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Abstract. Our basic example shows that for an arbitrary in�nite-dimen-

sional Banach space X, the Bochner norm and the Pettis norm on L1(X) are

not equivalent. Re�nements of this example are then used to investigate

various modes of sequential convergence in L1(X).

1. INTRODUCTION

Over the years, the Pettis integral along with the Pettis norm have grabbed

the interest of many. In this note, we wish to clarify the di�erences between the

Bochner and the Pettis norms. We begin our investigation by using Dvoretzky's

Theorem to construct, for an arbitrary in�nite-dimensional Banach space, a se-

quence of Bochner integrable functions whose Bochner norms tend to in�nity but

whose Pettis norms tend to zero. By re�ning this example (again working with

an arbitrary in�nite-dimensional Banach space), we produce a Pettis integrable

function that is not Bochner integrable and we show that the space of Pettis

integrable functions is not complete. Thus our basic example provides a uni-

�ed constructive way of seeing several known facts. The third section expresses

these results from a vector measure viewpoint. In the last section, with the aid

of these examples, we give a fairly thorough survey of the implications going

between various modes of convergence for sequences of L1(X) functions.
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2. EXAMPLES: L1(X) vs. P1(X)

Let X be a Banach space with dual X� and let (
;�; �) be the usual Lebesgue

measure space on [0; 1]. Let L1(X) = L1(
;�; �;X) be the space of X-valued

Bochner integrable functions on 
 with the usual Bochner norm jj � jjBochner .
A quick review of the Pettis integral. Consider a weakly measurable func-

tion f : 
 ! X such that x�f 2 L1(R) for all x
� 2 X

�. The Closed Graph

Theorem gives that for each E 2 � there is an element x��E of X�� satisfying

x��E (x�) =
R
E
x�fd� for each x� 2 X�. If x��E is actually in X for each E 2 �,

then we say that f is Pettis integrable with the Pettis integral of f over E being

the element xE 2 X satisfying

x�(xE) =

Z
E

x�fd�

for each x� 2 X�. In this note we shall restrict our attention to Pettis integrable

functions that are strongly measurable. The space P1(X) of (equivalence classes

of) all strongly measurable Pettis integrable functions forms a normed linear

space under the norm

k f kPettis = sup
x�2B(X�)

Z



j x�(f) j d� :

Clearly if f 2 L1(X) then f 2 P1(X) with

jjf jjPettis � jjf jjBochner :

If X is �nite-dimensional, then the Bochner norm and the Pettis norm are equiva-

lent and so L1(X) = P1(X). However, in any in�nite-dimensional Banach space

X, the next example shows that the two norms are not equivalent on L1(X).

Speci�cally, it constructs an essentially bounded sequence of Bochner-norm one

functions whose Pettis norms tend to 0.

EXAMPLE 1.

Let X be an in�nite-dimensional Banach space. We now construct a sequence

ffng of L1(X) functions which tend to zero in the Pettis norm but not in the

Bochner norm.

Let fInk : n = 0; 1; : : : ; k = 1; : : : ; 2ng be the dyadic intervals on [0; 1], i.e.

Ink =
�
k�1
2n
; k
2n

�
:

Fix n 2 N. We de�ne fn with the help of Dvoretzky's Theorem [D]. Find a 2n-

dimensional subspace En of X such that the Banach-Mazur distance between En
and `2

n

2 is at most 2. So there is an operator Tn : `
2n

2 ! En such that the norm

of Tn is at most 2 and the norm of the inverse of Tn is 1. Let fenk : k = 1; : : : 2ng



BOCHNER vs. PETTIS NORM: EXAMPLES AND RESULTS 3

be the image under Tn of the standard unit vectors funk : k = 1; : : : 2ng of `2
n

2 .

De�ne fn : 
! X by

fn(!) =

2nX
k=1

enk 1In
k

(!) ;

The sequence ffng has the desired properties.

