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ABSTRACT

The interplay between the behavior of bounded linear operators from L1 into

a Banach space X and the internal geometry of X has long been evident. The

Radon-Nikod�ym property (RNP) and strong regularity arose as operator theoretic

properties but were later realized as geometric properties.

Another operator theoretic property, the complete continuity property (CCP),

is a weakening of both the RNP and strong regularity. A Banach space X has the

CCP if all bounded linear operators from L1 into X are Dunford-Pettis (i.e. take

weakly convergent sequences to norm convergent sequences). There are motivating

partial results suggesting that the CCP also can be realized as a geometric property.

This thesis provides such a realization.

Our �rst step is to derive an oscillation characterization of Dunford-Pettis oper-

ators. Using this oscillation characterization, we obtain a geometric description of

the CCP; namely, we show that X has the CCP if and only if all bounded subsets

of X are Bocce dentable, or equivalently, all bounded subsets of X are weak-norm-

one dentable. This geometric description leads to yet another; X has the CCP if

and only if no bounded separated �-trees grow in X, or equivalently, no bounded

�-Rademacher trees grow in X. We also localize these results. We motivate these

characterizations by the corresponding (known) characterizations of the RNP and

of strong regularity.
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CHAPTER 1

INTRODUCTION

The interplay between the behavior of bounded linear operators from L1 into

a Banach space X and the internal geometry of X has long been evident. The

Radon-Nikod�ym property (RNP) was originally de�ned in terms of the behavior

of operators from L1 into X. Rie�el, Maynard, Hu�, Davis, and Phelps provided

the �rst concrete realization of the RNP as a geometric property of a Banach space

when they showed that X has the RNP if and only if all bounded subsets of X are

dentable. From this geometric characterization follows another; namely, X has the

RNP if and only if no bounded �-bushes grow in X, and in the case that X is a dual

space (Stegall), if and only if no bounded �-trees grow in X.

Similarly, the concept of strong regularity, a weakening of the RNP, arose as

an operator theoretic property [B1] but was later realized as a geometric property

[GGMS].

The complete continuity property (CCP), another operator theoretic property,

has been around for many years. Dunford and Pettis showed that a Banach space

with the RNP has the CCP; in fact, a strongly regular space also has the CCP.

There are motivating partial results suggesting that the CCP also can be realized

as a geometric property. Bourgain showed that X has the CCP if no bounded �-

trees grow in X. As for the case in which X is a dual space, work of Pelczynski,

Hagler, and Bourgain gives that X has the CCP if and only if X is strongly regular.

In this thesis, we shall complete the cycle by showing that the complete continuity

property is indeed an internal geometric property of a Banach space.
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Our �rst step is to derive an oscillation characterization of Dunford-Pettis op-

erators (Chapter 2). Using this oscillation characterization, we obtain a geometric

description of the CCP; namely, we show that X has the CCP if and only if all

bounded subsets of X are Bocce dentable (Chapter 3). This geometric description

leads to yet another; X has the CCP if and only if no bounded separated �-trees

grow in X (Chapter 4). We motivate these characterizations by the corresponding

(known) characterizations of the Radon-Nikod�ym property and of strong regularity.

Throughout this thesis, X denotes an arbitrary Banach space, X� the dual space

of X, B(X) the closed unit ball of X, and S(X) the unit sphere of X. The triple

(
;�; �) refers to the Lebesgue measure space on [0; 1], �+ to the sets in � with

positive measure, L1 to L1(
;�; �), and L1-compact to compact in the L1-norm

topology. A subset K of L1 is uniformly bounded if supf2K k f kL
1

is �nite.

All notation and terminology, not otherwise explained, are as in [DU]. For clarity,

known results are presented as facts while new results are presented as theorems,

corollaries, lemmas, and observations.

As for basic de�nitions, the RNP, strong regularity, and the CCP each have

several equivalent formulations. We shall de�ne these properties by examining the

behavior of bounded linear operators from L1 into X.

Recall that a bounded linear operator T : L1 ! X is (Bochner) representable if

there is a g in L1(�;X) such that Tf =
R


fg d� for each f in L1(�). A Banach

space X has the Radon-Nikod�ym property if all bounded linear operators from L1

into X are Bochner representable.

A bounded linear operator T : L1 ! X is strongly regular if for each bounded

subsetD of L1 and � > 0 there are �nitely many slices S1; S2; : : : ; Sn of D satisfying

diam
�TS1 + : : : + TSn

n

�
< � ;
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where a slice of a subset D of Banach space Y is any non-empty set of the form

fy 2 D : y�(y) > �g where y� 2 Y� and � 2 R are �xed. A Banach space X is

strongly regular if all bounded linear operators from L1 into X are strongly regular.

An operator is Dunford-Pettis if it maps weakly convergent sequences to norm

convergent sequences. A Banach space X has the complete continuity property

(CCP) if all bounded linear operators from L1 into X are Dunford-Pettis.

It is well known that if a bounded linear operator T from L1 into X is repre-

sentable then T is strongly regular; and if T is strongly regular then T is Dunford-

Pettis. Thus, if X has the Radon-Nikod�ym property then X is strongly regular,

and if X is strongly regular then X has the CCP. The dual of the James tree space

[cf. J] is strongly regular yet fails the RNP. Talagrand [cf. T1] has constructed a

space that has the CCP yet is not strongly regular.

The following fact provides several equivalent formulations of the CCP.

Fact 1.1. For a bounded linear operator T from L1 into X, the following statements

are equivalent.

(1) T is a Dunford-Pettis operator.

(2) T maps weak compact sets to norm compact sets.

(3) T (B(L1)) is a relatively norm compact subset of X.

(4) The corresponding vector measure F : �! X given by F (E) = T (�E) has

a relatively norm compact range in X.

(5) The adjoint of the restriction of T to L1 from X� into L�1 is a compact

operator.

(6) As a subset of L1, T
�(B(X�)) is relatively L1-compact.

(7) E�T
� converges to T � in the operator topology of L(X�; L1).

(8) TE� converges to T in the operator topology of L(L1;X).
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The equivalence of (2) and (3) follows from the fact that the subsets of L1 that are

relatively weakly compact are precisely those subsets that are bounded and uni-

formly integrable, which in turn, are precisely those subsets that can be uniformly

approximated in L1-norm by uniformly bounded subsets. The other implications

in Fact 1.1 are straightforward and easy to verify. Because of (4), the CCP is also

referred to as the compact range property (CRP).

Towards a martingale characterization of the CCP, �x an increasing sequence

f�ngn�0 of �nite positive interval partitions of 
 such that _ �(�n) = � and

�0 = f
g. Let Fn denote the sub-�-�eld �(�n) of � that is generated by �n. For

f in L1(X), let En(f) denote the conditional expectation of f given Fn.

