ERRATA CORRECTION TO DENTABILITY, TREES, AND DUNFORD-PETTIS OPERATORS ON L_1

MARIA GIRARDI ZHIBAO HU Pacific J. Math. **157** (1993) 389-394

ABSTRACT. A Banach space has the complete continuity property if all its bounded subsets are midpoint Bocce dentable. We show that a lemma used in the original proposed proof of this result if false; however, we give a proof to show that the result is indeed true.

1. INTRODUCTION

Throughout this paper, \mathfrak{X} denotes an arbitrary Banach space, \mathfrak{X}^* the dual space of \mathfrak{X} , $B(\mathfrak{X})$ the closed unit ball of \mathfrak{X} , and $S(\mathfrak{X})$ the unit sphere of \mathfrak{X} . The triple (Ω, Σ, μ) refers to the Lebesgue measure space on [0, 1], Σ^+ to the sets in Σ with positive measure, and L_1 to $L_1(\Omega, \Sigma, \mu)$. The σ -field generated by a partition π of [0, 1] is $\sigma(\pi)$. The conditional expectation of $f \in L_1$ given a σ -field \mathcal{B} is $E(f|\mathcal{B})$.

A Banach space \mathfrak{X} has the complete continuity property (CCP) if each bounded linear operator from L_1 into \mathfrak{X} is Dunford-Pettis (i.e. carries weakly convergent sequences onto norm convergent sequences). Since a representable operator is Dunford-Pettis, the CCP is a weakening of the Radon-Nikodým property (RNP). Recall that a Banach space has the RNP if and only if all its bounded subsets are dentable. A subset D of \mathfrak{X} is dentable if for each $\epsilon > 0$ there is x in D such that $x \notin \overline{\operatorname{co}} (\{y \in D : || x - y || \ge \epsilon\})$. Midpoint Bocce dentability is a weakening of dentability. The subset D is midpoint Bocce dentable if for each $\epsilon > 0$ there is a finite subset F of D such that for each x^* in $B(\mathfrak{X}^*)$ there is x in F satisfying:

if $x = \frac{1}{2}z_1 + \frac{1}{2}z_2$ with $z_i \in D$ then $|x^*(x - z_1)| \equiv |x^*(x - z_2)| < \epsilon$.

The following theorem is presented in [G1].

¹⁹⁹¹ Mathematics Subject Classification. 47B38, 46B20, 46B22, 28B99.

THEOREM 1. \mathfrak{X} has the CCP if each bounded subset of \mathfrak{X} is midpoint Bocce dentable.

Our purpose in writing this note is to show that Lemma 2.9 in [G1] (which was used in [G1] to prove Theorem 1) is false and to provide a proof of the theorem. Lemma 2.9 asserts that if A is in Σ^+ and f in $L_{\infty}(\mu)$ is not constant a.e. on A, then there is an increasing sequence $\{\pi_n\}$ of positive finite measurable partitions of A such that $\sigma(\cup \pi_n) = \Sigma \cap A$ and for each n

$$\mu\left(\bigcup\left\{E : E \in \pi_n \text{ and } \frac{\int_E f \, d\mu}{\mu(E)} \ge \frac{\int_A f \, d\mu}{\mu(A)}\right\}\right) = \frac{\mu(A)}{2}$$

Example 2 shows that Lemma 2.9 is false.

EXAMPLE 2. Let $f = 3\chi_{[0,\frac{1}{4})} - \chi_{[\frac{1}{4},1]}$. Then $\int_{\Omega} f d\mu = 0$. Suppose that $\{\pi_n\}$ is an increasing sequence of positive finite measurable partitions of [0, 1] such that for each n

$$\mu\left(\bigcup\left\{E : E \in \pi_n \text{ and } \frac{\int_E f \, d\mu}{\mu(E)} \ge 0\right\}\right) = \frac{1}{2}.$$

Then $\sigma(\cup \pi_n) \neq \Sigma$.

