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Abstract. If all bounded linear operators from L1 into a Banach space X are

Dunford-Pettis (i.e. carry weakly convergent sequences onto norm convergent se-

quences), then we say that X has the complete continuity property (CCP). The CCP

is a weakening of the Radon-Nikod�ym property (RNP). Basic results of Bourgain and

Talagrand began to suggest the possibility that the CCP, like the RNP, can be real-

ized as an internal geometric property of Banach spaces; the purpose of this paper is

to provide such a realization. We begin by showing that X has the CCP if and only if

every bounded subset of X is Bocce dentable, or equivalently, every bounded subset

of X is weak-norm-one dentable (Section 2). This internal geometric description leads

to another; namely, X has the CCP if and only if no bounded separated �-trees grow

in X, or equivalently, no bounded �-Rademacher trees grow in X (Section 3).

1 : Introduction

Throughout this paper, X denotes an arbitrary Banach space, X� the dual space

of X, B(X) the closed unit ball of X, and S(X) the unit sphere of X. The triple

(
;�; �) refers to the Lebesgue measure space on [0; 1], �+ to the sets in � with

positive measure, and L1 to L1(
;�; �). All notation and terminology, not other-

wise explained, are as in [DU]. For clarity, known results are presented as facts

while new results are presented as theorems, lemmas, and observations.

The following fact provides several equivalent formulations of the CCP.
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Fact 1.1. For a bounded linear operator T from L1 into X, the following statements

are equivalent.

(1) T is Dunford-Pettis.

(2) T maps weak compact sets to norm compact sets.

(3) T (B(L1)) is a relatively norm compact subset of X.

(4) The corresponding vector measure F : �! X given by F (E) = T (�E) has

a relatively norm compact range in X.

(5) The adjoint of the restriction of T to L1 from X� into L�1 is a compact

operator.

(6) As a subset of L1, T
�(B(X�)) is relatively L1-norm-compact.

(7) As a subset of L1, T
�(B(X�)) satis�es the Bocce criterion.

The equivalence of (2) and (3) follows from the fact that the subsets of L1 that are

relatively weakly compact are precisely those subsets that are bounded and uni-

formly integrable, which in turn, are precisely those subsets that can be uniformly

approximated in L1-norm by uniformly-bounded subsets. As for the equivalence

of (6) and (7), [G] presents the two de�nitions below and shows that a relatively

weakly compact subset of L1 is relatively L1-norm-compact if and only if it satis�es

the Bocce criterion.
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De�nition 1.2. For f in L1 and A in �, the Bocce oscillation of f on A is given by

Bocce-osc f
��
A
�

R
A
jf �

R
A
f d�

�(A)
j d�

�(A)
;

observing the convention that 0/0 is 0.

De�nition 1.3. A subsetK of L1 satis�es the Bocce criterion if for each � > 0 and B

in �+ there is a �nite collection F of subset of B each with positive measure such

that for each f in K there is an A in F satisfying

Bocce-osc f
��
A
< � :

The other implications in Fact 1.1 are straightforward and easy to verify. Because

of (4), the CCP is also referred to as the compact range property (CRP).

Towards a martingale characterization of the CCP, �x an increasing sequence

f�ngn�0 of �nite positive interval partitions of 
 such that _ �(�n) = � and

�0 = f
g. Let Fn denote the sub-�-�eld �(�n) of � that is generated by �n. For

f in L1(X), let En(f) denote the conditional expectation of f given Fn.

De�nition 1.4. A sequence ffngn�0 in L1(X) is an X-valued martingale with respect

to fFng if for each n we have that fn is Fn-measurable and En(fn+1) = fn in L1.

The martingale ffng is uniformly bounded provided that supn k fn kL1 is �nite.

Often the martingale is denoted by ffn;Fng in order to display both the functions

and the sub-�-�elds involved.

There is a one-to-one correspondence between the bounded linear operators T

from L1 into X and the uniformly bounded X-valued martingales ffn;Fng. This

correspondence is obtained by taking

T (g) = lim
n!1

Z



fn(!)g(!) d�(!) if ffng is the martingale,
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and

fn(!) =
X
E2�n

T (�E)

�(E)
�E(!) if T is the operator.

Fact 1.1.6 implies that a bounded linear operator T from L1 into X is Dunford-

Pettis if and only if

lim
m;n!1

sup
x�2B(X�)

k En(T
�x�)�Em(T

�x�) kL1= 0 :

Since En(T
�x�) = x�fn in L1, we have the following martingale characterization of

Dunford-Pettis operators, and thus of the CCP.