De�nition 1.2. A sequence ffngn�0 in L1(X) is an X-valued martingale with respect

to fFng if for each n we have that fn is Fn-measurable and En(fn+1) = fn. The

martingale ffng is uniformly bounded provided that supn k fn kL1 is �nite. Often

the martingale is denoted by ffn;Fng in order to display both the functions and

the sub-�-�elds involved.

There is a one-to-one correspondence between the bounded linear operators T

from L1 into X and the uniformly bounded X-valued martingales ffn;Fng. This

correspondence is obtained by taking

T (g) = lim
n!1

Z



fn(!)g(!) d�(!) if ffng is the martingale,

and

fn(!) =
X
E2�n

T (�E)

�(E)
�E(!) if T is the operator.

It is easy to verify that a bounded linear operator from L1 into X is representable

by f 2 L1(�;X) if and only if the corresponding martingale converges in L1(X)-

norm to f . Fact 1.1.6 implies that a bounded linear operator T from L1 into X is
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Dunford-Pettis if and only if

lim
m;n!1

sup
x�2B(X�)

k En(T
�x�)�Em(T

�x�) kL
1

= 0 :

Since En(T
�x�) = x�fn in L1, we have the following martingale characterization of

Dunford-Pettis operators, and thus of the CCP.

Fact 1.3. A bounded linear operator from L1 into X is Dunford-Pettis if and only if

the corresponding martingale is Cauchy in the Pettis norm. Consequently, a Banach

space X has the CCP if and only if all uniformly bounded X-valued martingales are

Pettis-Cauchy.
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CHAPTER 2

OSCILLATION

Fix a bounded linear operator T from L1 into X and consider the uniformly

bounded subset T �(B(X�)) = f T �(x�) : k x� k � 1g of L1. In this chapter, we

shall explore the oscillation behavior of elements in T �(B(X�)) in order to attain

information about T , and thus also geometric information about X.

We can determine if T is representable by examining T �(B(X�)) [cf. GGMS].

Fact 2.1. The following statements are equivalent.

(1) T is representable.

(2) T �(B(X�)) is equi-measurable, i.e.

for each � > 0 there is an A in �+ with �(A) > 1� � such that, as a subset

of L1, f(T �x�)
��
A
: k x� k � 1g is relatively L1-norm-compact.

(3) For each � > 0 and B in �+ there is a subset A of B with positive measure

satisfying

diam
nT (�E)
�(E)

: E � A and E 2 �+
o
< � :

Recall that for a bounded function f in L1 and A in �+, the oscillation of f

restricted to A is given by

osc f
��
A

= ess sup
!2A

f(!) � ess inf
!2A

f(!) :

Condition (3) may be viewed as an oscillation condition on T �(B(X�)) since

diam
nT (�E)
�(E)

: E � A and E 2 �+
o

= sup
x�2B(X�)

osc (T �x�)
��
A
:



THESIS 7

We can also determine whether T is strongly regular by examining the oscilla-

tion of elements in T �(B(X�)). Towards this, recall the following well-known fact

[cf. GGMS].

Fact 2.2. If K is a uniformly bounded subset of L1, then the following statements

are equivalent.

(1) K is a set of small oscillation, i.e.

for each � > 0 there is a �nite positive measurable partition P of 
 such

that for each f in K

X
A2P

�(A) osc f
��
A

< � :

(2) K has the Bourgain property, i.e.

for each � > 0 and B in �+ there is a �nite collection F of subsets of B

each with positive measure such that for each f in K there exists an A in

F satisfying

osc f
��
A
< � :

Applying this fact to the uniformly bounded subset T �(B(X�)) provides the follow-

ing characterization of strongly regular operators [cf. GGMS].

Fact 2.3. The following statements are equivalent.

(1) T is a strongly regular operator.

(2) T �(B(X�)) is a set of small oscillation.

(3) T �(B(X�)) has the Bourgain property .

Clearly, the oscillation condition [Fact 2.1.3] on T �(B(X�)) that characterizes

representable operators implies the oscillation condition [Fact 2.3.3] on T �(B(X�))

that characterizes strongly regular operators. The natural question to explore next
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is what oscillation condition on T �(B(X�)) characterizes Dunford-Pettis operators.

Clearly, the condition must be some weakening of the strongly regular conditions.

Towards this weakening, we now present a form of a L1-oscillation that is a weak-

ening of the usual L1-oscillation.

De�nition 2.4. For f in L1 and A in �, the Bocce oscillation of f on A is given by

Bocce-osc f
��
A
�

R
A
jf �

R
A
f d�

�(A)
j d�

�(A)
; where 0/0 is 0 .

Since Bocce-osc f
��
A

� osc f
��
A

for any bounded f in L1 and A in �+, the

following de�nitions are weakenings of the corresponding conditions in Fact 2.2.

De�nition 2.5. A subset K of L1 is a set of small Bocce oscillation if for each � > 0

there is a �nite positive measurable partition P of 
 such that for each f in K

X
A2P

�(A) Bocce-osc f
��
A

< � :

De�nition 2.6. A subset K of L1 satis�es the Bocce criterion if for each � > 0 and

B in �+ there is a �nite collection F of subset of B each with positive measure

such that for each f in K there is an A in F satisfying

Bocce-osc f
��
A
< � :

We now state the result corresponding to Fact 2.2.

Theorem 2.7. If K is a uniformly bounded subset of L1, then the following state-

ments are equivalent.

(1) K is relatively L1-compact.

(2) K is a set of small Bocce oscillation.

(3) K satis�es the Bocce criterion.
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Before passing to the proof of Theorem 2.7, we note that a direct application

of this theorem and Fact 1.1 to the uniformly bounded subset T �(B(X�)) of L1

yields the following characterization of Dunford-Pettis operators, this chapter's

main result.

Corollary 2.8. If T is a bounded linear operator from L1 into X, then the following

statements are equivalent.

(1) T is a Dunford-Pettis operator.

(2) T �(B(X�)) is a set of small Bocce oscillation.

(3) T �(B(X�)) satis�es the Bocce criterion.

The remainder of this chapter is devoted to the proof of Theorem 2.7. Because

of its length and complexity and also for the sake of the clarity of the exposition,

we present the implications in this theorem as three separate theorems.

Theorem 2.10 below shows the equivalence of (1) and (2) in Theorem 2.7.

Remark 2.9. For a �nite measurable partition � of 
, let E�(f) denote the condi-

tional expectation of f relative to the sigma �eld generated by �. Thus

E�(f) =
X
B2�

R
B
f d�

�(B)
�B ;

observing the convention that 0=0 is 0.

Theorem 2.10. If K is a bounded subset of L1, then the following statements are

equivalent.

(1) K is relatively L1-compact.

(2) For each � > 0 there is a �nite measurable partition � of 


such that k f �E�(f) kL
1

< � for each f in K.