PROOF. Consider the martingale $\{f_n\}$ given by

$$f_n(\cdot) = E(f|\sigma(\pi_n)) = \sum_{E \in \pi_n} \frac{\int_E f \, d\mu}{\mu(E)} \chi_E(\cdot) .$$

For each $n \in \mathbb{N}$ put

$$P_n = \bigcup \left\{ E : E \in \pi_n \text{ and } \int_E f \, d\mu \ge 0 \right\} \text{ and } Q_n = P_n \cap \left(\frac{1}{4}, 1\right].$$

Since $\mu(P_n) = \frac{1}{2}$, we have that $\mu(Q_n) \ge \frac{1}{4}$. Thus

$$\begin{split} \int_{\Omega} | f_n - f | d\mu &\geq \int_{Q_n} | f_n - f | d\mu &\geq \int_{Q_n} (f_n - 1) d\mu \\ &\geq \int_{Q_n} 1 d\mu = \mu(Q_n) \geq \frac{1}{4} \,. \end{split}$$

We know that such a martingale $E(f|\sigma(\pi_n))$ converges in L_1 norm to $E(f|\sigma(\cup \pi_n))$. But $E(f|\Sigma) = f$. Thus $\sigma(\cup \pi_n) \neq \Sigma$. \Box

The error in the proof of Lemma 2.9 occurred in assuming that if A is in Σ^+ and $\{\pi_n\}$ is an increasing sequence of positive measurable partitions of A such that for

ERRATA

each n and each E in π_n the $\mu(E) \leq \epsilon_n$ with $\lim_n \epsilon_n = 0$, then $\sigma(\cup \pi_n) = \Sigma \cap A$. This seemingly sound assertion is not true as shown by the following counterexample.

EXAMPLE 3. For $n \in \mathbb{N}$ and $1 \leq i \leq 2^n$, define

$$E_i^n = \left[\frac{i-1}{2^{n+1}}, \frac{i}{2^{n+1}}\right) \cup \left[\frac{1}{2} + \frac{i-1}{2^{n+1}}, \frac{1}{2} + \frac{i}{2^{n+1}}\right)$$

and

$$\pi_n = \{ E_i^n : 1 \le i \le 2^n \}$$

Clearly $\{\pi_n\}$ is an increasing sequence of positive measurable partitions of [0, 1]such that for each n and each E in π_n the $\mu(E) = 2^{-n}$. Let $f = \chi_{[0,\frac{1}{2})}$. An easy computation shows that $E(f|\sigma(\pi_n)) = \frac{1}{2}\chi_{[0,1]}$. We know that such a martingale $E(f|\sigma(\pi_n))$ converges in L_1 norm to $E(f|\sigma(\cup \pi_n))$. But $E(f|\Sigma) = f$. Thus $\sigma(\cup \pi_n) \neq \Sigma$. \Box

2. PROOF OF THEOREM

Our proof of Theorem 1 uses the following observations. For f in L_1 and A in Σ , the average value and the Bocce oscillation of f on A respectively are

$$m_A(f) \equiv \frac{\int_A f \, d\mu}{\mu(A)}$$

and

Bocce-osc
$$f|_A \equiv \frac{\int_A |f - m_A(f)| d\mu}{\mu(A)}$$

observing the convention that 0/0 is 0.

LEMMA 4. Fix A in Σ and f in L_1 . There is a subset E of A with $2 \mu(E) = \mu(A)$ and

$$\frac{1}{2} \operatorname{Bocce-osc} f\big|_A \leq |m_E(f) - m_A(f)|$$

Furthermore, for each subset E of A with $2 \mu(E) = \mu(A)$,

$$|m_E(f) - m_A(f)| \leq \text{Bocce-osc } f|_A$$
.