Since

jjfnjjBochner =

2nX
k=1

Z
In
k

jjenk jjX d� = 2�n
2nX
k=1

jjenk jjX

and 1 � jjenk jjX � 2,

1 � jjfnjjBochner � 2 :

As for the Pettis norm, �x x� 2 B(X�). Note that the restriction y�n of x� to

En is an element in E�n of norm at most 1. Also, the adjoint T �n of Tn has norm

at most 2. Thus

2nX
k=1

jx�(enk)j =

2nX
k=1

jy�n(Tnunk)j

=

2nX
k=1

j(T �ny�n)(unk)j � jjT �ny�njj(`2n
2

)� jj
2nX
k=1

unk jj`2n
2

� 2
p
2n ;

and so

Z



jx�(fn)j d� =

2nX
k=1

Z
In
k

jx�(enk)j d� = 2�n
2nX
k=1

jx�(enk)j � 2 2�
n

2 ;

giving that

jjfnjjPettis � 2 2�
n

2 :

Thus the Pettis norm of fn tends to zero. �

This di�erence between the Bochner and Pettis norms is further emphasized

by the following minor variation of Example 1.

EXAMPLE 2.

Fix 0 < � < 1
2
and put �n � 2n�. De�ne ~fn : 
 ! X by ~fn = �nfn where

fn is as in Example 1. The Bochner norm of ~fn tends to in�nity at the rate of

�n but the Pettis norm of ~fn tends to zero. �

A variation on this example gives a (strongly measurable) Pettis integrable

function that is not Bochner integrable { working in any in�nite-dimensional

Banach space. The usual way of constructing such a function uses the Dvoretsky-

Rogers Theorem. Recall [DR] that in any in�nite-dimensional Banach space

X, there is an unconditionally convergent series
P

n xn that is not absolutely

convergent. The function f : 
! X given by

f(�) =

1X
n=1

xn

�(En)
1En(�);
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(where fEng is a partition of 
 into sets of strictly positive measure) is Pettis

integrable but not Bochner integrable. Our example is in the same spirit.

EXAMPLE 3.

Let X be an in�nite-dimensional Banach space. Consider the above construc-

tion. Note that the collection fIn2 g1n=1 partitions [0; 1]. Let gn : 
 ! X be a

normalized fn (from Example 1) supported on In2 , i.e.

gn(!) = 2n fn(2
n! � 1) 1In

2
(!) :

De�ne f : 
! X by

f(!) =

1X
n=1

gn(!) 1In
2

(!) :

Clearly f is strongly measurable.

But f is not Bochner integrable since for any N 2 N
Z



jjf jj d� �
NX
n=1

Z
In
2

jjgn jjX d� �
NX
n=1

2�n 2n = N :

However f is Pettis integrable. First note that x�f 2 L1(R) for all x
� 2 X� since

for a �xed x� 2 B(X�) we have (using computations from the �rst example)Z
In
2

jx�f j d� =

Z
In
2

jx�gnj d� =

Z



jx�fnj d� � 2 2�
n

2 ;

and so Z



jx�f j d� =

1X
n=1

Z
In
2

jx�f j d� � 2

1X
n=1

2�
n

2 = 2(
p
2 + 1) :

Next �x E 2 �. We know there is an element x��E of X�� satisfying that

x��E (x�) =
R
E
x�fd� for each x� 2 X�. To see that x��E is actually in X, consider

the sequence fsNg of L1(X) functions on 
 where

sN (!) =

NX
n=1

gn(!) 1In
2

(!) :

Let xNE be the Bochner integral of sN over E. Viewed as a sequence in X��,

fxNE gN converges in norm to x��E since for any x� 2 B(X�)

j(xNE � x��E )(x�)j = j
Z
E

x�sN d��
Z
E

x�f d�j �
Z



jx�(sN � f)j d�

=

1X
n=N+1

Z
In
2

jx�f j d� � 2

1X
n=N+1

2�
n

2 :

Thus x��E is actually in X, as needed. �

Janicka and Kalton [JK] showed that if X is in�nite-dimensional then P1(X) is

never complete under the Pettis norm. The �rst example provides a constructive

way to see this.
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EXAMPLE 4.