Fact 1.5. A bounded linear operator from L1 into X is Dunford-Pettis if and only if

the corresponding martingale is Cauchy in the Pettis norm. Consequently, a Banach

space X has the CCP if and only if all uniformly bounded X-valued martingales are

Pettis-Cauchy.

Recall that a bounded linear operator T : L1 ! X is (Bochner) representable if

there is g in L1(�;X) such that for each f in L1(�)

Tf =

Z



fg d� :

A Banach space X has the Radon-Nikod�ym property if all bounded linear operators

from L1 into X are Bochner representable. It is clear that a representable operator

from L1 into X is Dunford-Pettis. Thus, if X has the RNP then X has the CCP.

Both the dual of the James tree space [J] and the Bourgain-Rosenthal space [BR]

have the CCP yet fail the RNP.
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2 : Dentability

In this section, we examine in which Banach spaces bounded subsets have certain

dentability properties.

Dentability characterizations of the RNP are well-known [cf. DU and GU].

Fact 2.1. The following statements are equivalent.

(1) X has the RNP.

(2) Every bounded subset D of X is dentable.

De�nition 2.2 D is dentable if for each � > 0 there is x in D such that

x =2 co (D nB�(x)) where B�(x) = fy 2 X : k x� y k< �g.

(3) Every bounded subset D of X is �-dentable.

De�nition 2.3 D is �-dentable if for each � > 0 there is an x in D such that

if x has the form x =
Pn

i=1 �izi with zi 2 D, 0 � �i, and
Pn

i=1 �i = 1,

then k x� zi k< � for some i .

The natural question to explore next is what dentability condition characterizes

the CCP. Towards this, the next de�nition is a weakening of De�nition 2.2.

De�nition 2.4. A subset D of X is weak-norm-one dentable if for each � > 0 there

is a �nite subset F of D such that for each x� in S(X�) there is x in F satisfying

x =2 co fz 2 D : j x�(z � x) j � �g � co (D n V�;x�(x)) :

Petrakis and Uhl [PU] showed that if X has the CCP then every bounded subset

of X is weak-norm-one dentable. For our characterization of the CCP, we introduce

the following variations of de�nition 2.3 that are useful in showing the converse of

the above implication of [PU].

De�nition 2.5. A subset D of X is Bocce dentable if for each � > 0 there is a �nite
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subset F of D such that for each x� in S(X�) there is x in F satisfying:

if x =

nX
i=1

�izi with zi 2 D; 0 � �i; and

nX
i=1

�i = 1 ;

then

nX
i=1

�i jx
�(x� zi) j < �:

De�nition 2.6. A subset D of X is midpoint Bocce dentable if for each � > 0 there

is a �nite subset F of D such that for each x� in S(X�) there is x in F satisfying:

if x = 1
2
z1 +

1
2
z2 with zi 2 D then j x�(x� z1) j � j x�(x� z2) j < �:

We obtain equivalent formulations of the above de�nitions by replacing S(X�) with

B(X�).

The next theorem, this section's main result, shows that these dentability con-

ditions provide an internal geometric characterization of the CCP.

Theorem 2.7. The following statements are equivalent.

(1) X has the CCP.

(2) Every bounded subset of X is weak-norm-one dentable.

(3) Every bounded subset of X is midpoint Bocce dentable.

(4) Every bounded subset of X is Bocce dentable.

The remainder of this section is devoted to the proof of Theorem 2.7. Because

of its length and complexity and also for the sake of clarity of the exposition, we

present the implications as separate theorems. It is clear from the de�nitions that

(2) implies (3) and that (4) implies (3). [PU, Theorem II.7] shows that (1) im-

plies (2) by constructing, in a bounded non-weak-norm-one dentable subset D, a

(co D)-valued martingale that is not Cauchy in the Pettis norm. Using Fact 1.1.7,

Theorem 2.10 shows that (3) implies (1). That (1) implies (4) follows from Theo-

rem 2.8 and the martingale characterization of the CCP (Fact 1.5).
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Theorem 2.8. If a subset D of X is not Bocce dentable, then there is an increasing

sequence f�ng of partition of [0; 1) and a D-valued martingale ffn; �(�n)g that is

not Cauchy in the Pettis norm. Moreover, f�ng can be chosen so that _ �(�n) = �,

�0 = f
g and each �n partitions [0; 1) into a �nite number of half-open intervals.

Proof. Let D be subset of X that is not Bocce dentable. Accordingly, there is an

� > 0 satisfying:

for each �nite subset F of D there is x�F in S(X�) such that

each x in F has the form x =

mX
i=1

�izi

with

mX
i=1

�i j x
�
F (x� zi) j > �

for a suitable choice of zi 2 D and �i > 0 with

mX
i=1

�i = 1 .