(3) K is a set of small Bocce oscillation.
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Proof. For bounded subsets of L1, the equivalence of (1) and (2) is well-known and

easy to check. The equivalence of (2) and (3) follows directly from

k f �E�(f) kL
1

=

Z



j f �
X
B2�

R
B
f d�

�(B)
�B j d�

=
X
B2�

Z
B

j f �

R
B
f d�

�(B)
j d�

=
X
B2�

�(B) Bocce-osc f
��
B
;

and the de�nition of a set of small Bocce oscillation. �

Viewed as a function from � into the real numbers, Bocce-osc f
��
(�)

is not in-

creasing (see Example 2.14); however, �(�) Bocce-osc f
��
(�)

is increasing (see Re-

mark 2.15). With this in mind, we now proceed with Theorem 2.11 which shows

that (2) implies (3) in Theorem 2.7.

Theorem 2.11. If a subset of L1 is a set of small Bocce oscillation, then it satis�es

the Bocce criterion.

Proof. Let the subset K of L1 be a set of small Bocce oscillation. Fix � > 0 and B

in �+. Since K is a set of small Bocce oscillation, there is a positive measurable

partition � = fA1; A2; : : : ; Ang of 
 such that for each f in K

nX
i=1

�(Ai) (Bocce-osc f
��
Ai
) < � �(B) :

Set

F = fAi \B : Ai 2 � and �(Ai \B) > 0g:

Fix f in K.

Since the function �(�) Bocce-osc f
��
(�)

is increasing, if Bocce-osc f
��
Ai\B

� � for

each set Ai \B in F then we would have that

� � �(B) =

nX
i=1

� � �(Ai \B)
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�

nX
i=1

�(Ai \B) Bocce-osc f
��
Ai\B

�

nX
i=1

�(Ai) Bocce-osc f
��
Ai

< � � �(B) :

This cannot be, so there is a set Ai \B in F such that the Bocce-osc f
��
Ai\B

< �.

Thus the set K satis�es the Bocce criterion. �

Theorem 2.12 shows that (3) implies (2) in Theorem 2.7. We shall present the

author's original proof of this implication. For a new short proof, we refer the

reader to [G3].

Theorem 2.12. If a uniformly bounded subset of L1 satis�es the Bocce criterion,

then it is relatively L1-compact.

We need the following lemma which we will prove after the proof of Theorem 2.12.

Lemma 2.13. Let the uniformly bounded subset K of L1 satisfy the Bocce crite-

rion. If � > 0 and ffng is a sequence in K, then there are disjoint sets B1; : : : ; Bp

in �+ and a subsequence fgng of ffng satisfying

Z



j gn �

pX
j=1

R
Bj

gn d�

�(Bj)
�Bj j d� � 2 � : (��)

Proof of Theorem 2.12. Let the uniformly bounded subset K of L1 satisfy the

Bocce criterion. Choose a sequence ffng in K and a sequence f�kg of positive real

numbers decreasing to zero.

It su�ces to �nd a sequence f�kg of �nite measurable partitions of 
 and a

nested sequence fffkngngk of subsequences of ffng such that for all positive integers

n and k

k fkn � Ek(f
k
n) kL1 � 2 �k ; (�)
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where Ek(f) denotes the conditional expectation of f relative to the �-�eld gen-

erated by �k (see Remark 2.9). For then the set ffnn g is relatively L1-compact

since it can be uniformly approximated in the L1-norm within 2�k by the relatively

compact set

fEk(f
n
n )gn�k [ ff

n
n gn<k ;

hence, there is a L1-convergent subsequence of ffng.

Towards (�), repeated applications of Lemma 2.13 yield for each positive inte-

ger k:

(1) disjoint subsets Bk
1 ; : : : ; B

k
nk

of 
 each with positive measure, and

(2) a subsequence ffkngn of ffk�1n gn (where we write ff0ng for ffng )

satisfying for each positive integer n

Z



j fkn �

nkX
j=1

R
Bk
j

fkn d�

�(Bk
j )

�Bk
j
j d� � �k :

Set

Bk
0 = 
 n

nk[
j=1

Bk
j

and let �k be the partition generated by Bk
0 ; B

k
1 ; : : : ; B

k
nk
. Still observing the

convention that 0=0 is 0, two appeals to the above inequality yield for each positive

integer n and k

k fkn �Ek(f
k
n) kL1 =

Z



j fkn �

nkX
j=0

R
Bk
j

fkn d�

�(Bk
j )

�Bk
j
j d�

�

Z



j fkn �

nkX
j=1

R
Bk
j

fkn d�

�(Bk
j )

�Bk
j
j d� +

Z



j

R
Bk
0

fkn d�

�(Bk
0 )

�Bk
0

j d�

� �k +

Z
Bk
0

j fkn j d�

= �k +

Z
Bk
0

j fkn �

nkX
j=1

R
Bk
j

fkn d�

�(Bk
j )

�Bk
j
j d�
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� �k +

Z



j fkn �

nkX
j=1

R
Bk
j

fkn d�

�(Bk
j )

�Bk
j
j d�

� 2 �k :

Thus the proof of Theorem 2.12 is �nished as soon as we verify Lemma 2.13.

Proof of Lemma 2.13. Let the uniformly bounded subset K of L1 satisfy the Bocce

criterion. Fix � > 0 and a sequence ffng in K. The proof is an exhaustion-type

argument.

Let E1 denote the collection of subsets B of 
 such that there are disjoint sub-

sets B1; : : : ; Bp of B each with positive measure and a subsequence ffnkg of ffng

satisfying Z
B

j fnk �

pX
j=1

R
Bj

fnk d�

�(Bj)
�Bj j d� � � �(B) :

Since K satis�es the Bocce criterion, there is an A in �+ and a subsequence ffnkg

of ffng satisfying

Z
A

j fnk �

R
A
fnk d�

�(A)
j d� � � �(A) :

Thus the collection E1 is not empty. If there is a set B in E1 with corresponding

subsets B1; : : : ; Bp and a subsequence fgng of ffng satisfying

Z



j gn �

pX
j=1

R
Bj

gn d�

�(Bj)
�Bj j d� � � ; (1)

then we are �nished since (1) implies (��).

Otherwise, let j1 be the smallest positive integer for which there is a C1 in E1

with 1
j
1

� �(C1). Accordingly, there is a �nite sequence fC1
j g of disjoint subsets

of C1 each with positive measure and a subsequence ff1ng of ffng satisfying

Z
C
1

j f1n �
X
j

R
C1

j

f1n d�

�(C1
j )

�C1

j
j d� � � �(C1) : (2)
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Note that since condition (1) was not satis�ed, �(C1) < �(
) = 1 .

Let E2 denote the collection of subsets B of 
 n C1 such that there are disjoint

subsets B1; : : : ; Bp of B each with positive measure and a subsequence ffnkg of

ff1ng satisfying

Z
B

j fnk �

pX
j=1

R
Bj

fnk d�

�(Bj)
�Bj j d� � � �(B) :

Since K satis�es the Bocce criterion and �(
nC1) > 0, we see that E2 is not empty.

