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Abstract. A type of oscillation modeled on BMO is introduced to characterize

norm compactness in L1. This result is used to characterize the bounded linear

operators from L1 into a Banach space X that map weakly convergent sequences

onto norm convergent sequences (i.e. are Dunford-Pettis). This characterization is

used to study the geometry of Banach spaces X with the property that all bounded

linear operators from L1 into X are Dunford-Pettis.

1 : Introduction

The main result of this paper is a BMO-style oscillation characterization of L1-

norm compactness. From this result we obtain a characterization of the bounded

linear operators from L1 into a Banach space X that map weakly convergent se-

quences onto norm convergent sequences (i.e. are Dunford-Pettis). With such

characterizations in hand, we study the geometry of Banach spaces X with the

property that all bounded linear operators from L1 into X are Dunford-Pettis.

One way to insure that a relatively weakly compact set K in L1 is relatively

norm compact is to be able to �nd, for each � > 0, a �nite measurable partition �

of [0; 1] such that for each f in K and each A in �,

osc f
��
A

� ess sup
!2A

f(!) � ess inf
!2A

f(!) :

This condition is too strong to characterize norm compactness.
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Bourgain showed that the Bourgain property, a weakening of the above condition,

also guarantees relative norm compactness of relatively weakly compact subsets in

L1. A subset K of L1 has the Bourgain property if for each � > 0 and subset B of

[0; 1] with positive measure there is a �nite collection F of subsets of B, each with

positive measure, such that for each f 2 K there is an A in F with osc f
��
A
< � .

However, this condition also is too strong to characterize norm compactness.

We introduce an L1-oscillation that is a weakening of the L1-oscillation used in

the above conditions. The Bocce oscillation of an L1-function f on a subset A is

given by

Bocce-osc f
��
A

�

R
A
jf �

R
A
f d�

�(A)
j d�

�(A)
;

observing the convention that 0=0 is 0. A subsetK of L1 satis�es the Bocce criterion

if for each � > 0 and subset B of [0; 1] with positive measure there is a �nite

collection F of subsets of B, each with positive measure, such that for each f 2 K

there is an A in F with Bocce-osc f
��
A
< � . The Bocce criterion is a weakening

of the Bourgain property. The main result of this paper is that a relatively weakly

compact subset of L1 is relatively L1-norm compact if and only if it satis�es the

Bocce criterion.

Throughout this paper, X denotes an arbitrary Banach space, X� the dual space

of X, B(X) the closed unit ball of X, and S(X) the unit sphere of X. The triple

(
;�; �) refers to the Lebesgue measure space on [0; 1], �+ to the sets in � with

positive measure, L1 to L1(
;�; �). Recall that a subset of L1 is relatively weakly

compact if and only if it is bounded and uniformly integrable. All notation and

terminology, not otherwise explained, are as in [DU].
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2 : Main Result

Call a subset K of L1 a set of small Bocce oscillation if for each � > 0 there is a

�nite positive measurable partition P of 
 such that for each f in K

X
A2P

�(A) Bocce-osc f
��
A

< � :

Bocce oscillation, the Bocce criterion and norm compactness in L1 are related by

Theorem 2.1, the main theorem of this paper.

Theorem 2.1. For a relatively weakly compact subset K of L1, the following state-

ments are equivalent.

(1) K is relatively norm compact.

(2) K is a set of small Bocce oscillation.

(3) K satis�es the Bocce criterion.

Proof. It is well-known and easy to check that a bounded subsetK of L1 is relatively

norm compact if and only if for each � > 0 there is a �nite measurable partition

� of 
 such that k f � E�(f) kL
1

< � for each f in K. Here, E�(f) denotes

the conditional expectation of f relative to the sigma �eld generated by �. The

equivalence of (1) and (2) follows directly from this observation, the computation

below,

k f �E�(f) kL
1

=

Z



j f �
X
B2�

R
B
f d�

�(B)
�B j d�

=
X
B2�

Z
B

j f �

R
B
f d�

�(B)
j d� =

X
B2�

�(B) Bocce-osc f
��
B
;

and the de�nition of a set of small Bocce oscillation.