(�)

We shall use property (�) to construct an increasing sequence f�ngn�0 of �nite

partitions of [0; 1), a martingale ffn; �(�n)gn�0, and a sequence fx�ngn�1 in S(X�)

such that for each nonnegative integer n:

(1) fn has the form fn =
P

E2�n
xE�E where xE is in D,

(2)
R


j x�n+1(fn+1 � fn) j d� � � ,

(3) if E is in �n, then E has the form [a; b) and �(E) < 1=2n and

(4) �0 = f
g.

Condition (3) guarantees that _ �(�n) = � while condition (2) guarantees that

ffng is not Cauchy in the Pettis norm.

Towards the construction, pick an arbitrary x inD. Set �0 = f
g and f0 = x �
.

Fix n � 0. Suppose that a partition �n of 
 consisting of intervals of length at

most 1/2n and a function fn =
P

E2�n
xE�E with xE 2 D have been constructed.

We now construct fn+1, �n+1 and x�n+1 satisfying conditions (1), (2) and (3).
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Apply (�) to F = fxE : E 2 �ng and �nd the associated x�F = x�n+1 in S(X�).

Fix an element E = [a; b) of �n. We �rst de�ne fn+1�E . Property (�) gives that

xE has the form

xE =

mX
i=1

�ixi with

mX
i=1

�i j x
�
n+1(x� xi) j > �

for a suitable choice of xi 2 D and positive real numbers �1; : : : ; �m whose sum is

one. Using repetition, we arrange to have �i < 1=2n+1 for each i. It follows that

there are real numbers d0; d1; : : : ; dm such that

a = d0 < d1 < : : : < dm�1 < dm = b

and

di � di�1 = �i (b� a) for i = 1; : : : ;m :

Set

fn+1�E =

mX
i=1

xi �[di�1;di) :

De�ne fn+1 on all of 
 similarly. Let �n+1 be the partition consisting of all the

intervals [di�1; di) obtained from letting E range over �n.

Clearly, fn+1 and �n+1 satisfy conditions (1) and (3). Condition (2) is also

satis�ed since for each E = [a; b) in �n we have, using the above notation,

Z
E

j x�n+1(fn+1 � fn) j d� =

mX
i=1

Z di

di�1

j x�n+1(xi � xE) j d�

= (b� a)

mX
i=1

�i j x
�
n+1(xi � xE) j

� �(E) � :

To insure that ffng is indeed a martingale, we need to compute En(fn+1). Fix

E = [a; b) in �n. Using the above notation, we have for almost all t in E,
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En(fn+1)(t) =
1

b� a

Z b

a

fn+1 d�

=
1

b� a

mX
i=1

Z di

di�1

fn+1 d�

=

mX
i=1

di � di�1

b� a
xi

=

mX
i=1

�i xi = xE

= fn(t) :

Thus En(fn+1) = fn a.e., as needed.

This completes the necessary constructions.

We need the following lemma which we will prove after the proof of Theorem 2.10.

Lemma 2.9. If A is in �+ and f in L1(�) is not constant a.e. on A, then there is

an increasing sequence f�ng of positive �nite measurable partitions of A such that

_ �(�n) = � \A and for each n

�

�[n
E : E 2 �n;

R
E
f d�

�(E)
�

R
A
f d�

�(A)

o�
=

�(A)

2
;

and so

�

�[n
E : E 2 �n;

R
E
f d�

�(E)
<

R
A
f d�

�(A)

o�
=

�(A)

2
:

Theorem 2.10. If all bounded subsets of X are midpoint Bocce dentable, then X

has the complete continuity property.

Proof. Let all bounded subsets of X be midpoint Bocce dentable. Fix a bounded

linear operator T from L1 into X. We shall show that the subset T �(B(X�)) of L1

satis�es the Bocce criterion. Then an appeal to Fact 1.1.7 shows that X has the

complete continuity property.
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To this end, �x � > 0 and B in �+. Let F denote the vector measure from �

into X given by F (E) = T (�E). Since the subset f
F (E)

�(E)
: E � B and E 2 �+g of X

is bounded, it is midpoint Bocce dentable. Accordingly, there is a �nite collection

F of subsets of B each in �+ such that for each x� in the unit ball of X� there is a

set A in F such that if

F (A)

�(A)
=

1

2

F (E1)

�(E1)
+

1

2

F (E2)

�(E2)

for some subsets Ei of B with Ei 2 �+, then

1

2

���x�F (E1)

�(E1)
�
x�F (A)

�(A)

��� +
1

2

���x�F (E2)

�(E2)
�
x�F (A)

�(A)

��� < � : (1)

Fix x� in the unit ball of X� and �nd the associated A in F . By de�nition, the set

T �(B(X�)) will satisfy the Bocce criterion provided that Bocce-osc (T �x�)
��
A
� �.