If there is a set B in E2 with corresponding �nite sequence fC2
j g of subsets of B

and a subsequence fgng of ff
1
ng satisfying

Z

nC

1

j gn �
X
j

R
C2

j

gn d�

�(C2
j )

�C2

j
j d� � � �(
 n C1) ; (3)

then we are �nished. For in this case, (��) holds since inequalities (2) and (3) insure

that

Z



j gn �
X
k=1;2
j

R
Ck
j

gn d�

�(Ck
j )

�Ck
j
j d� � � �(C1) + � �(
 n C1) = � :

Otherwise, let j2 be the smallest positive integer for which there is a C2 in E2

with 1
j
2

� �(C2). Accordingly, there is a �nite sequence fC2
j g of disjoint subsets

of C2 each with positive measure and a subsequence ff2ng of ff
1
ng satisfying

Z
C
2

j f2n �
X
j

R
C2

j

f2n d�

�(C2
j )

�C2

j
j d� � � �(C2) :

Note that since condition (3) was not satis�ed, �(C2) < �(
 n C1) .

Continue in this way. If the process stops in a �nite number of steps then

we are �nished. If the process does not stop, then diagonalize the resultant se-

quence f ffkng
1
n=1 g1k=1 of sequences to obtain the sequence ffnn g

1
n=1 and set

C1 =
S1
k=1 Ck.
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Note that �(
 nC1) = 0. For if �(
 nC1) > 0 then, since K satis�es the Bocce

criterion, there is a subset B of 
 n C1 with positive measure and a subsequence

fhng of ff
n
n g satisfyingZ

B

j hn �

R
B
hn d�

�(B)
j d� < � �(B) :

Since for each positive integer m

mX
k=1

1

jk
� �(

m[
k=1

Ck) � �(
)

and jm > 1, we can choose an integer m > 1 such that

1

jm � 1
� �(B) :

But this implies that B is in Em since

B � 
 n C1 � 
 n

m�1[
k=1

Ck

and fhng
1
n=m�1 is a subsequence of ff

n
n g

1
n=m�1, which in turn is a subsequence of

ffm�1n g1n=1. This contradicts the choice of jm. Thus �(
 n C1) = 0.

SinceK is uniformly bounded, there is a real numberM such that k f k1�M for

each f in K. Pick an integer m so that

M �(
 n

m[
k=1

Ck) � � :

Since ffnn g
1
n=m is a subsequence of ffmn g

1
n=1, for each f in ffnn g

1
n=m we have

Z



j f�
X

1�k�m
j

R
Ck
j

f d�

�(Ck
j )

�Ck
j
j d�

=

mX
k=1

Z
Ck

j f �
X
j

R
Ck
j

f d�

�(Ck
j )

�Ck
j
j d� +

Z

n
S
m
k=1

Ck

jf j d�

�

mX
k=1

� �(Ck) + M�(
 n

m[
k=1

Ck)

� � + � = 2 � :
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So the disjoint subsets fCk
j : j � 1 and k = 1; : : : ;mg along with the subsequence

ffnn g
1
n=m of ffng satisfy the conditions of the lemma. �

This completes the proof of Theorem 2.7.

The proof that if K has the Bourgain property then K is a set of small oscillation

uses the fact that the function osc f
��
(�)

from � into the real numbers is increasing

[cf. GGMS]. The proof of Theorem 2.12 is complicated by the fact that the function

Bocce-osc f
��
(�)

does not enjoy this property, as our next example illustrates.

Example 2.14. Let A = [0; 1=4] and B = [0; 1]. De�ne the function f from [0,1]

into the real numbers by f(t) = �C(t) where C = [1=8; 1]. It is straightforward to

verify that Bocce-osc f
��
A
= 1=2 but Bocce-osc f

��
B
= 7=32.

Remark 2.15. In the proof of Theorem 2.11, we used the fact that the function

�(�) Bocce-osc f
��
(�)

�

Z
(�)

j f �

R
(�)
f d�

�(�)
j d�

is an increasing function from � into the reals numbers. To see this, let A be a

subset of B with A and B in �+. Let

mA =

R
A
f d�

�(A)
and mB =

R
B
f d�

�(B)
:

Note that

Z
A

j f �mA j d�

�

Z
A

j f �mB j d� +

Z
A

j mB �mA j d�

=

Z
B

j f �mB j d� �

Z
BnA

j f �mB j d� +

Z
A

j mB �mA j d� :

Thus Z
A

j f �mA j d� �

Z
B

j f �mB j d�
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since

Z
A

j mB �mA j d� = �(A) j mB �mA j

= j
�(A)

�(B)

Z
B

f d� �

Z
A

f d� j

= j
�(A)

�(B)

Z
B

f d� �
�Z

B

f d� �

Z
BnA

f d�
�
j

= j

Z
BnA

f d� �
�(B)� �(A)

�(B)

Z
B

f d� j

= j

Z
BnA

(f �mB) d� j :

Remark 2.16. Fix f 2 L1. Viewed as a function from � into the real numbers,

Bocce-osc f
��
(�)

is continuous, i.e. if a sequence fAng in � converges to A 2 � in

the sense that �(A4An) tends to 0, then Bocce-osc f
��
An

tends to Bocce-osc f
��
A
.

We can verify this using methods similar to the methods in Remark 2.15; or we

can note that this is an easy consequence of the Lebesgue Dominated Convergence

Theorem.

Remark 2.17. If a subset K of L1 satis�es the Bocce criterion, then the translate

of K by a L1-function f also satis�es the Bocce criterion.

If K is uniformly bounded and f is bounded, then this is an easy consequence

of Theorem 2.7. For the general case, let the subset K of L1 satisfy the Bocce

criterion and f 2 L1. We shall to show that the set K + f � f g + f : g 2 K g

satis�es the Bocce criterion. Towards this end, �x � > 0 and B 2 �+. Find B0 � B

with B0 2 �+ such that f is bounded on B0.

Approximate f�B
0

in L1-norm within �
4
by a simple function ~f . Find C � B0

with C 2 �+ such that ~f is constant on C. Since K satis�es the Bocce criterion,

we can �nd a �nite collection F of subsets corresponding to �
2
and C.

Fix g+ f 2 K + f . Find A 2 F such that Bocce-osc g
��
A
< �

2
: Note that since
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~f is constant on A, Bocce-osc g
��
A

= Bocce-osc (g + ~f)
��
A
: Compute,

Bocce-osc (g + f)
��
A
� Bocce-osc (g + ~f)

��
A

+ Bocce-osc ( ~f � f)
��
A

� Bocce-osc g
��
A

+ 2 k ( ~f � f)�A kL
1

< � :

Thus K + f satis�es the Bocce criterion.



THESIS 19

CHAPTER 3

DENTABILITY

In this chapter, we examine in which Banach spaces bounded subsets have certain

dentability properties.

Dentability characterizations of the RNP are well-known [cf. DU and GU].

Fact 3.1. The following statements are equivalent.

(1) X has the RNP.

(2) Every bounded subset D of X is dentable.