PROOF. Without loss of generality, $A = \Omega$ and $\int_{\Omega} f \, d\mu = 0$ and $\int_{\Omega} |f| \, d\mu = 1$. With this normalization, Bocce-osc $f|_A = 1$ and $|m_E(f) - m_A(f)| = |m_E(f)|$. Let $P = [f \ge 0]$ and N = [f < 0]. The first claim now reads that $\frac{1}{2} \leq 2 | \int_E f d\mu |$ for some subset E of measure one half. Wlog $\mu(P) \geq \frac{1}{2}$. Partition P into 2 sets, P_1 and P_2 , of equal measure such that $\int_{P_2} f d\mu \leq \int_{P_1} f d\mu$. Note that

$$1 = \int_{\Omega} |f| d\mu = \int_{P} f d\mu + \int_{N} -f d\mu$$

= $2 \int_{P} f d\mu = 2 \left[\int_{P_{1}} f d\mu + \int_{P_{2}} f d\mu \right] \leq 4 \int_{P_{1}} f d\mu$

Since $\mu(P_1) \leq \frac{1}{2} \leq \mu(P)$, we can find a set *E* such that $P_1 \subset E \subset P$ and $\mu(E) = \frac{1}{2}$. For such a set *E*

$$rac{1}{4} \ \le \ \int_{P_1} f \, d\mu \ \le \ \int_E f \, d\mu \ ,$$

as needed.

Normalized, the second claim reads that for each subset E of measure $\frac{1}{2}$

$$2\left|\int_E f \, d\mu\right| \leq 1$$
 .

Fix a subset E of measure $\frac{1}{2}.$ Wlog $\int_{E\cap N} -f\,d\mu \ \leq \ \int_{E\cap P} f\,d\mu$. So

$$\left|\int_E f \, d\mu\right| = \left|\int_{E\cap P} f \, d\mu + \int_{E\cap N} f \, d\mu\right| \le \left|\int_{E\cap P} f \, d\mu\right| \le \int_P |f| \, d\mu = \frac{1}{2} ,$$

as needed. \Box

A subset K of L_1 satisfies the *Bocce criterion* if for each $\epsilon > 0$ and B in Σ^+ there is a finite collection \mathcal{F} of subsets of B each with positive measure such that for each f in K there is an A in \mathcal{F} satisfying

(*) Bocce-osc
$$f|_A < \epsilon$$
 .

Lemma 4 provides an equivalent formulation of the Bocce criterion; namely we can replace condition (*) by the condition

(**)

if the subset E of A has half the measure of A, then $|m_E(f) - m_A(f)| < \epsilon$.

We now attack the proof of Theorem 1. Our proof follows mainly the proof in [G1].

ERRATA

PROOF OF THEOREM 1. Let all bounded subsets of \mathfrak{X} be midpoint Bocce dentable. Fix a bounded linear operator T from L_1 into \mathfrak{X} . It suffices to show that the subset $T^*(B(\mathfrak{X}^*))$ of L_1 satisfies the Bocce criterion (this is a necessary and sufficient condition for T to be Dunford-Pettis [G2]). To this end, fix $\epsilon > 0$ and B in Σ^+ .

Consider the vector measure F from Σ into \mathfrak{X} given by $F(E) = T(\chi_E)$. For $x^* \in \mathfrak{X}^*$

$$m_E(T^*x^*) = \frac{x^*F(E)}{\mu(E)}$$

since $\int_E (T^*x^*) d\mu = x^*T(\chi_E) = x^*F(E)$.

Since the subset $\{\frac{F(E)}{\mu(E)}: E \subset B \text{ and } E \in \Sigma^+\}$ of \mathfrak{X} is bounded, it is midpoint Bocce dentable. Accordingly, there is a finite collection \mathcal{F} of subsets of B each in Σ^+ such that for each $x^* \in B(\mathfrak{X}^*)$ there is a set A in \mathcal{F} such that if

$$\frac{F(A)}{\mu(A)} = \frac{1}{2} \frac{F(E_1)}{\mu(E_1)} + \frac{1}{2} \frac{F(E_2)}{\mu(E_2)}$$

for some subsets E_i of B with $E_i \in \Sigma^+$, then

$$\left|\frac{x^*F(E_1)}{\mu(E_1)} - \frac{x^*F(A)}{\mu(A)}\right| = \left|\frac{x^*F(E_2)}{\mu(E_2)} - \frac{x^*F(A)}{\mu(A)}\right| < \epsilon$$

Fix $x^* \in B(\mathfrak{X}^*)$ and find the associated A in \mathcal{F} .