If T �x� 2 L1 is constant a.e. on A, then the Bocce-osc (T �x�)
��
A
is zero and we

are �nished. So assume T �x� is not constant a.e. on A.

For a �nite positive measurable partition � of A, denote

f� =
X
E2�

F (E)

�(E)
�E

and

E+
� =

[�
E 2 � :

x�F (E)

�(E)
�

x�F (A)

�(A)

�

and

E�� =
[�

E 2 � :
x�F (E)

�(E)
<

x�F (A)

�(A)

�
:

Note that for E in �

x�F (E) =

Z
E

(x�T �) d� :
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Compute

Z
A

���x�f� � x�F (A)

�(A)

��� d�
=
X
E2�

Z
E

���x�F (E)
�(E)

�
x�F (A)

�(A)

��� d�
= �(A)

X
E2�

�(E)

�(A)

���x�F (E)
�(E)

�
x�F (A)

�(A)

��� (2)

= �(A)

"
�(E+

� )

�(A)

���x�F (E+
� )

�(E+
� )

�
x�F (A)

�(A)

���+ �(E�� )

�(A)

���x�F (E�� )
�(E�� )

�
x�F (A)

�(A)

���
#
:

Since the L1-function T
�x� is bounded, for now we may view T �x� as an element

in L1. Lemma 2.9 allow us to apply property (1) to equation (2). For applying

Lemma 2.9 to A with f � T �x� produces an increasing sequence f�ng of positive

measurable partitions of A satisfying

_ �(�n) = � \A and �(E+
�n
) =

�(A)

2
= �(E��n) :

For � = �n, condition (2) becomes

Z
A

���x�f�n � x�F (A)

�(A)

��� d�
= �(A)

"
1

2

���x�F (E+
�n
)

�(E+
�n)

�
x�F (A)

�(A)

���+ 1

2

���x�F (E��n)
�(E��n)

�
x�F (A)

�(A)

���
#
: (3)

Since F (A) = �(A) has the form

F (A)

�(A)
=

�(E+
�n
)

�(A)

F (E+
�n
)

�(E+
�n)

+
�(E��n)

�(A)

F (E��n)

�(E��n)

=
1

2

F (E+
�n
)

�(E+
�n)

+
1

2

F (E��n)

�(E��n)
;

applying property (1) to equation (3) yields that for each �nZ
A

���x�f�n � x�F (A)

�(A)

��� d� < �(A) � :

Since _ �(�n) = � \A and

(x�f�n)
��
A
=

X
E2�n

x�F (E)

�(E)
�E =

X
E2�n

R
E
(T �x�) d�

�(E)
�E = E�n(T

�x�)
��
A
;
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we have that (x�f�n)
��
A

converges to (T �x�)
��
A

in L1-norm . Hence,

Bocce-osc (T �x�)
��
A
�

R
A

��(T �x�)� R
A
(T�x�) d�

�(A)

�� d�
�(A)

� �:

Thus T �(B(X�)) satis�es the Bocce criterion, and so as needed, X has the complete

continuity property.

We now verify Lemma 2.9.

Proof of Lemma 2.9. Fix A in �+ and f in L1(�). Without loss of generality, f

is not constant a.e. on A and
R
A
f d� = 0. Find P and N in � satisfying

A = P [ N �(P ) =
�(A)

2
= �(N) P \N = ;

and Z
P

f d� � 2M > 0

Z
N

f d� � �2M < 0 :

Approximate f by a simple function ~f(�) =
P

�i �Ai(�) satisfying

(1) k f � ~f kL1< M ,

(2) [Ai = A and the Ai are disjoint,

(3) Ai � P if i � m and Ai � N if i > m for some positive

integer m.

Note that

P =
[
i�m

Ai and N =
[
i>m

Ai :

To �nd the sequence f�ng, we shall �rst �nd an increasing sequence f�Pn g of

partitions of P and an increasing sequence f�Nn g of partitions of N. Then �n will

be the union of �Pn and �Nn . To this end, for each Ai obtain an increasing sequence

of partitions of Ai :
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Ai � Ei0
1

. &

Ei1
1 Ei1

2

. & . &

Ei2
1 Ei2

2 Ei2
3 Ei2

4

� � �

such that for n = 0; 1; 2; : : : and k = 1; : : : ; 2n

Ei n+1
2k�1 [ Ei n+1

2k = Ein
k Ei n+1

2k�1 \ Ei n+1
2k = ; �(Ein

k ) =
�(Ai)

2n
:

For each positive integer n , let �Pn be the partition of P given by

�Pn = fPn
k : k = 1; : : : ; 2ng where Pn

k =
[
i�m

Ein
k ;

�Nn be the partition of N given by

�Nn = fNn
k : k = 1; : : : ; 2ng where Nn

k =
[
i>m

Ein
k ;

and �n be the partition of A given by

�n = �Pn [ �Nn :

The sequence f�ng has the desired properties. Since

�(Pn
k ) =

X
i�m

�(Ai)

2n
=

�(P )

2n
=

�(A)

2n+1

and

�(Nn
k ) =

X
i<m

�(Ai)

2n
=

�(N)

2n
=

�(A)

2n+1
;

any element in �n has measure �(A) = 2n+1. Thus _ �(�n) = � \A .
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As for the other properties, since ~f takes the value �i on Ein
k � Ai we have

Z
Pn

k

~f d� =
X
i�m

Z
Ein

k

~f d�

=
X
i�m

�i �(E
in
k )

=
1

2n

X
i�m

�i �(Ai)

=
1

2n

Z
P

~f d�

> 0

and likewise Z
Nn

k

~f d� =
1

2n

Z
N

~f d� < 0 :

We chose ~f close enough to f so that the above inequalities still hold when we

replace ~f by f ,

Z
Pn

k

f d� �

Z
Pn

k

( ~f �M) d�

=
1

2n

Z
P

~f d� � M�(Pn
k )

�
1

2n

Z
P

(f �M) d� �
M�(A)

2n+1

=
1

2n

Z
P

f d� �
M�(A)

2n+1
�

M�(A)

2n+1

>
M

2n
�

M�(A)

2n
=

M [1� �(A)]

2n

� 0

and likewise

Z
Nn

k

f d� <
M [�(A)� 1]

2n
� 0 :
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Thus the other properties of the lemma are satis�ed since for each n ,

�

�[n
E : E 2 �n;

Z
E

f d� � 0
o�

= �

�[n
E : E 2 �Pn

o�

= �(P )

=
�(A)

2

and so

�

�[n
E : E 2 �n;

Z
E

f d� < 0
o�

=
�(A)

2
:

Note that the partitions f�ng are nested by construction.
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3 : Bushes and Trees

In this section, we examine which Banach spaces allow certain types of bushes

and trees to grow in them. First let us review some known implications.

A Banach space X fails the RNP precisely when a bounded �-bush grows in X.

Thus if a bounded �-tree grows in X then X fails the RNP. The converse is false; the

Bourgain-Rosenthal space [BR] fails the RNP yet has no bounded �-trees. However,

if X is a dual space then the converse does hold.

Bourgain [B2] showed that if X fails the CCP then a bounded �-tree grows in

X. The converse is false; the dual of the James Tree space has a bounded �-tree

and the CCP. It is well-known that if a bounded �-Rademacher tree grows in X

then X fails the CCP. Riddle and Uhl [RU] showed that the converse holds in a

dual space. This section's main theorem, Theorem 3.1 below, makes precise exactly

which types of bushes and trees grow in a Banach space failing the CCP.

Theorem 3.1. The following statements are equivalent.

(1) X fails the CCP.

(2) A bounded separated �-tree grows in X.

(3) A bounded separated �-bush grows in X.

(4) A bounded �-Rademacher tree grows in X.

The remainder of this section is devoted to proving Theorem 3.1. That (1)

implies (2) will follow from Theorem 3.2 below. All the other implications are

straightforward and will be veri�ed shortly. As usual, we start with some de�nitions.

Perhaps it is easiest to de�ne a bush via martingales. If f�ngn�0 is an increasing

sequence of �nite positive interval partitions of [0; 1) with _ �(�n) = � and �0 =

While typing this paper, I learned that H.P. Rosenthal has also recently obtained the result

that if X fails the CCP then a bounded �-Rademacher tree grows in X.
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f
g and if ffn; �(�n)gn�0 is an X-valued martingale, then each fn has the form

fn =
X
E2�n

xnE�E

and the system

fxnE : n = 0; 1; 2; : : : and E 2 �ng

is a bush in X. Moreover, every bush is realized this way. A bush is a �-bush if the

corresponding martingale satis�es for each positive integer n

k fn(t)� fn�1(t) k > � : (i)

A bush is a separated �-bush if there exists a sequence fx�ngn�1 in S(X
�) such that

the corresponding martingale satis�es for each positive integer n

j x�n (fn(t)� fn�1(t)) j > � : (ii)

In this case we say that the bush is separated by fx�ng. Clearly a separated �-bush

is also a �-bush.

