WEAK VS. NORM COMPACTNESS
IN L_1: THE BOCCE CRITERION

MARIＡ GIRARDI

Studya Math. 98 (1991) 95-97

Abstrac t. We present a new simple proof that if a relatively weakly compact subset of L_1 satisfies the Bocce criterion (an oscillation condition), then it is relatively norm compact. The converse of this fact is easy to verify. A direct consequence is that, for a bounded linear operator T from L_1 into a Banach space \mathfrak{X}, T is Dunford-Pettis if and only if the subset $T^*(B(\mathfrak{X}^*))$ of L_1 satisfies the Bocce criterion.

A relatively weakly compact subset of L_1 is relatively norm compact if and only if it satisfies the Bocce criterion (an oscillation condition) [G1]. We shall present a new simple proof that if a relatively weakly compact subset of L_1 satisfies the Bocce criterion, then it is relatively norm compact. The converse is easy to verify.

Recall that a Banach space \mathfrak{X} has the complete continuity property (CCP) if each bounded linear operators from L_1 into \mathfrak{X} is Dunford-Pettis (i.e. maps weakly convergent sequences onto norm convergent sequences). The CCP is a weakening of the Radon-Nikodým property and of strong regularity. Since a bounded linear operator T from L_1 into \mathfrak{X} is Dunford-Pettis if and only if the subset $T^*(B(\mathfrak{X}^*))$ of L_1 is relatively norm compact, the above fact gives that T is Dunford-Pettis if and only if $T^*(B(\mathfrak{X}^*))$ satisfies the Bocce criterion. This oscillation characterization of Dunford-Pettis operators leads to dentability and tree characterizations of the CCP [G2]. Namely, \mathfrak{X} has the CCP if and only if all bounded subsets of \mathfrak{X} are weak-norm-one dentable. Also, \mathfrak{X} has the CCP if and only if no bounded separated δ-trees grow in \mathfrak{X}, or equivalently, no bounded δ-Rademacher trees grow in \mathfrak{X}.

1991 Mathematics Subject Classification. 47B38, 46B20, 28B99.
Throughout this note, X denotes an arbitrary Banach space. The triple (Ω, Σ, μ) refers to the Lebesgue measure space on $[0, 1]$, Σ^+ to the sets in Σ with positive measure, and L_1 to $L_1(\Omega, \Sigma, \mu)$. All notation and terminology, not otherwise explained, are as in [DU].

[G1] introduces the following definitions.

Definitions. For f in L_1 and A in Σ^+, the Bocce oscillation of f on A is given by

$$\text{Bocce-osc } f\big|_A \equiv \frac{\int_A \left| f - \frac{\int_A f \, d\mu}{\mu(A)} \right| \, d\mu}{\mu(A)}.$$

A subset K of L_1 satisfies the *Bocce criterion* if for each $\epsilon > 0$ and B in Σ^+ there is a finite collection \mathcal{F} of subset of B each with positive measure such that for each f in K there is an A in \mathcal{F} satisfying $\text{Bocce-osc } f\big|_A < \epsilon$.

This note’s main purpose is to present a new proof to the theorem below. The author is grateful to Michel Talagrand for his helpful discussions concerning this theorem and proof.

Theorem. If a relatively weakly compact subset of L_1 satisfies the Bocce criterion, then it is relatively L_1-norm compact.

We need the following lemma which we shall verify after the proof of the Theorem.

Lemma. If a subset of L_1 satisfies the Bocce criterion, then the translate of that set by a L_1-function also satisfies the Bocce criterion.

Proof of the Theorem. Assume that the relatively weakly compact subset K of L_1 is not relatively norm compact. We shall show that K does not satisfy the Bocce criterion.
Since K is not relatively norm compact but is relatively weakly compact, there is a sequence \(\{f_n\} \) in a translate \tilde{K} of K satisfying

1. $\{f_n\}$ has no L_1-convergent subsequence
2. $\{f_n\}$ converges weakly in L_1 to 0
3. \(\{ |f_n| \} \) converges weakly in L_1, say to f
4. $\int f \, d\mu \geq 4\epsilon$ for some $\epsilon > 0$.

Set $B = [f \geq 3\epsilon]$. Condition (4) guarantees that $B \in \Sigma^+$.

Let \mathcal{F} be a finite collection of subsets of B, each with positive measure. Choose N such that for each $A \in \mathcal{F}$

5. $|\int_A f_N \, d\mu| < \epsilon \mu(A)$ (possible by (2))
6. $|\int_A f \, d\mu - \int_A |f_N| \, d\mu| < \epsilon \mu(A)$ (possible by (3)).

Then for each $A \in \mathcal{F}$ we have that

\[
\text{Bocce-osc } f_N|_A \equiv \frac{\int_A |f_N - \frac{\int_A f_N \, d\mu}{\mu(A)}| \, d\mu}{\mu(A)} \geq \frac{\int_A |f_N| \, d\mu}{\mu(A)} - \frac{\int_A f_N \, d\mu}{\mu(A)} \\
\geq \frac{\int_A f \, d\mu - \epsilon \mu(A)}{\mu(A)} \geq \frac{3\epsilon \mu(A)}{\mu(A)} - \epsilon = \epsilon.
\]

Thus, \tilde{K} does not satisfy the Bocce criterion and so K also does not satisfy the Bocce criterion.

Proof of the Lemma. Let the subset K of L_1 satisfies the Bocce criterion and $f \in L_1$. We need to show that the set $K+f \equiv \{ g+f : g \in K \}$ satisfies the Bocce criterion. Towards this end, fix $\epsilon > 0$ and $B \in \Sigma^+$. Find $B_0 \subset B$ with $B_0 \in \Sigma^+$ such that f is bounded on B_0.

Approximate $f\chi_{B_0}$ in L_∞-norm within $\frac{\epsilon}{4}$ by a simple function \tilde{f}. Find $C \subset B_0$ with $C \in \Sigma^+$ such that \tilde{f} is constant on C. Since K satisfies the Bocce criterion, we can find a finite collection \mathcal{F} of subsets corresponding to $\frac{\epsilon}{2}$ and C.

Fix \(g + f \in K + f \). Find \(A \in \mathcal{F} \) such that \(\text{Bocce-osc} \ g \big|_A < \frac{\varepsilon}{2} \). Note that since \(\tilde{f} \) is constant on \(A \), \(\text{Bocce-osc} \ g \big|_A = \text{Bocce-osc} \ (g + \tilde{f}) \big|_A \). Now,

\[
\text{Bocce-osc} \ (g + f) \big|_A \leq \text{Bocce-osc} \ (g + \tilde{f}) \big|_A + \text{Bocce-osc} \ (\tilde{f} - f) \big|_A \leq \text{Bocce-osc} \ g \big|_A + 2 \| (\tilde{f} - f) \chi_A \|_{L_\infty} < \varepsilon.
\]

Thus \(K + f \) satisfies the Bocce criterion. \(\blacksquare \)

REFERENCES

[G2]. Maria Girardi, Dentability, Trees, and Dunford-Pettis operators on \(L_1 \), (to appear in Pacific J. Math.).

Maria Girardi, Department of Mathematics, University of Illinois, 1409 W. Green St., Urbana, IL 61801.