De�nition 3.2 D is dentable if for each � > 0 there is x in D such that

x =2 co (D nB�(x)) where B�(x) = fy 2 X : k x� y k< �g.

(3) Every bounded subset D of X is �-dentable.

De�nition 3.3 D is �-dentable if for each � > 0 there is an x in D such that

if x has the form x =
Pn

i=1 �izi with zi 2 D, 0 � �i, and
Pn

i=1 �i = 1,

then k x� zi k< � for some i .

(4) Every bounded subset D of X has slices of arbitrarily small diameter.

A weakening of condition (4) provides a dentability characterization of strongly

regular spaces [cf. GGMS]. This characterization is often used as the de�nition.

Fact 3.4. X is strongly regular if and only if for each bounded subset D of X

and � > 0 there are �nitely many slices S1; : : : ; Sn of D such that

diam
nS1 + : : : + Sn

n

o
< � :

The natural question to explore next is what dentability condition characterizes

the CCP. Towards this, the next de�nition is a weakening of De�nition 3.2.



MARIA GIRARDI 20

De�nition 3.5. A subset D of X is weak-norm-one dentable if for each � > 0 there

is a �nite subset F of D such that for each x� in S(X�) there is x in F satisfying

x =2 co fz 2 D : j x�(z � x) j � �g � co (D n V�;x�(x)) :

Petrakis and Uhl [PU] showed that if X has the CCP then every bounded subset

of X is weak-norm-one dentable. For our characterization of the CCP, we introduce

the following variations of de�nition 3.3 that are useful in showing the converse of

the above implication of [PU].

De�nition 3.6. A subset D of X is Bocce dentable if for each � > 0 there is a �nite

subset F of D such that for each x� in S(X�) there is x in F satisfying:

if x =

nX
i=1

�izi with zi 2 D; 0 � �i; and

nX
i=1

�i = 1 ;

then

nX
i=1

�i jx
�(x� zi) j < �:

De�nition 3.7. A subset D of X is midpoint Bocce dentable if for each � > 0 there

is a �nite subset F of D such that for each x� in S(X�) there is x in F satisfying:

if x = 1
2
z1 +

1
2
z2 with zi 2 D

then j x�(x� z1) j � j x�(x� z2) j < �:

We obtain equivalent formulations of the above de�nitions by replacing S(X�) with

B(X�). The next theorem, this chapter's main result, shows that these dentability

conditions provide an internal geometric characterization of the CCP.
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Theorem 3.8. The following statements are equivalent.

(1) X has the CCP.

(2) Every bounded subset of X is weak-norm-one dentable.

(3) Every bounded subset of X is midpoint Bocce dentable.

(4) Every bounded subset of X is Bocce dentable.

The remainder of this chapter is devoted to the proof of Theorem 3.8. Because

of its length and complexity and also for the sake of clarity of the exposition, we

present the implications as separate theorems. It is clear from the de�nitions that

(2) implies (3) and that (4) implies (3). For completeness sake, Fact 3.14 presents

the proof of [PU] that (1) implies (2). Using Corollary 2.8, Theorem 3.11 shows that

(3) implies (1). That (1) implies (4) follows from Theorem 3.9 and the martingale

characterization (Fact 1.3) of the CCP.

Theorem 3.9. If a subset D of X is not Bocce dentable, then there is an increasing

sequence f�ng of partition of [0; 1) and a D-valued martingale ffn; �(�n)g that is

not Cauchy in the Pettis norm. Moreover, f�ng can be chosen so that _ �(�n) = �,

�0 = f
g and each �n partitions [0; 1) into a �nite number of half-open intervals.

Proof. Let D be a non-Bocce-dentable subset of X. Accordingly, there is � > 0

satisfying:

for each �nite subset F of D there is x�F in S(X�) such that

each x in F has the form x =

mX
i=1

�izi

with

mX
i=1

�i j x
�
F (x� zi) j > �

for a suitable choice of zi 2 D and �i > 0 with

mX
i=1

�i = 1 .

(�)

We shall use property (�) to construct an increasing sequence f�ngn�0 of �nite



MARIA GIRARDI 22

partitions of [0; 1), a martingale ffn; �(�n)gn�0, and a sequence fx�ngn�1 in S(X�)

such that for each nonnegative integer n:

(1) fn has the form fn =
P

E2�n
xE�E where xE is in D,

(2)
R


j x�n+1(fn+1 � fn) j d� � � ,

(3) if E is in �n, then E has the form [a; b) and �(E) < 1=2n and

(4) �0 = f
g.

Condition (3) guarantees that _ �(�n) = � while condition (2) guarantees that

ffng is not Cauchy in the Pettis norm.

Towards the construction, pick an arbitrary x inD. Set �0 = f
g and f0 = x �
.

Fix n � 0. Suppose that a partition �n of 
 consisting of intervals of length at

most 1/2n and a function fn =
P

E2�n
xE�E with xE 2 D have been constructed.

We now construct fn+1, �n+1 and x�n+1 satisfying conditions (1), (2) and (3).

Apply (�) to F = fxE : E 2 �ng and �nd the associated x�F = x�n+1 in S(X�).

Fix an element E = [a; b) of �n. We �rst de�ne fn+1�E . Property (�) gives that

xE has the form

xE =

mX
i=1

�ixi

with
mX
i=1

�i j x
�
n+1(x� xi) j > �

for a suitable choice of xi 2 D and positive real numbers �1; : : : ; �m whose sum is

one. Using repetition, we arrange to have �i < 1=2n+1 for each i. It follows that

there are real numbers d0; d1; : : : ; dm such that

a = d0 < d1 < : : : < dm�1 < dm = b

and

di � di�1 = �i (b� a) for i = 1; : : : ;m :
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Set

fn+1�E =

mX
i=1

xi �[di�1;di) :

De�ne fn+1 on all of 
 similarly. Let �n+1 be the partition consisting of all the

intervals [di�1; di) obtained from letting E range over �n.

Clearly, fn+1 and �n+1 satisfy conditions (1) and (3). Condition (2) is also

satis�ed since for each E = [a; b) in �n we have, using the above notation,

Z
E

j x�n+1(fn+1 � fn) j d� =

mX
i=1

Z di

di�1

j x�n+1(xi � xE) j d�

= (b� a)

mX
i=1

�i j x
�
n+1(xi � xE) j

� �(E) � :

To insure that ffng is indeed a martingale, we need to compute En(fn+1). Fix

E = [a; b) in �n. Using the above notation, we have for almost all t in E,

En(fn+1)(t) =
1

b� a

Z b

a

fn+1 d�

=
1

b� a

mX
i=1

Z di

di�1

fn+1 d�

=

mX
i=1

di � di�1

b� a
xi

=

mX
i=1

�i xi = xE

= fn(t) :

Thus En(fn+1) = fn a.e., as needed.

This completes the necessary constructions. �

We need the following lemma which we will prove after the proof of Theorem 3.11.