Observation that (3) implies (1) in Theorem 3.1. If a bounded separated �-bush

grows in a subset D of X, then condition (ii) guarantees that the corresponding

D-valued martingale ffn; �(�n)g is not Pettis-Cauchy since

k fn � fn�1 kPettis �

Z



j x�n (fn(t)� fn�1(t)) j d� > � :

So if a bounded separated �-bush grows in X then X fails the CCP (Fact 1.5).

If each �n is the nth dyadic partition then we call the bush a (dyadic) tree. Let

us rephrase the above de�nitions for this case, without the help of martingales. A

tree in X is a system of the form fxnk : n = 0; 1; : : : ; k = 1; : : : ; 2ng satisfying for

n = 1; 2; : : : and k = 1; : : : ; 2n�1

xn�1k =
xn2k�1 + xn2k

2
: (iii)
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Condition (iii) guarantees that ffng is indeed a martingale. It is often helpful to

think of a tree diagrammatically:

x01

x11 x12

x21 x22 x23 x24

x31 x32 x33 x34 x35 x36 x37 x38

� � �

It is easy to see that (iii) is equivalent to

xn2k�1 � xn2k = 2 (xn2k�1 � xn�1k ) = 2 (xn�1k � xn2k ) : (iii')

A tree fxnkg is a �-tree if for n = 1; 2; : : : and k = 1; : : : ; 2n�1

k xn2k�1 � xn�1k k � k xn2k � xn�1k k > � : (iv)

An appeal to (iii') shows that (iv) is equivalent to

k xn2k�1 � xn2k k > 2 � : (iv')

A tree fxnkg is a separated �-tree if there exists a sequence fx�ngn�1 in S(X�) such

that for n = 1; 2; : : : and k = 1; : : : ; 2n�1

j x�n(x
n
2k�1 � xn�1k ) j � j x�n(x

n
2k � xn�1k ) j > � : (v)

Another appeal to (iii') shows that (v) is equivalent to

j x�n(x
n
2k�1 � xn2k) j > 2 � : (v')

Furthermore, by switching xn2k�1 and x
n
2k when necessary, we may assume that (v')

is equivalent to

x�n(x
n
2k�1 � xn2k) > 2 � : (v")



DUNFORD-PETTIS OPERATORS 19

Since a separated �-tree is also a separated �-bush, (2) implies (3) in Theorem 3.1.

A tree fxnk : n = 0; 1; : : : ; k = 1; : : : ; 2ng is called a �-Rademacher tree [RU] if

for each positive integer n

k

2n�1X
k=1

(xn2k�1 � xn2k) k > 2n� :

Perhaps a short word on the connection between Rademacher trees and the Rad-

emacher functions frng is in order. In light of our discussion in section 1, there

is a one-to-one correspondence between all bounded trees in X and all bounded

linear operators from L1 into X. If fxnkg is a bounded tree in X with associated

operator T , then it is easy to verify that fxnkg is a �-Rademacher tree precisely

when k T (rn) k > � for all positive integers n.

Fact that (4) implies (1) in Theorem 3.1 [RU]. Let ffng be the (dyadic) martingale

associated with a �-Rademacher tree fxnkg. If x� is in X� and Ink is the dyadic

interval [ (k � 1)=2n ; k=2n ) thenZ



j x� (fn � fn�1) j d� =

2n�1X
k=1

Z
I
n�1

k

j x� (fn � fn�1) j d�

=

2n�1X
k=1

" Z
In
2k�1

j x� (xn2k�1 � xn�1k ) j d� +

Z
In
2k

j x� (xn2k � xn�1k ) j d�

#

=
1

2n

2n�1X
k=1

h
j x� (xn2k�1 � xn�1k ) j + j x� (xn2k � xn�1k ) j

i

=
1

2n

2n�1X
k=1

j x� (xn2k�1 � xn2k) j by (iii')

�
1

2n
j x�

� 2n�1X
k=1

(xn2k�1 � xn2k)
�
j :

From this we see that ffng is not Cauchy in the Pettis norm since

k fn � fn�1 kPettis = sup
x�2B(X�)

Z



j x� (fn � fn�1) j d�
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� sup
x�2B(X�)

1

2n
j x�

� 2n�1X
k=1

(xn2k�1 � xn2k)
�
j

=
1

2n
k

2n�1X
k=1

(xn2k�1 � xn2k) k

>
1

2n
2n � = � :

Thus if a bounded �-Rademacher tree grows in a subset D of X, then there is a

bounded D-valued martingale that in not Pettis-Cauchy and so X fails the CCP

(Fact 1.5).