Taking some care in our construction in Example 1, we may arrange for fEng
to form a �nite dimensional decomposition (FDD) of some subspace of X. To

see this, �rst choose a basic sequence fxng in X. Take a blocking fFng of the

basis so that each subspace Fn is of large enough dimension to �nd (using the

�nite-dimensional version of Dvoretzky's Theorem) a 2n-dimensional subspace

En of Fn such that the Banach-Mazur distance between En and `2
n

2 is at most

2. Then fEng forms a FDD.

Keeping with the notation from Example 1, de�ne hn : 
! X by

hn =

nX
k=1

fk :

Clearly each hn is in P1(X). Also, fhng is Cauchy in the Pettis norm since

jjhn � hn+j jjPettis �
1X
k=n

jjfkjjPettis � 2

1X
k=n

2�
k

2 :

To show that hn cannot converge to an element in P1(X), we need the following

two lemmas whose proofs are given shortly.

lemma 1. If the sequence ffng of functions in P1(X) converges to f 2 P1(X)

and each fn is essentially valued in some subspace Y of X, then f is also essentially

valued in Y. �

lemma 2. Let ffng be a sequence of P1(X) functions that converges in Pettis

norm to f 2 P1(X). Furthermore, suppose that each fn is essentially valued in

some subspace Y of X and that T : Y ! X is a bounded linear operator. Then

Tfn converges in the Pettis norm to Tf . �

Suppose that hn converges in the Pettis norm to h 2 P1(X). Let Y �
P�En

and let Pn : Y ! X be the natural projection from Y onto En. Note that each

hn, thus also h, are essentially valued in Y. Applying the second lemma to the

operator Pn and noting that Pnhm � fn for m � n, we have that Pnh � fn.

Thus for each n 2 N
1 � jjPnh(!)jjX � 2

for almost all !. This contradicts the fact that for almost all !

lim
N!1

jjh(!)�
NX
n=1

Pnh(!)jjX = 0 :

Thus hn cannot converge to an element in P1(X). �

Now for the proofs of the lemmas.

proof of lemma 1. Let ffng be a sequence of P1(X) functions that con-

verges in the Pettis norm to f 2 P1(X). Furthermore, suppose that each fn is

essentially valued in some subspace Y of X and that f is essentially valued in

some subspace Z with Y � Z. Since f and each fn are strongly measurable, we

may assume that Z is separable.
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Since Z is separable, there is a sequence fz�mg of functionals from Z� such

that an element z from Z is in Y if and only if z�m(z) = 0 for each m.

Since ffng converges in the Pettis norm to f , for each z�m the sequence

fz�mfngn converges to z�mf in L1(R) -norm. But for each m, note that z�mfn
is zero almost everywhere and so z�mf is also zero almost everywhere. Thus f is

also essentially valued in Y. �

proof of lemma 2. Let ffng be a sequence of P1(X) functions which con-

verges in Pettis norm to f 2 P1(X). Furthermore, suppose that each fn is

essentially valued in some subspace Y of X. Lemma 1 gives that f is also essen-

tially valued in Y. Let T : Y ! X be a bounded linear operator. Note that for

a �xed x� 2 X� we may extend T �x� to an element in X� without increasing its

norm.

Note that Tf (and likewise each Tfn) is actually in P1(X). To see this, �rst

observe that for a �xed x� 2 X� (viewing T �x� as an element in X� of the same

norm) Z



jx�(Tf)j d� =

Z



j(T �x�)(f)j d� � jjT �x�jj jjf jjPettis :

and so x�(Tf) 2 L1. Next, let xE be the Pettis integral of f over E 2 �. Note

that xE 2 Y and for each x� 2 X�

x�(TxE) = (T �x�)(xE) =

Z
E

(T �x�)(f) d� =

Z
E

x�(Tf) d� ;

and so T (xE) is the Pettis integral of Tf over E 2 �. Thus Tf is indeed in

P1(X).

Since for x� 2 B(X�)Z



jx�(Tfn � Tf)j d� =

Z



j(T �x�)(fn � f)j d� � jjT jj jjfn � f jjPettis ;

the sequence Tfn converges in the Pettis norm to Tf . �

3. VECTOR MEASURES

Let's look at our examples from a vector measure viewpoint.

A Pettis integrable function f gives rise to a vector measure Gf : � ! X

where Gf(E) is the Pettis integral of f over E. The Pettis norm of f is the

semivariation of Gf . If f 2 L1(X), then the Bochner norm of f is the variation

of Gf .

Example 2 shows that for any in�nite-dimensional Banach space X, there is

a sequence of X-valued measures whose variations tend to in�nity but whose

semivariations tend to zero. On the other hand, Example 3 gives a X-valued

measure of bounded semivariation but in�nite variation.