Lemma 3.10. If A is in �+ and f in L1(�) is not constant a.e. on A, then there

is an increasing sequence f�ng of positive �nite measurable partitions of A such that
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_ �(�n) = � \A and for each n

�

�[n
E : E 2 �n;

R
E
f d�

�(E)
�

R
A
f d�

�(A)

o�
=

�(A)

2
;

and so

�

�[n
E : E 2 �n;

R
E
f d�

�(E)
<

R
A
f d�

�(A)

o�
=

�(A)

2
:

Theorem 3.11. If all bounded subsets of X are midpoint Bocce dentable, then X

has the complete continuity property.

Proof. Let all bounded subsets of X be midpoint Bocce dentable. Fix a bounded

linear operator T from L1 into X. We shall show that the subset T �(B(X�)) of L1

satis�es the Bocce criterion. Then an appeal to Corollary 2.8 shows that X has the

complete continuity property.

To this end, �x � > 0 and B in �+. Let F denote the vector measure from �

into X given by F (E) = T (�E). Since the subset f
F (E)

�(E)
: E � B and E 2 �+g of X

is bounded, it is midpoint Bocce dentable. Accordingly, there is a �nite collection

F of subsets of B each in �+ such that for each x� in the unit ball of X� there is a

set A in F such that if

F (A)

�(A)
=

1

2

F (E1)

�(E1)
+

1

2

F (E2)

�(E2)

for some subsets Ei of B with Ei 2 �+, then

1

2

���x�F (E1)

�(E1)
�
x�F (A)

�(A)

��� +
1

2

���x�F (E2)

�(E2)
�
x�F (A)

�(A)

��� < � : (1)

Fix x� in the unit ball of X� and �nd the associated A in F . By de�nition, the

set T �(B(X�)) will satisfy the Bocce criterion provided that Bocce-osc (T �x�)
��
A
�

�.
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If the L1-function T �x� is constant a.e. on A, then the Bocce-osc (T �x�)
��
A
is

zero and we are �nished. So assume T �x� is not constant a.e. on A.

For a �nite positive measurable partition � of A, denote

f� =
X
E2�

F (E)

�(E)
�E

and

E+
� =

[�
E 2 � :

x�F (E)

�(E)
�

x�F (A)

�(A)

�

and

E�� =
[�

E 2 � :
x�F (E)

�(E)
<

x�F (A)

�(A)

�
:

Note that for E in �

x�F (E) =

Z
E

(x�T �) d� :

Compute

Z
A

���x�f� � x�F (A)

�(A)

��� d�
=
X
E2�

Z
E

���x�F (E)
�(E)

�
x�F (A)

�(A)

��� d�
= �(A)

X
E2�

�(E)

�(A)

���x�F (E)
�(E)

�
x�F (A)

�(A)

��� (2)

= �(A)

"
�(E+

� )

�(A)

���x�F (E+
� )

�(E+
� )

�
x�F (A)

�(A)

���+ �(E�� )

�(A)

���x�F (E�� )
�(E�� )

�
x�F (A)

�(A)

���
#
:

Since the L1-function T
�x� is bounded, for now we may view T �x� as an element

in L1. Lemma 3.10 allow us to apply property (1) to equation (2). For applying

Lemma 3.10 to A with f � T �x� produces an increasing sequence f�ng of positive

measurable partitions of A satisfying

_ �(�n) = � \A and �(E+
�n
) =

�(A)

2
= �(E��n) :
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For � = �n, condition (2) becomes

Z
A

���x�f�n � x�F (A)

�(A)

��� d�
= �(A)

"
1

2

���x�F (E+
�n
)

�(E+
�n)

�
x�F (A)

�(A)

���+ 1

2

���x�F (E��n)
�(E��n)

�
x�F (A)

�(A)

���
#
: (3)

Since F (A) = �(A) has the form

F (A)

�(A)
=

�(E+
�n
)

�(A)

F (E+
�n
)

�(E+
�n)

+
�(E��n)

�(A)

F (E��n)

�(E��n)
=

1

2

F (E+
�n
)

�(E+
�n)

+
1

2

F (E��n)

�(E��n)
;

applying property (1) to equation (3) yields that for each �n

Z
A

���x�f�n � x�F (A)

�(A)

��� d� < �(A) � :

Since _ �(�n) = � \A and

(x�f�n)
��
A
=

X
E2�n

x�F (E)

�(E)
�E =

X
E2�n

R
E
(T �x�) d�

�(E)
�E = E�n(T

�x�)
��
A
;

we have that (x�f�n)
��
A

converges to (T �x�)
��
A

in L1-norm . Hence,

Bocce-osc (T �x�)
��
A
�

R
A

��(T �x�)� R
A
(T�x�) d�

�(A)

�� d�
�(A)

� �:

Thus T �(B(X�)) satis�es the Bocce criterion and so, as needed, X has the complete

continuity property. �

We now verify Lemma 3.10.

Proof of Lemma 3.10. Fix A in �+ and f in L1(�). Without loss of generality, f

is not constant a.e. on A and
R
A
f d� = 0. Find P and N in � satisfying

A = P [ N �(P ) =
�(A)

2
= �(N) P \N = ;

and Z
P

f d� � 2M > 0

Z
N

f d� � �2M < 0 :
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Approximate f by a simple function ~f(�) =
P

�i �Ai(�) satisfying

(1) k f � ~f kL
1

< M ,

(2) [Ai = A and the Ai are disjoint,

(3) Ai � P if i � m and Ai � N if i > m for some positive integer m.

Note that

P =
[
i�m

Ai and N =
[
i>m

Ai :

To �nd the sequence f�ng, we shall �rst �nd an increasing sequence f�Pn g of

partitions of P and an increasing sequence f�Nn g of partitions of N. Then �n will

be the union of �Pn and �Nn . To this end, for each Ai obtain an increasing sequence

of partitions of Ai :

Ai � Ei0
1

. &

Ei1
1 Ei1

2

. & . &

Ei2
1 Ei2

2 Ei2
3 Ei2

4

� � �

such that for n = 0; 1; 2; : : : and k = 1; : : : ; 2n

Ei n+1
2k�1 [ Ei n+1

2k = Ein
k Ei n+1

2k�1 \ Ei n+1
2k = ; �(Ein

k ) =
�(Ai)

2n
:

For each positive integer n , let �Pn be the partition of P given by

�Pn = fPn
k : k = 1; : : : ; 2ng where Pn

k =
[
i�m

Ein
k ;

�Nn be the partition of N given by

�Nn = fNn
k : k = 1; : : : ; 2ng where Nn

k =
[
i>m

Ein
k ;
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and �n be the partition of A given by

�n = �Pn [ �Nn :

The sequence f�ng has the desired properties. Since

�(Pn
k ) =

X
i�m

�(Ai)

2n
=

�(P )

2n
=

�(A)

2n+1

and

�(Nn
k ) =

X
i<m

�(Ai)

2n
=

�(N)

2n
=

�(A)

2n+1
;

any element in �n has measure �(A) = 2n+1. Thus _ �(�n) = � \A .

