E)

since
R
E
(T �x�) d� = x�T (�E) = x�F (E) .

Since the subset f
F (E)
�(E)

: E � B and E 2 �+g of X is bounded, it is midpoint

Bocce dentable. Accordingly, there is a �nite collection F of subsets of B each in

�+ such that for each x� 2 B(X�) there is a set A in F such that if

F (A)

�(A)
=

1

2

F (E1)

�(E1)
+

1

2

F (E2)

�(E2)

for some subsets Ei of B with Ei 2 �+, then

���x�F (E1)

�(E1)
�
x�F (A)

�(A)

��� =
���x�F (E2)

�(E2)
�
x�F (A)

�(A)

��� < � :

Fix x� 2 B(X�) and �nd the associated A in F .

At this point we turn to our new formulation of the Bocce criterion (whereas

[G1] used the old formulation and Lemma 2.9).

This A 2 F satis�es the condition (��). For consider a subset E of A with

�(E) = 1
2
�(A). Since

F (A)

�(A)
=

1

2

F (E)

�(E)
+

1

2

F (A n E)

�(A n E)

we have that

j mE(T
�x�)�mA(T

�x�) j �
���x�F (E)
�(E)

�
x�F (A)

�(A)

��� < � :

Thus T �(B(X�)) satis�es the Bocce criterion, as needed. �

3. closing comments

A relatively weakly compact subset of L1 is relatively norm compact if and only

if it satis�es the Bocce criterion [G2]. Thus our new formulation of the Bocce
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criterion provides another (perhaps at times more useful) method for testing for

norm compactness in L1 .

Fix A in �+ and f in L1. Put

MA(f) = sup fj mE(f)�mA(f) j : E � A and 2�(E) = �(A)g :

This supremum is obtained. For just normalize so that A = 
 and
R


f d� = 0 andR



j f j d� = 1. As Ralph Howard pointed out, next �nd disjoint subsets E1 and

E2 of measure 1
2 and a 2 R such that

E1 � [f � a] and E2 � [f � a] :

Then MA(f) will be the larger of j mE1
(f) j and j mE2

(f) j .

Basically, our lemma 4 says that

1

2
Bocce-osc f

��
A

� MA(f) � Bocce-osc f
��
A
:

These bounds are the best possible.

For the second inequality, consider the function de�ned on A � [0; 1] by

f = �[0; 1
2
) � �[ 1

2
;1] :

Straightforward calculations show that m[0; 1
2
](f) = 1 and that Bocce-osc f

��
A
= 1.

Thus

MA(f) = Bocce-osc f
��
A
:

As for the �rst inequality, consider the family of functions de�ned on A � [0; 1]

by

f� =
� � 1

�
�[0;�) + �[�;1]

for 0 < � < 1
2
. Straightforward calculations show that

MA(f�) =
1

2 (1� �)
Bocce-osc f�

��
A
:

Actually MA(f) = 1
2
Bocce-osc f

��
A

if and only if f is the zero function on A.
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