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ABSTRACT. A Banach space has the complete continuity property if all its bounded
subsets are midpoint Bocce dentable. We show that a lemma used in the original
proposed proof of this result if false; however, we give a proof to show that the result
is indeed true.

1. INTRODUCTION

Throughout this paper, X denotes an arbitrary Banach space, X* the dual space
of X, B(X) the closed unit ball of X, and S(X) the unit sphere of X. The triple
(2,3, u) refers to the Lebesgue measure space on [0,1], T to the sets in ¥ with
positive measure, and Ly to L1 (2, %, ). The o-field generated by a partition 7 of
[0,1] is o(m). The conditional expectation of f € Ly given a o-field B is E(f|B).

A Banach space X has the complete continuity property (CCP) if each bounded
linear operator from L; into X is Dunford-Pettis (i.e. carries weakly convergent
sequences onto norm convergent sequences). Since a representable operator is
Dunford-Pettis, the CCP is a weakening of the Radon-Nikodym property (RNP).
Recall that a Banach space has the RNP if and only if all its bounded subsets are
dentable. A subset D of X is dentable if for each € > 0 there is  in D such that
z¢co({yeD:||x—vy|>€}). Midpoint Bocce dentability is a weakening of
dentability. The subset D is midpoint Bocce dentable if for each € > 0 there is a
finite subset F' of D such that for each z* in B(X*) there is « in F' satisfying:

if e=1%z+12 withz;€D then |z%(z—2z)|=|z*(z—2)|<e

The following theorem is presented in [G1].
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THEOREM 1. X has the CCP if each bounded subset of X is midpoint Bocce dentable.

Our purpose in writing this note is to show that Lemma 2.9 in [G1] (which was
used in [G1] to prove Theorem 1) is false and to provide a proof of the theorem.
Lemma 2.9 asserts that if A is in ¥% and f in Lo, (u) is not constant a.e. on A,
then there is an increasing sequence {m, } of positive finite measurable partitions
of A such that o(Um,) = £ N A and for each n

Jpfdn _ [4fdp nA)
,LL(U{E . Fewm, and W(E) > W(A) }>:T

Example 2 shows that Lemma 2.9 is false.

EXAMPLE 2. Let f = 3xj0,1y — Xq2,1;- Then Jq fdi = 0. Suppose that {m,}
is an increasing sequence of positive finite measurable partitions of [0, 1] such that

for each n

' [ Fdp 1
u(l |{E . Ecm, and i(E) 20}>_§.
Then o(Um,) # X.

PROOF. Consider the martingale {f,} given by

[al) = E(flo(m)) = Y =X m ()

Eern,

For each n € N put

Pn:U{E:EEWnand /Efduzo} and Q, = P,n(L1].

Since p(P,) = 1, we have that u(Q,) >

/Qlfn—flduz/Q

> /indu = w(Qn) =

We know that such a martingale E(f|o(m,)) converges in Ly norm to E(f|o(Un,)).
But E(f|¥) = f. Thus o(Um,) #X. O

The error in the proof of Lemma 2.9 occurred in assuming that if A is in ¥ and

{mn} is an increasing sequence of positive measurable partitions of A such that for
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each n and each E in 7, the u(F) < €, with lim,, €, =0, then o(Um,,) = ¥NA. This

seemingly sound assertion is not true as shown by the following counterexample.

EXAMPLE 3. For n € N and 1 <1 < 2", define
gn _ [izl 1 i—11
i T gt ) Y |3 T aer g T oem

T, = {E': 1<i<2"} .

and

Clearly {m,} is an increasing sequence of positive measurable partitions of [0, 1]
such that for each n and each F in m, the u(E) = 27", Let f = X[0,1)- An easy
computation shows that E(f|o(m,)) = 3X[o,1- We know that such a martin-
gale E(f|o(my,)) converges in Ly norm to E(f|o(Um,)). But E(f|¥) = f. Thus
o(Urm,) #X. O

2. PROOF OF THEOREM

Our proof of Theorem 1 uses the following observations. For f in L; and A in
Y, the average value and the Bocce oscillation of f on A respectively are

[4 fdp

malf) = 1(A)

and

Bocce-osc f‘A = fA|f _MT/S(]C)MH

observing the convention that 0/0 is 0.

LEMMA 4. Fix Ain ¥ and f in Ly. There is a subset E of A with 2 u(E) = u(A)

and
% Bocce-osc f’A < |mg(f)—ma(f)| -

Furthermore, for each subset E of A with 2 u(F) = u(A),

| mp(f) —ma(f) | < Bocce-osc f|, .