As for the other properties, since ~f takes the value �i on Ein
k � Ai we have

Z
Pn
k

~f d� =
X
i�m

Z
Ein
k

~f d�

=
X
i�m

�i �(E
in
k )

=
1

2n

X
i�m

�i �(Ai)

=
1

2n

Z
P

~f d�

> 0

and likewise

Z
Nn
k

~f d� =
1

2n

Z
N

~f d� < 0 :

We chose ~f close enough to f so that the above inequalities still hold when we
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replace ~f by f ,

Z
Pn
k

f d� �

Z
Pn
k

( ~f �M) d�

=
1

2n

Z
P

~f d� � M�(Pn
k )

�
1

2n

Z
P

(f �M) d� �
M�(A)

2n+1

=
1

2n

Z
P

f d� �
M�(A)

2n+1
�

M�(A)

2n+1

>
M

2n
�

M�(A)

2n
=

M [1� �(A)]

2n

� 0

and likewise

Z
Nn
k

f d� <
M [�(A)� 1]

2n
� 0 :

Thus the other properties of the lemma are satis�ed since for each n ,

�

�[n
E : E 2 �n;

Z
E

f d� � 0
o�

= �

�[n
E : E 2 �Pn

o�

= �(P )

=
�(A)

2

and so

�

�[n
E : E 2 �n;

Z
E

f d� < 0
o�

=
�(A)

2
:

Note that the partitions f�ng are nested by construction. �

[PU, Theorem II.7] shows that (1) implies (2) in Theorem 3.8 by constructing, in

a bounded non-weak-norm-one dentable subset D, a (co D)-valued martingale that

is not Cauchy in the Pettis norm. Since quasi-martingales enter into their proof, let
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us pause to recall a few de�nitions and facts. Fix the notation as in De�nition 1.2.

Let f�ngn�0 be a summable sequence of non-negative numbers.

De�nition 3.12. A sequence ffngn�0 in L1(X) is a X-valued quasi-martingale with

respect to fFng and corresponding to f�ng if for each n we have that fn is Fn-

measurable and k En(fn+1) � fn kL
1

� �n :

A self-contained presentation of quasi-martingales along with the decomposition

theorem below may be found in [KR].

Fact 3.13 quasi-martingale decomposition theorem. Let K be a closed bounded

convex subset of X. If ffn;Fng is a K-valued quasi-martingale corresponding to

f�ng, then there is a K-valued martingale fgn;Fng satisfying

k fn � gn kL
1

�

1X
j=n

�j :

Note that a quasi-martingale is Pettis-Cauchy if and only if the corresponding

martingale from the decomposition theorem is Pettis-Cauchy.

Fact 3.14 [PU, Theorem II.7]. Let f�ngn�0 be a summable sequence of positive

numbers. If a subset D of X is not weak-norm-one dentable, then there is an

increasing sequence f�ng of partition of [0; 1) and a D-valued quasi-martingale

ffn; �(�n)g corresponding to f�ng that is not Cauchy in the Pettis norm. Moreover,

f�ng can be chosen so that _ �(�n) = �, �0 = f
g and each �n partitions [0; 1)

into a �nite number of half-open intervals. Consequently, if there is a bounded non-

weak-norm-one dentable subset D of X, then there is a (co D)-valued martingale

that is not Pettis-Cauchy.

Proof. Fix a summable sequence f�ngn�0 of positive numbers. Let D be subset of
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X that is not weak-norm-one dentable. Accordingly, there is an � > 0 satisfying:

for each �nite subset F of D there is an x�F in S(X�) such that

if x is in F then x 2 co
�
z 2 D : j x�F (z � x) j � �

�
:

(�)

We shall use property (�) to construct an increasing sequence f�ngn�0 of �nite

partitions of [0; 1), a quasi-martingale ffn; �(�n)gn�0 corresponding to f�ng, and

a sequence fx�ngn�1 in S(X�) such that for each nonnegative integer n

(1) fn has the form fn =
P

E2�n
xE�E where xE is in D,

(2) j x�n+1(fn+1 � fn) j � � a.e. ,

(3) if E is in �n, then E has the form [a; b) and �(E) < 1=2n and

(4) �0 = f
g.

Condition (3) guarantees that _ �(�n) = � while condition (2) guarantees that

ffng is not Cauchy in the Pettis norm.

Towards the construction, pick an arbitrary x inD. Set �0 = f
g and f0 = x �
.

Fix n � 0. Suppose that a partition �n of 
 into intervals of length at most

1/2n and fn =
P

E2�n
xE�E with xE 2 D have been de�ned. We now construct

fn+1, �n+1 and x�n+1 satisfying conditions (1), (2) and (3).

To this end, apply (�) to F = fxE : E 2 �ng and �nd the associated x�F = x�n+1

in S(X�). Fix an element E = [a; b) of �n. We �rst de�ne fn+1�E. Property

(�) gives that for a suitable choice of x1; : : : ; xm in D and positive real numbers

�1; : : : ; �m whose sum is one,

k xE �

mX
i=1

�ixi k � �n and for each i j x�n+1(xi � xE) j � � : (��)

Using repetition, we arrange to have �i < 1=2n+1 for each i. It follows that there

are real numbers d0; d1; : : : ; dm such that

a = d0 < d1 < : : : < dm�1 < dm = b
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and

di � di�1 = �i (b� a) for i = 1; : : : ;m :

Set

fn+1�E =

mX
i=1

xi �[di�1;di) :

De�ne fn+1 on all of 
 similarly. Let �n+1 be the partition consisting of all the

intervals [di�1; di) obtained from letting E range over �n.

Clearly, fn+1, �n+1 and x�n+1 satisfy conditions (1), (2) and (3).

Towards insuring that ffng is indeed a quasi-martingale corresponding to f�ng,

�x an E = [a; b) in �n. Using the above notation, we have that for almost all t in

E, fn(t) = xE and

En(fn+1)(t) =
1

b� a

Z b

a

fn+1 d�

=
1

b� a

mX
i=1

Z di

di�1

fn+1 d�

=

mX
i=1

di � di�1

b� a
xi

=

mX
i=1

�i xi :

An appeal to condition (��) yields the necessary inequality,

k En(fn+1) � fn kL
1

� �n :

This completes the necessary constructions. �

Remark 3.15. For a convex setD, Bocce dentability and midpoint Bocce dentability

coincide since, for a �xed x� 2 S(X�), if x 2 D satis�es the condition

if x = 1
2
z1 +

1
2
z2 with zi 2 D then j x�(x� z1) j � j x�(x� z2) j < �;

then x 2 D also satis�es the condition

if x =

nX
i=1

�izi with zi 2 D; 0 � �i; and

nX
i=1

�i = 1 ;
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then

nX
i=1

�i jx
�(x� zi) j < 2�:

Remark 3.16. It is easy to verify that B(L1) is not weak-norm-one dentable, Bocce

dentable, nor midpoint Bocce dentability but that

B+(L1) � ff 2 L1 : k f kL
1

� 1 and f � 0 a.e. g

is weak-norm-one dentable, Bocce dentable, and midpoint Bocce dentability.