Viewed as a function from � into the real numbers, Bocce-osc f
��
(�)

is not increas-

ing (see Example 2.3); however, �(�) Bocce-osc f
��
(�)

is increasing (see Remark 2.4).

With this in mind, we now show that (2) implies (3) in Theorem 2.1.
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Let the subsetK of L1 be a set of small Bocce oscillation. Fix � > 0 and B in �+.

Since K is a set of small Bocce oscillation, there is a positive measurable partition

� = fA1; A2; : : : ; Ang of 
 such that for each f in K

nX
i=1

�(Ai) (Bocce-osc f
��
Ai
) < � �(B) :

Set F = fAi \B : Ai 2 � and �(Ai \B) > 0g:

Fix f in K. Since the function �(�) Bocce-osc f
��
(�)

is increasing, if Bocce-osc

f
��
Ai\B

� � for each set Ai \B in F then we would have that

� � �(B) =

nX
i=1

� � �(Ai \B) �

nX
i=1

�(Ai \B) Bocce-osc f
��
Ai\B

�

nX
i=1

�(Ai) Bocce-osc f
��
Ai

< � � �(B) :

This cannot be, so there is a set Ai \B in F such that the Bocce-osc f
��
Ai\B

< �.

Thus the set K satis�es the Bocce criterion.

We need the following lemma which will will prove after the proof of Theorem 2.1.

This lemma is the key step in the proof that (3) implies (1).

Lemma 2.2. Let the relatively weakly compact subset K of L1 satisfy the Bocce

criterion. If � > 0 and ffng is a sequence in K, then there are disjoint sets

B1; : : : ; Bp in �+ and a subsequence fgng of ffng satisfyingZ



j gn �

pX
j=1

R
Bj

gn d�

�(Bj)
�Bj j d� � 2 � : (��)

We now proceed with showing that (3) implies (1) in Theorem 2.1. Let the

relatively weakly compact subset K of L1 satisfy the Bocce criterion. Choose a

sequence ffng in K and a sequence f�kg of positive real numbers decreasing to

zero.

It su�ces to �nd a sequence f�kg of �nite measurable partitions of 
 and a nested

sequence fffkngngk of subsequences of ffng such that for all positive integers n and k

k fkn � Ek(f
k
n) kL1 � 2 �k ; (�)
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where Ek(f) denotes the conditional expectation of f relative to the �-�eld gen-

erated by �k. For then the set ffnn g is relatively L1-norm compact since it can

be uniformly approximated in the L1-norm within 2�k by the relatively compact

set fEk(f
n
n )gn�k [ ff

n
n gn<k; hence, there is a L1-norm convergent subsequence of

ffng.

Towards (�), repeated applications of Lemma 2.2 yield that for each positive

integer k:

(1) disjoint subsets Bk
1 ; : : : ; B

k
nk

of 
 each with positive measure, and

(2) a subsequence ffkngn of ffk�1n gn (where we write ff0ng for ffng )

satisfying for each positive integer n

Z



j fkn �

nkX
j=1

R
Bk
j

fkn d�

�(Bk
j )

�Bk
j
j d� � �k :

Set

Bk
0 = 
 n

nk[
j=1

Bk
j

and let �k be the partition generated by Bk
0 ; B

k
1 ; : : : ; B

k
nk
. Still observing the

convention that 0=0 is 0, two appeals to the above inequality yield for each positive

integer n and k

k fkn �Ek(f
k
n) kL1 =

Z



j fkn �

nkX
j=0

R
Bk
j

fkn d�

�(Bk
j )

�Bk
j
j d�

�

Z



j fkn �

nkX
j=1

R
Bk
j

fkn d�

�(Bk
j )

�Bk
j
j d� +

Z



j

R
Bk
0

fkn d�

�(Bk
0 )

�Bk
0

j d�

� �k +

Z
Bk
0

j fkn j d�

= �k +

Z
Bk
0

j fkn �

nkX
j=1

R
Bk
j

fkn d�

�(Bk
j )

�Bk
j
j d�

� �k +

Z



j fkn �

nkX
j=1

R
Bk
j

fkn d�

�(Bk
j )

�Bk
j
j d�

� 2 �k :
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Thus the proof of Theorem 2.1 is �nished as soon as we verify Lemma 2.2.