At this point we turn to our new formulation of the Bocce criterion (whereas [G1] used the old formulation and Lemma 2.9).

This $A \in \mathcal{F}$ satisfies the condition (**). For consider a subset E of A with $\mu(E) = \frac{1}{2}\mu(A)$. Since

$$\frac{F(A)}{\mu(A)} = \frac{1}{2} \frac{F(E)}{\mu(E)} + \frac{1}{2} \frac{F(A \setminus E)}{\mu(A \setminus E)}$$

we have that

$$|m_E(T^*x^*) - m_A(T^*x^*)| \equiv \left|\frac{x^*F(E)}{\mu(E)} - \frac{x^*F(A)}{\mu(A)}\right| < \epsilon.$$

Thus $T^*(B(\mathfrak{X}^*))$ satisfies the Bocce criterion, as needed. \Box

3. CLOSING COMMENTS

A relatively weakly compact subset of L_1 is relatively norm compact if and only if it satisfies the Bocce criterion [G2]. Thus our new formulation of the Bocce criterion provides another (perhaps at times more useful) method for testing for norm compactness in L_1 .

Fix A in Σ^+ and f in L_1 . Put

$$M_A(f) = \sup \{ | m_E(f) - m_A(f) | : E \subset A \text{ and } 2\mu(E) = \mu(A) \}.$$

This supremum is obtained. For just normalize so that $A = \Omega$ and $\int_{\Omega} f d\mu = 0$ and $\int_{\Omega} |f| d\mu = 1$. As Ralph Howard pointed out, next find disjoint subsets E_1 and E_2 of measure $\frac{1}{2}$ and $a \in \mathbb{R}$ such that

$$E_1 \subset [f \leq a] \qquad ext{and} \qquad E_2 \subset [f \geq a] \;.$$

Then $M_A(f)$ will be the larger of $\mid m_{E_1}(f) \mid$ and $\mid m_{E_2}(f) \mid$.

Basically, our lemma 4 says that

$$\frac{1}{2} \operatorname{Bocce-osc} f \big|_{A} \leq M_{A}(f) \leq \operatorname{Bocce-osc} f \big|_{A}$$

These bounds are the best possible.

For the second inequality, consider the function defined on $A \equiv [0, 1]$ by

$$f = \chi_{[0,\frac{1}{2})} - \chi_{[\frac{1}{2},1]}$$

Straightforward calculations show that $m_{[0,\frac{1}{2}]}(f) = 1$ and that Bocce-osc $f|_A = 1$. Thus

$$M_A(f) = \operatorname{Bocce-osc} f \Big|_A$$

As for the first inequality, consider the family of functions defined on $A \equiv [0, 1]$ by

$$f_{\delta} = rac{\delta-1}{\delta} \chi_{[0,\delta)} + \chi_{[\delta,1]}$$

for $0 < \delta < \frac{1}{2}$. Straightforward calculations show that

$$M_A(f_\delta) = \frac{1}{2 (1-\delta)} \operatorname{Bocce-osc} f_\delta \Big|_A.$$

Actually $M_A(f) = \frac{1}{2}$ Bocce-osc $f|_A$ if and only if f is the zero function on A.

ERRATA

References

- [B]. R.D. Bourgin, Geometric aspects of convex sets with the Radon-Nikodým property, Lecture Notes in Mathematics, vol. 933, Springer-Verlag, Berlin and New York, 1983.
- [DU]. J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R.I., 1977.
- [G1]. Maria Girardi, Dentability, Trees, and Dunford-Pettis operators on L_1 , Pacific J. Math. 148 (1991), 59-79.
- [G2]. Maria Girardi, Compactness in L₁, Dunford-Pettis Operators, Geometry of Banach Spaces, Proc. Amer. Math. Soc. 111 (March 1991), 767-777.

GIRARDI: DEPT. OF MATH., UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208 HU: DEPT. OF MATH. AND STATISTICS, MIAMI UNIVERSITY, OXFORD, OH 45056