PROOF. Without loss of generality, A = Q and [, fdp =0and [, | f | dp = 1.
With this normalization, ~Bocce-osc f|, = 1 and | mpg(f) —ma(f)| =]

mg(f)|. Let P=[f >0]and N = [f <0].
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The first claim now reads that <2 | [ g fdu| for some subset E of measure

one half. Wlog p(P) > % Partition P into 2 sets, P, and P», of equal measure

such that sz fdu< fPl fdu. Note that

= [Ufldn = [ gau s [ —ran

< u(P), we can find a set I such that Py C E C P and u(F) =

1
—S/fduéffdu,
4 P, E

Normalized, the second claim reads that for each subset E of measure %

2
/fdu’ <1
E

Fix a subset E of measure % Wlog fEmN —fdp < fEmP fdup . So

/Efdu‘ - /Empfdqu/EﬂNfdu’ < /Empfd;u’ S/P|f|du= L

as needed. O

Since pu(Py) < 1 3

For such a set &

as needed.

2

A subset K of L; satisfies the Bocce criterion if for each ¢ > 0 and B in ¥7T
there is a finite collection F of subsets of B each with positive measure such that

for each f in K there is an A in F satisfying
(%) Bocce-osc f‘A <e.

Lemma 4 provides an equivalent formulation of the Bocce criterion; namely we can
replace condition (x) by the condition

(14)

if the subset FE of A has half the measure of A, then |mg(f)—ma(f)]| < €.

We now attack the proof of Theorem 1. Our proof follows mainly the proof in

G1].
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PROOF OF THEOREM 1. Let all bounded subsets of X be midpoint Bocce dentable.
Fix a bounded linear operator 1" from L; into X. It suffices to show that the subset
T*(B(X*)) of L; satisfies the Bocce criterion (this is a necessary and sufficient
condition for T' to be Dunford-Pettis [G2]). To this end, fix € > 0 and B in ©¥.
Consider the vector measure F' from ¥ into X given by F(FE) = T(xg). For

w(E)

mp(T*x") =

since [,(T*z*)dp = =*T(xp) = =" F(E).

Since the subset {% : E C Band FE € X7} of X is bounded, it is midpoint

Bocce dentable. Accordingly, there is a finite collection F of subsets of B each in

Yt such that for each z* € B(X*) there is a set A in F such that if

F(A) F(En) 4 1 F(E)

1
p(A) 2 w(E) 2 (B

for some subsets F; of B with E; € X1, then

T F(E) :r*F(A)‘ B ’a:*F(Eg) _T'F(4)
#(En) #(A) w(E2) u(A)
Fix 2* € B(X*) and find the associated A in F.
At this point we turn to our new formulation of the Bocce criterion (whereas
[G1] used the old formulation and Lemma 2.9).
This A € F satisfies the condition (xx). For consider a subset E of A with
u(E) = L+ u(A). Since

~—

F(A) 1 F(E)
B n(E) *

=
>
DO |

we have that

HE) u(A)
Thus T (B(X™)) satisfies the Bocce criterion, as needed. [

| me(T*2x") —ma(T 2") | =

3. CLOSING COMMENTS

A relatively weakly compact subset of L, is relatively norm compact if and only

if it satisfies the Bocce criterion [G2]. Thus our new formulation of the Bocce
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criterion provides another (perhaps at times more useful) method for testing for
norm compactness in Ly .

Fix Ain T and f in L;. Put

Ma(f) = sup {|mp(f)—ma(f)|: ECA and 2pu(E) = u(A)} .

This supremum is obtained. For just normalize so that A = 2 and fﬂ fdp=0and
fﬂ | ] du = 1. As Ralph Howard pointed out, next find disjoint subsets E; and

FEo5 of measure % and a € R such that
E1C[f§(1] and EQC[fZCL].

Then M4(f) will be the larger of | mpg, (f) | and | mg,(f) |

Basically, our lemma 4 says that
! Bocce-osc f|, < Ma(f) < Bocce-osc f|
5 occe-osc f|, < My < Bocce-osc f|, .

These bounds are the best possible.
For the second inequality, consider the function defined on A = [0, 1] by

f = X4 = X2 -

Straightforward calculations show that m[o’%](f) = 1 and that Bocce-osc f‘A =1.
Thus

M4(f) = Bocce-osc f’A :

As for the first inequality, consider the family of functions defined on A = [0, 1]

by

6—1
fs = —5 X X

for 0 <9 < % . Straightforward calculations show that

Ma(fs) = m Bocce-osc f(g‘A .

Actually Ma(f) = % Bocce-osc f|A if and only if f is the zero function on A.
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