Proof of Lemma 2.2. Let the relatively weakly compact subset K of L1 satisfy the

Bocce criterion. Fix � > 0 and a sequence ffng in K. The proof is an exhaustion-

type argument.

Let E1 denote the collection of subsets B of 
 such that there are disjoint sub-

sets B1; : : : ; Bp of B each with positive measure and a subsequence ffnkg of ffng

satisfying Z
B

j fnk �

pX
j=1

R
Bj

fnk d�

�(Bj)
�Bj j d� � � �(B) :

Since K satis�es the Bocce criterion, there is an A in �+ and a subsequence ffnkg

of ffng satisfying

Z
A

j fnk �

R
A
fnk d�

�(A)
j d� � � �(A) :

Thus the collection E1 is not empty. If there is a set B in E1 with corresponding

subsets B1; : : : ; Bp and a subsequence fgng of ffng satisfying

Z



j gn �

pX
j=1

R
Bj

gn d�

�(Bj)
�Bj j d� � � ; (1)

then we are �nished since (1) implies (��).

Otherwise, let j1 be the smallest positive integer for which there is a C1 in E1

with 1
j
1

� �(C1). Accordingly, there is a �nite sequence fC1
j g of disjoint subsets

of C1 each with positive measure and a subsequence ff1ng of ffng satisfying

Z
C
1

j f1n �
X
j

R
C1

j

f1n d�

�(C1
j )

�C1

j
j d� � � �(C1) : (2)

Note that since condition (1) was not satis�ed, �(C1) < �(
) = 1 .

Let E2 denote the collection of subsets B of 
 n C1 such that there are disjoint

subsets B1; : : : ; Bp of B each with positive measure and a subsequence ffnkg of
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ff1ng satisfying Z
B

j fnk �

pX
j=1

R
Bj

fnk d�

�(Bj)
�Bj j d� � � �(B) :

Since K satis�es the Bocce criterion and �(
nC1) > 0, we see that E2 is not empty.

If there is a set B in E2 with corresponding �nite sequence fC2
j g of subsets of B

and a subsequence fgng of ff
1
ng satisfyingZ


nC
1

j gn �
X
j

R
C2

j

gn d�

�(C2
j )

�C2

j
j d� � � �(
 n C1) ; (3)

then we are �nished. For in this case, (��) holds since inequalities (2) and (3) insure

that

Z



j gn �
X
k=1;2
j

R
Ck
j

gn d�

�(Ck
j )

�Ck
j
j d� � � �(C1) + � �(
 n C1) = � :

Otherwise, let j2 be the smallest positive integer for which there is a C2 in E2

with 1
j
2

� �(C2). Accordingly, there is a �nite sequence fC2
j g of disjoint subsets

of C2 each with positive measure and a subsequence ff2ng of ff
1
ng satisfyingZ

C
2

j f2n �
X
j

R
C2

j

f2n d�

�(C2
j )

�C2

j
j d� � � �(C2) :

Note that since condition (3) was not satis�ed, �(C2) < �(
 n C1) .

Continue in this way. If the process stops in a �nite number of steps then

we are �nished. If the process does not stop, then diagonalize the resultant se-

quence f ffkng
1
n=1 g1k=1 of sequences to obtain the sequence ffnn g

1
n=1 and set

C1 =
S1
k=1 Ck .

Note that �(
 nC1) = 0. For if �(
 nC1) > 0 then, since K satis�es the Bocce

criterion, there is a subset B of 
 n C1 with positive measure and a subsequence

fhng of ff
n
n g satisfyingZ

B

j hn �

R
B
hn d�

�(B)
j d� < � �(B) :



MARIA GIRARDI 8

Since for each positive integer m

mX
k=1

1

jk
� �(

m[
k=1

Ck) � �(
)

and jm > 1, we can choose an integer m > 1 such that

1

jm � 1
� �(B) :

But this implies that B is in Em since

B � 
 n C1 � 
 n

m�1[
k=1

Ck

and fhng
1
n=m�1 is a subsequence of ff

n
n g

1
n=m�1, which in turn is a subsequence of

ffm�1n g1n=1. This contradicts the choice of jm. Thus �(
 n C1) = 0.