Observation that (2) implies (4) in Theorem 3.1. A separated �-tree can easily be

reshu�ed so that it is a �-Rademacher tree. For if fxnkg is a separated �-tree then we

may assume, by switching xn2k�1 and xn2k when necessary, that there is a sequence

fx�ng in S(X�) satisfying

x�n(x
n
2k�1 � xn2k) > 2 � :

With this modi�cation fxnkg is a �-Rademacher tree since

k

2n�1X
k=1

(xn2k�1 � xn2k) k � j

2n�1X
k=1

x�n (xn2k�1 � xn2k) j

=

2n�1X
k=1

x�n (xn2k�1 � xn2k)

>

2n�1X
k=1

2 � = 2n � :

It should be noted that a bounded ~�-Rademacher tree need neither be a �-tree

nor a separated �-tree. For example, consider the c0-valued dyadic martingale ffng

given by

fn = (s0; : : : ; sn; 0; 0; : : : ) ;

where the function sn from [0; 1] into [�1; 1] is de�ned by

sn =

�
(�1)k 2�n if ! 2 Ink with k � 2 ;

(�1)k if ! 2 Ink with k > 2 :
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The tree associated with ffng is a
1
4
-Rademacher tree but is neither a �-tree nor a

separated �-tree for any positive �. Thus, since a �-tree grows in a space failing the

CCP, the notion of a separated �-tree is more desirable than that of a �-Rademacher

tree for characterizing the CCP.

To complete the proof of Theorem 3.1, we need only to show that (1) implies

(2). Towards this end, let X fail the CCP. An appeal to Theorem 2.7 gives that

there is a bounded non-midpoint-Bocce-dentable subset of X. In such a set, we

can construct a separated �-tree. This construction is made precise in the following

theorem.

Theorem 3.2. A separated �-tree grows in a non-midpoint-Bocce-dentable set.

Proof. Let D be a subset of X that is not midpoint Bocce dentable. Accordingly,

there is a � > 0 satisfying:

for each �nite subset F of D there is a norm one linear functional x�F such that

each x in F has the form x =
x1 + x2

2
with jx�F (x1 � x2)j > �

for a suitable choice of x1 and x2 in D .

(�)

We shall use the property (�) to construct a tree fxnk : n = 0; 1; : : : ; k = 1; : : : ; 2ng

in D that is separated by a sequence fx�ngn�1 of norm one linear functionals.

Towards this construction, pick an arbitrary x01 in D. Apply (�) with F = fx01g

and �nd x�F = x�1. Property (�) provides x11 and x12 in D satisfying

x01 =
x11 + x12

2
and jx�1(x

1
1 � x12)j > � :

Next apply (�) with F = fx11; x
1
2g and �nd x�F = x�2. For k = 1 and 2, property

(�) provides x22k�1 and x22k in D satisfying

x1k =
x22k�1 + x22k

2
and jx�2(x

2
2k�1 � x22k)j > � :
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Instead of giving a formal inductive proof we shall be satis�ed by �nding

x31; x
3
2; : : : ; x

3
8 in D along with x�3 . Apply (�) with F = fx21; x

2
2; x

2
3; x

2
4g and �nd

x�F = x�3. For k = 1; 2; 3 and 4, property (�) provides x32k�1 and x
3
2k in D satisfying

x2k =
1
2
(x32k�1 + x32k) and jx�3(x

3
2k�1 � x32k)j > � :

It is now clear that a separated �-tree grows in such a set D.

Remark 3.3. Theorem 2.7 presents several dentability characterizations of the CCP.

Our proof that (1) implies (2) in Theorem 3.1 uses part of one of these character-

izations; namely, if X fails the CCP then there is a bounded non-midpoint-Bocce-

dentable subset of X. If X fails the CCP, then there is also a bounded non-weak-

norm-one-dentable subset of X (Theorem 2.7). In the closed convex hull of such a

set we can construct a martingale that is not Pettis-Cauchy [PU, Theorem II.7];

furthermore, the bush associated with this martingale is a separated �-bush. How-

ever, it is unclear whether this martingale is a dyadic martingale thus the sepa-

rated �-bush may not be a tree. If X fails the CCP, then there is also a bounded

non-Bocce-dentable subset of X (Theorem 2.7). In such a set we can construct a

martingale that is not Pettis-Cauchy (Theorem 2.8), but it is unclear whether the

bush associated with this martingale is a separated �-bush.

Remark 3.4. The �-tree that Bourgain [B2] constructed in a space failing the CCP

is neither a separated �-tree nor a �-Rademacher tree since the operator associated

with his tree is Dunford-Pettis.
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4 : Localization

We now localize the results thus far. We de�ne the CCP for bounded subsets of

X by examining the behavior of certain bounded linear operators from L1 into X.

Before determining precisely which operators let us set some notation and consider

an example.

Let F (L1) denote the positive face of the unit ball of L1, i.e.