For f 2 P(X), the corresponding measure Gf is �-continuous and has a rel-

atively compact range. In fact [DU], the completion of P1(X) is (isometrically)
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the space K(X) of all �-continuous measures G : � ! X whose range is rela-

tively compact, equipped with the semivariation norm. Thus Example 4 gives a

measure in K(X) which is not representable by a (strongly measurable) Pettis

integrable function.

4. CONVERGENCE

We now restrict our attention to sequences of L1(X) functions which converge

(in the Bochner norm, in the Pettis norm, or weakly in L1(X)) to functions

actually in L1(X). We have the following obvious relations:

(1) Bochner-norm convergence implies weak and Pettis-norm convergence;

(2) weak convergence implies neither Bochner-norm nor Pettis-norm conver-

gence (e.g. consider the Rademacher functions in L1(R) );

(3) if X is �nite dimensional then the Pettis norm and the Bochner norm are

equivalent.

Our examples help to clarify the other implications.

If X is in�nite-dimensional, then there is a sequence of functions which con-

verges in Pettis norm but whose Bochner norms tend to in�nity (Example 2).

Thus this sequence does not converge in the Bochner norm or weakly.

What if we require the sequence to be bounded (supn jjfnjjL1(X) <1), or uni-

formly integrable, or even essentially bounded (supn jjfnjjL1(X) <1)? Again, if

X is in�nite-dimensional then Example 1 gives a sequence of essentially bounded

functions which converges in Pettis norm but not in the Bochner norm.

In certain situations we can pass from Pettis-norm convergence to weak con-

vergence. If fn ! f in the Pettis norm, then clearly
R


g(fn) d� !

R


g(f) d�

for each simple function g 2 L1(X�). As a �rst step towards weak convergence,

when can we at least conclude that fn ! f in the �(L1(X); L1(X
�))-topology?

A word of caution, the simple functions need not be dense in L1(X
�). For ex-

ample, the L1(`2) function g(�) = P1
n=1 en1In2 , where feng are the standard

unit vectors of `2, is at least
p
2
2

from any simple function in L1(`2). Our next

example illustrates the fact that for any in�nite-dimensional Banach space there

is a bounded sequence in L1(X) that converges in the Pettis norm but not in the

�(L1(X); L1(X
�))-topology.

EXAMPLE 5.

Consider the sequence fgng from Example 3 where

gn(!) = 2n fn(2
n! � 1) 1In

2
(!) :

Since jjfnjjL1(X) � 2, the Bochner norm of each gn is at most 2.

To examine the Pettis norm, �x x� 2 B(X�). Computations in Example 1

show that Z



jx�gnj d� =

Z
In
2

jx�gnj d� =

Z



jx�fnj d� � 2 2�
n

2
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and so

jjgnjjPettis � 2 2�
n

2 :

Thus gn ! 0 in the Pettis norm.

As for the �(L1(X); L1(X
�))-topology, �nd ynk 2 B(X�) such that ynk (e

n
k) =

jjenk jjX. Note that fIn2 : n = 1; 2; : : : g partitions [0; 1] and that fI2nj : j = 2n +

1; : : : ; 2n+1g partitions the interval In2 . De�ne g : 
! X
� by

g(!) =

1X
n=1

2nX
k=1

ynk1I2n
2n+k

(!) :

Clearly g 2 L1(X�). But

Z



g(gn) d� =

Z
In
k

g(gn) d� =

2nX
k=1

Z
I2n
2n+k

g(gn) d�

=

2nX
k=1

Z
I2n
2n+k

ynk (2
n enk) d� �

2nX
k=1

2n 2�2n 1 = 1 :

Thus fgng does not converge in the �(L1(X); L1(X
�))-topology. �

However, a uniformly integrable Pettis-norm convergent sequence does con-

verge in the �(L1(X); L1(X
�))-topology. To see why, consider a uniformly

integrable sequence ffng such that
R


g(fn) d� ! 0 for each simple function

g 2 L1(X
�). For an arbitrary g 2 L1(X

�), note that there is a sequence of

simple functions which converges to g in measure. So we can approximate g (in

L1(X
�) norm) by a simple function ~g on a subset E 2 � of full enough measure

that
R
Ec
jjfnjj d� is small for each n and the measure of Ec is also small. Note

that

����
Z



g(fn) d�

���� �
Z
Ec
jjgjjX� jjfnjjX d� +

Z
E

jjg�~gjjX� jjfnjjX d� +

����
Z
E

~g(fn) d�

���� :

The �rst two integrals on the left-hand side are small for each n. The last integral

converges to zero as n!1. Thus
R


g(fn) d�! 0, as needed.