Since K is relatively weakly compact, it is uniformly integrable. Thus, there

exists � > 0 such that if �(A) < � then
R
A
j f j d� < � for each f 2 K. Pick an

integer m so that

�(
 n

m[
k=1

Ck) < � :

Since ffnn g
1
n=m is a subsequence of ffmn g

1
n=1, for each f in ffnn g

1
n=m we have

Z



j f�
X

1�k�m
j

R
Ck
j

f d�

�(Ck
j )

�Ck
j
j d�

=

mX
k=1

Z
Ck

j f �
X
j

R
Ck
j

f d�

�(Ck
j )

�Ck
j
j d� +

Z

n
S
m
k=1

Ck

jf j d�

�

mX
k=1

� �(Ck) + � � 2 � :

So the disjoint subsets fCk
j : j � 1 and k = 1; : : : ;mg along with the subsequence

ffnn g
1
n=m of ffng satisfy the conditions of the lemma.

This completes the proof of Theorem 2.1.

We close this section with a few observations about Bocce oscillation.
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Example 2.3. Let A = [0; 1=4] and B = [0; 1]. De�ne the function f from [0,1] into

the real numbers by f(t) = �C(t) where C = [1=8; 1]. It is straightforward to verify

that Bocce-osc f
��
A
= 1=2 but Bocce-osc f

��
B
= 7=32.

Remark 2.4. In the proof of Theorem 2.1, we used the fact that the function

�(�) Bocce-osc f
��
(�)

�

Z
(�)

j f �

R
(�)
f d�

�(�)
j d�

is an increasing function from � into the reals numbers. To see this, let A be a

subset of B with A and B in �+. Let

mA =

R
A
f d�

�(A)
and mB =

R
B
f d�

�(B)
:

Note that

Z
A

j f �mA j d� �

Z
A

j f �mB j d� +

Z
A

j mB �mA j d�

=

Z
B

j f �mB j d� �

Z
BnA

j f �mB j d� +

Z
A

j mB �mA j d� ;

and

Z
A

j mB �mA j d� = �(A) j mB �mA j

= j
�(A)

�(B)

Z
B

f d� �

Z
A

f d� j

= j
�(A)

�(B)

Z
B

f d� �

�Z
B

f d� �

Z
BnA

f d�
�
j

= j

Z
BnA

f d� �
�(B)� �(A)

�(B)

Z
B

f d� j

= j

Z
BnA

(f �mB) d� j :

Thus, as needed,

Z
A

j f �mA j d� �

Z
B

j f �mB j d� :
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Remark 2.5. The Bocce oscillation has been implicitly studied. By de�nition, a

function f in L1 is of BMO (bounded mean oscillation) provided supI Bocce-osc

f
��
I
< 1 where the sup is over all intervals contained in [0; 1].

3 : Applications

Fix a bounded linear operator T from L1 into X and consider the uniformly

bounded subset T �(B(X�)) = f T �(x�) : k x� k � 1g of L1. The oscillation

behavior of elements in T �(B(X�)) provides information about T .

Ghoussoub, Godefroy, Maurey, and Schachermayer [GGMS] showed that the

operator T is strongly regular if and only if the subset T �(B(X�)) of L1 has the

Bourgain property. Recall that an operator is called Dunford-Pettis if it maps

weakly convergent sequences onto norm convergent sequences. With Theorem 2.1,

we obtain an analogous characterization of Dunford-Pettis operators. From the

oscillation characterizations, it is easy to see that a strongly regular operator is

Dunford-Pettis.

Corollary 3.1. A bounded linear operator T from L1 into a Banach space X is

Dunford-Pettis if and only if the subset T �(B(X�)) of L1 satis�es the Bocce crite-

rion.

Corollary 3.1 follows directly from Theorem 2.1 and the fact below.

Fact 3.2. The following statements are equivalent.

(1) T is a Dunford-Pettis operator.