F (L1) = ff 2 L1 : f � 0 a.e. and k f k= 1g ;

and � denote the subset of F (L1) given by

� =
� �E

�(E)
: E 2 �+

	
:

Note that the L1-norm closed convex hull of � is F (L1).

Some care is needed in localizing the CCP. The example below (due to Stegall)

illustrates the trouble one can encounter in localizing the RNP.

Example 4.1. We would like to de�ne the RNP for sets in such a way that if a

subset D has the RNP then the co D also has the RNP. For now, let us agree that

a subset D of X has the RNP if all bounded linear operators from L1 into X with

T (�) � D are representable. Let X be any separable Banach space without the

RNP (e.g. L1). Renorm X to be a strictly convex Banach space. Let D be the unit

sphere of X and T : L1 ! X satisfy T (�) � D. Since X is strictly convex, it is

easy to verify that T (�) is a singleton in X. Thus T is representable and so D has

the RNP. If this is to imply that co D also has the RNP, then the unit ball of X

would have the RNP. But if the unit ball of X has the RNP then X has the RNP;

but, X fails the RNP. The same problem arises if we replace T (�) � D by either

T (F (L1)) � D or T (B(L1)) � D.

Because of such di�culties, we localize properties to nonconvex sets by consid-

ering their closed convex hull. We now make precise the localized de�nitions.
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De�nition 4.2. IfD is a closed bounded convex subset of X, thenD has the complete

continuity property if all bounded linear operators T from L1 into X satisfying

T (�) � D are Dunford-Pettis. If D is an arbitrary bounded subset of X, then

D has the complete continuity property if the co D has the complete continuity

property.

The RNP for subsets is de�ned similarly. We obtain equivalent formulations of

the above de�nitions by replacing T (�) � D with T (F (L1)) � D. Because of the

de�nitions we restrict our attention to closed bounded convex subsets of X.

We can derive a martingale characterization of the CCP for a closed bounded

convex subset K of X. As in section 1, �x an increasing sequence f�ngn�0 of

�nite positive interval partitions of 
 such that _ �(�n) = � and �0 = f
g. Set

Fn = �(�n). It is easy to see that a martingale ffn;Fng takes values in K precisely

when the corresponding bounded linear operator T satis�es T (�) � K. In light of

Fact 1.5, we now have the following fact.

Fact 4.3. IfK is a closed bounded convex subset of X, thenK has the CCP precisely

when all K-valued martingales are Cauchy in the Pettis norm.

Theorem 2.7 localizes to provide the following characterization.

Theorem 4.4. Let K be a closed bounded convex subset of X. The following

statements are equivalent.

(1) K has the CCP.

(2) All the subsets of K are weak-norm-one dentable.

(3) All the subsets of K are midpoint Bocce dentable.

(4) All the subsets of K are Bocce dentable.

Proof. It is clear from the de�nitions that (2) implies (3) and that (4) implies (3).
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Theorem 2.8 and Fact 4.3 show that (1) implies (4) while [PU, Theorem II.7] and

Fact 4.3 show that (1) implies (2). So we only need to show that (3) implies (1).

For this, slight modi�cations in the proof of Theorem 2.10 su�ce.

Let all subsets of K be midpoint Bocce dentable. Fix a bounded linear operator

T from L1 into X satisfying T (�) � K. We shall show that the subset T �(B(X�))

of L1 satis�es the Bocce criterion. Then an appeal to Fact 1.1.7 gives that K has

the complete continuity property. To this end, �x � > 0 and B in �+. Let F denote

the vector measure from � into X given by F (E) = T (�E). Since T (�) � K, the

set f
F (E)

�(E)
: E � B and E 2 �+g is a subset of K and thus is midpoint Bocce

dentable. The proof now proceeds as the proof of Theorem 2.10.

Towards a localized tree characterization, let K be a closed bounded convex

subset of X. If K fails the CCP, then there is a subset of K that is not midpoint

Bocce dentable (Theorem 4.4) and hence a separated �-tree grows in K (Theo-

rem 3.2). A separated �-tree is a separated �-bush and, with slight modi�cations, a

�-Rademacher tree. In light of our discussion in section 3, if a separated �-bush or

a �-Rademacher tree grows in K, then the associated K-valued martingale is not

Pettis-Cauchy and so K fails the CCP (Fact 4.3). Thus Theorem 3.1 localizes to

provide the following characterization.

Theorem 4.5. Let K be a closed bounded convex subset of X. The following

statements are equivalent.

(1) K fails the CCP.

(2) A separated �-tree grows in K.

(3) A separated �-bush grows in K.

(4) A �-Rademacher tree grows in K.
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