A Pettis-norm convergent sequence need not be uniformly integrable (Exam-

ple 2). However, if a sequence converges in the �(L1(X); L1(X
�))-topology then

it is necessarily uniformly integrable. To see why this is so, recall the usual proof

[DU p. 104] that a weakly convergent sequence is uniformly integrable. If a

subset K of L1(X) is not uniformly integrable, then we can �nd (with the help

of Rosenthal's Lemma) a sequence ffng in K and a disjoint sequence fEng in �

such that

Z
En

jjfnjj d� > 2� and

Z
[j 6=nEj

jjfnjj d� < �
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for some � > 0. For each n we can �nd ln 2 L1(X
�) � [L1(X)]

�
of norm one

and supported on En such that
R
En
ln(fn) > 2�. De�ne l : 
! X

� by

l(�) =

1X
n=1

ln(�) 1En(�) :

Clearly, l is a norm one element of L1(X
�) � [L1(X)]

�
. But

R


l(fn)9 0 since

Z



l(fn) d� =

Z
En

ln(fn) d� +

Z
Fn

l(fn) d� ;

where Fn = [m6=nEm, and so

����
Z



l(fn) d�

���� �
����
Z
En

ln(fn) d�

���� �
Z
Fn

jjljjX� jj(fn)jjX d�

� 2� �
Z
Fn

jjfnjj d�

� 2� � � = � :

So if gn ! g in the �(L1(X); L1(X
�))-topology then the set fgn � gg, and thus

also the set fgng, are uniformly integrable.

To pass from �(L1(X); L1(X
�))-convergence to weak convergence, recall [DU]

that the dual of L1(X) is (isometrically) L1(X
�) if and only if X� has the Radon-

Nikod�ym property (RNP). Thus we have:

Fact. If X� has the RNP, then a uniformly integrable Pettis-norm convergent

sequence of L1(X) functions also converges weakly.

As noted above, the uniform integrability condition is necessary. Our next

proposition shows that it is also necessary that X� have the RNP. The proof,

which uses Stegall's Factorization Theorem, may be pulled out of a result of

Ghoussoub and P. Saab [GS] characterizing weakly compact sets in L1(X).

Proposition. If X� fails the RNP, then there is an essentially bounded se-

quence of L1(X) functions that is Pettis-norm convergent but not weakly conver-

gent.

Proof.

Since X� fails the RNP, there is a separable subspace Y of X such that Y� is

not separable. We shall construct an essentially bounded sequence fgng of L1(Y)

functions such that gn ! 0 in the Pettis-norm on L1(Y) but gn 9 0 weakly in

L1(Y). This is su�cient.

Let � = f�1; 1gN be the Cantor group with Haar measure �. Let f�n
k : k =

1; : : : ; 2ng be the standard n-th partition of �. Thus �0
1 = � and �n

k =

�n+1
2k�1 [ �n+1

2k and �(�n
k) = 2�n. We will work with our underlying measure

space being the Cantor group endowed with its Haar measure instead of our

usual Lebesgue measure space on [0; 1].
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Consider the set C(�) of real-valued continuous function on � as a subspace

of L1(R). Let f1�g[fhnk : n = 0; 1; 2; : : : and k = 1; : : : ; 2ng be the usual Haar
basis of C(�), where hnk : �! R is given by

hnk = 1�n+1

2k�1

� 1�n+1

2k

:

Let fenk : n = 0; 1; 2; : : : and k = 1; : : : ; 2ng be an enumeration (lexicographi-

cally) of the usual `1 basis and H : `1 ! L1 be the Haar operator that takes enk
to hnk .

By Stegall's Factorization Theorem [S, Theorem 4], H factors through Y,

i.e. there are bounded linear operators R : `1 ! Y and S : Y ! L1 such that

H = SR. Let ~R be the natural extension of R to a bounded linear operator from

L1(`1) to L1(Y).

Consider the sequence ffmg of L1(`1) functions given by

fm(�) =
1

m

mX
n=1

2nX
k=1

hnk(�)enk :

Let gm = ~R(fm). The sequence fgmg of L1(Y) functions does the job.