(2) T maps weak compact sets to norm compact sets.

(3) T (B(L1)) is a relatively norm compact subset of X.

(4) The adjoint of the restriction of T to L1 from X� into L�1 is a compact

operator.

(5) As a subset of L1, T
�(B(X�)) is relatively norm compact.
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The equivalence of (2) and (3) follows from the fact that the subsets of L1 that are

relatively weakly compact are precisely those subsets that are bounded and uni-

formly integrable, which in turn, are precisely those subsets that can be uniformly

approximated in L1-norm by uniformly bounded subsets. The other implications

are easy to verify [cf. DU].

Ghoussoub, Godefroy, Maurey, and Schachermayer also obtained an internal geo-

metric description of the class of Banach spaces with the property that all bounded

linear operators from L1 into X are stongly regular. Using Corollary 3.1, we obtain

internal geometric descriptions of the class of Banach spaces with the property that

all bounded linear operators from L1 into X are Dunford-Pettis. To provide a avor

of the techniques involved in these descriptions, we present an outline of one the

arguments.

Theorem 3.3. If each bounded subset of a Banach space X is weak-norm-one

dentable, then each bounded linear operator from L1 into X is Dunford-Pettis.

Recall that subset D is weak-norm-one dentable if for each � > 0 there is a �nite

subset F of D such that for each x� in S(X�) there is x in F satisfying

x =2 co (D n V�;x�(x)) � co fz 2 D : j x�(z � x) j � �g :

Sketch of Proof. Let all bounded subsets of X be weak-norm-one dentable. Fix a

bounded linear operator T from L1 into X. By Corollary 3.1, it is enough to show

that the subset T �(B(X�)) of L1 satis�es the Bocce criterion.

To this end, �x � > 0 and B in �+. Let F denote the vector measure from �

into X given by F (E) = T (�E). Since the subset f
F (E)
�(E)

: E � B and E 2 �+g of X

is bounded, it is weak-norm-one dentable. Accordingly, there is a �nite collection

F of subsets of B each in �+ such that for each x� in the unit ball of X� there is a
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set A in F such that if

F (A)

�(A)
=

1

2

F (E1)

�(E1)
+

1

2

F (E2)

�(E2)

for some subsets Ei of B with Ei 2 �+, then

1

2

���x�F (E1)

�(E1)
�
x�F (A)

�(A)

��� +
1

2

���x�F (E2)

�(E2)
�
x�F (A)

�(A)

��� < � :

Fix x� 2 B(X�) and �nd the associated A in F . By de�nition, the set T �(B(X�))

will satisfy the Bocce criterion provided that Bocce-osc (T �x�)
��
A
� �.

For a �nite positive measurable partition � of A, denote

f� =
X
E2�

F (E)

�(E)
�E :

Set

E+
� =

[�
E 2 � :

x�F (E)

�(E)
�

x�F (A)

�(A)

�
;

and

E�� =
[�

E 2 � :
x�F (E)

�(E)
<
x�F (A)

�(A)

�
:

We may assume that the L1-function T �x� is not constant a.e. on A. Further-

more, we may �nd an increasing sequence f�ng of positive measurable partitions

of A satisfying

_ �(�n) = � \A and �(E+
�n
) =

�(A)

2
= �(E��n) :

It is easy to verify that since F (A) = �(A) has the proper form,

Z
A

���x�f�n � x�F (A)

�(A)

��� d�
= �(A)

"
1

2

���x�F (E+
�n
)

�(E+
�n)

�
x�F (A)

�(A)

���+ 1

2

���x�F (E��n)
�(E��n)

�
x�F (A)

�(A)

���
#

< �(A) � :
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Since (x�f�n)
��
A

converges to (T �x�)
��
A

in L1-norm ,

Bocce-osc (T �x�)
��
A
�

R
A

��(T �x�)� R
A
(T�x�) d�

�(A)

�� d�
�(A)

� �:

Thus T �(B(X�)) satis�es the Bocce criterion, as needed.

Using martingale techniques, one can show that the converse of Theorem 3.3 is

true. For this argument and more results along these line, we refer the reader to [G].
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