Since supm jjfm(!)jj`1 = 1 for �-a.e. !, we have that fgmg is essentially

bounded.

To examine the Pettis norm of fm, consider the continuous convex function

 : `1 ! R where the image of x� = (�nk ) 2 `1 ' `�1 (again, lexicographically

ordered) is

 (x�) =

Z
�

jx�(fm)j d� =
1

m

Z
�

�����
mX
n=1

2nX
k=1

hnk(�)x�(enk)
����� d� :

Since the image of fm is supported on fenk : n = 1; : : : ; 2m and k = 1; : : : ; 2ng,
we consider the natural restriction map rm : `1 ! `

2(22
m

�1)
1 � `1 given by

rm((�
n
k : n = 0; 1; 2; : : : and k = 1; : : : ; 2n)) =

(�nk : n = 1; : : : ; 2m and k = 1; : : : ; 2n) :

Let K be the unit ball of rm(`1). The maximum of  over K is attained at

some extreme point x�0 of K. Being an extreme point, x�0 = (�nk) satis�es j�nk j = 1

for each admissible n and k. So

jjfmjjPettis = sup
x�2B(`1)

 (x�) = sup
x�2K

 (x�)

=  (x�0) =
1

m

Z
�

�����
mX
n=1

2nX
k=1

�nk h
n
k(�)

����� d� :

Since
P2n

k=1 �
n
k hnk behaves like the nth-Rademacher function, Khintchine's in-

equality gives that jjfmjjPettis decays like m�
1
2 .
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Now for the Pettis norm of gm, note that if y
� 2 Y� thenZ

�

jy�gmj d� =

Z
�

jy�(Rfm)j d�

=

Z
�

j(R� y�)(fm)j d� � jjR�jj jjy�jj jjfmjjPettis :

Thus gm ! 0 in the Pettis norm on L1(Y).

To see that gm 9 0 weakly in L1(Y), it su�ces to show that ~Hfm 9 0 weakly

in L1(L1) where ~H is the natural extension of H to an operator from L1(`1) to

L1(L1). But since

~Hfm(�) =
1

m

mX
n=1

2nX
k=1

hnk(�)hnk ;

we may view ~Hfm as a function from � into C(�) and thus we only need to

show that ~Hfm 9 0 weakly in L1(C(�)). To see this, just consider the linear

functional l 2 [L1(C(�))]
� given by

l(f) =

Z
�

[f(!)](!) d� where f 2 L1(C(�))

and note that

l( ~Hfm) =
1

m

Z
�

mX
n=1

2nX
k=1

hnk(!)h
n
k(!) d� = 1 :

Thus the sequence fgmg does all it is supposed to do. �

We close with one last example illustrating the above proposition in the case

that X is `1.

EXAMPLE 6. Once again working on the Lebesgue measure space on [0; 1],

consider the sequence fgng of L1(`1) functions where

gn(�) =
1

n

nX
k=1

rk(�)ek

where fekg are the standard unit vectors of `1 and frkg are the Rademacher

functions.

The sequence is uniformly integrable, indeed it is even essentially bounded by

1. As for the Pettis norm of a gn, �x x
� 2 (`1)

�, say x� = (�j) 2 `1. Since
Z



jx�gnj d� =
1

n

Z



j
nX

k=1

�krkj d� ;

Khintchine's inequality shows us that the Pettis norm of gn behaves like 1p
n
.

Thus gn ! 0 in the Pettis norm and so also in the �(L1(X); L1(X
�))-topology.

However, fgng does not converge weakly. For consider the vector measure

G : �! `1 given by

G(E) = (� (E \ [rj = 1])) :
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Clearly G is a �-continuous vector measure of bounded variation. Thus G gives

rise to a functional l 2 [L1(`1)]
�
given by

l(f) =

Z



f dG for f 2 L1(`1) ;

where we view G as taking values in `�1. Since

l(gn) =
1

n

nX
k=1

l(ekrk) =
1

n

nX
k=1

l(ek1[rk=1] � ek1[rk=�1]) =
1

n

nX
k=1

1
2
�0 =

1

2
;

we see that fgng does not converge weakly.
Note that the above linear functional l : L1(`1) ! R is continuous for the

Bochner norm but not for the Pettis norm. �
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