Remark 3.17. For a bounded subset D and � > 0, a point x 2 D is called an

�-strong extreme point of D if there is a � > 0 such that if x1; x2 belong to D

and there is a point u on the line segment joining x1 and x2 with k u � x k< �,

then k u � x1 k< � or k u � x2 k< �. A closed bounded convex set has the

Approximate Krein-Milman property (AKMP) if each of its nonempty subsets has

an �-strong extreme point for every � > 0. It is clear from the de�nitions that if a

closed bounded convex set has the AKMP, then it is midpoint Bocce dentable.

Remark 3.18. Analogous to the RNP case, in Theorem 3.8 we would like to reduce

our test sets from bounded sets to closed bounded convex sets. However, the author

is not certain whether this is possible. A close look at the proofs reveal that we

only need that, for each bounded linear operator T from L1 into X, the sets of the

form

�B �
nT (�A)
�(A)

: A � B and A 2 �+
o

where B 2 �+

to be midpoint Bocce dentable. But such sets need not be closed nor convex.

If T is the identity operator on L1, then �
 is closed but is not convex.

If T : L1 ! L2 is given by (Tf)(�) �
R �
0
f d�, then �
 is neither closed nor

convex.
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If T is representable by a simple function f and B 2 �+, then �B is the convex

hull of the values that f takes on B. Thus, if T is a bounded linear operator into

a Banach space with the RNP and B 2 �+, then the �B is convex.

If T is a bounded linear operator into a Banach space with the CCP and B 2 �+,

then we have already seen that �B need not be closed nor convex; however, �B

is convex. This follows from the fact that for each � > 0 there is an operator T�

(Fact 1.1.8) that is representable by a simple function such that

sup
f2B(L

1
)

k (T � T�) (f) kX < � :
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CHAPTER 4

BUSHES AND TREES

In this chapter, we examine which Banach spaces allow certain types of bushes

and trees to grow in them. First let us review some known implications.

A Banach space X fails the RNP precisely when a bounded �-bush grows in X.

Thus if a bounded �-tree grows in X then X fails the RNP. The converse is false; the

Bourgain-Rosenthal space [BR] fails the RNP yet has no bounded �-trees. However,

if X is a dual space then the converse does hold.

Bourgain [B2] showed that if X fails the CCP then a bounded �-tree grows in X.

The converse is false; the dual of the James Tree space has a bounded �-tree and

the CCP. It is well-known that if a bounded �-Rademacher tree grows in X then

X fails the CCP. Riddle and Uhl [RU] showed that the converse holds in a dual

space. This chapter's main theorem, Theorem 4.1 below, makes precise exactly

which types of bushes and trees grow in a Banach space failing the CCP.

Theorem 4.1. The following statements are equivalent.

(1) X fails the CCP.

(2) A bounded separated �-tree grows in X.

(3) A bounded separated �-bush grows in X.

(4) A bounded �-Rademacher tree grows in X.

That (1) implies (2) will follow from Theorem 4.2 below. All the other impli-

cations are straightforward and will be veri�ed shortly. As usual, we start with

de�nitions.

While typing this thesis, I learned that H.P. Rosenthal has also recently obtained the result

that if X fails the CCP then a bounded �-Rademacher tree grows in X.
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Perhaps it is easiest to de�ne a bush via martingales. If f�ngn�0 is an increas-

ing sequence of �nite positive interval partitions of [0; 1) with _ �(�n) = � and

�0 = f
g and if ffn; �(�n)gn�0 is an X-valued martingale, then each fn has the

form

fn =
X
E2�n

xnE�E

and the system

fxnE : n = 0; 1; 2; : : : and E 2 �ng

is a bush in X. Moreover, every bush is realized this way. A bush is a �-bush if the

corresponding martingale satis�es for each positive integer n

k fn(t)� fn�1(t) k > � : (i)

A bush is a separated �-bush if there exists a sequence fx�ngn�1 in S(X
�) such that

the corresponding martingale satis�es for each positive integer n

j x�n (fn(t)� fn�1(t)) j > � : (ii)

In this case, we say that the bush is separated by fx�ng. Clearly a separated �-bush

is also a �-bush.

Observation that (3) implies (1) in Theorem 4.1.

If a bounded separated �-bush grows in a subset D of X, then condition (ii) guaran-

tees that the corresponding D-valued martingale ffn; �(�n)g is not Pettis-Cauchy

since

k fn � fn�1 kPettis �

Z



j x�n (fn(t)� fn�1(t)) j d� > � :

Thus, if a bounded separated �-bush grows in X then X fails the CCP (Fact 1.3). �

If each �n is the n
th dyadic partition then we call the bush a (dyadic) tree. Let us

rephrase the above de�nitions for this case, without the help of martingales. A tree
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in X is a system of the form fxnk : n = 0; 1; : : : ; k = 1; : : : ; 2ng satisfying for

n = 1; 2; : : : and k = 1; : : : ; 2n�1

xn�1k =
xn2k�1 + xn2k

2
: (iii)

Condition (iii) guarantees that ffng is indeed a martingale. It is often helpful to

think of a tree diagrammatically:

x01

x11 x12

x21 x22 x23 x24

x31 x32 x33 x34 x35 x36 x37 x38

� � �

It is easy to see that (iii) is equivalent to

xn2k�1 � xn2k = 2 (xn2k�1 � xn�1k ) = 2 (xn�1k � xn2k ) : (iii')

A tree fxnkg is a �-tree if for n = 1; 2; : : : and k = 1; : : : ; 2n�1

k xn2k�1 � xn�1k k � k xn2k � xn�1k k > � : (iv)

An appeal to (iii') shows that (iv) is equivalent to

k xn2k�1 � xn2k k > 2 � : (iv')

A tree fxnkg is a separated �-tree if there exists a sequence fx�ngn�1 in S(X�) such

that for n = 1; 2; : : : and k = 1; : : : ; 2n�1

j x�n(x
n
2k�1 � xn�1k ) j � j x�n(x

n
2k � xn�1k ) j > � : (v)
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Another appeal to (iii') shows that (v) is equivalent to

j x�n(x
n
2k�1 � xn2k) j > 2 � : (v')

Furthermore, by switching xn2k�1 and x
n
2k when necessary, we may assume that (v')

is equivalent to

x�n(x
n
2k�1 � xn2k) > 2 � : (v")

Since a separated �-tree is also a separated �-bush, (2) implies (3) in Theorem 4.1.

A tree fxnk : n = 0; 1; : : : ; k = 1; : : : ; 2ng is called a �-Rademacher tree [RU] if

for each positive integer n

k

2n�1X
k=1

(xn2k�1 � xn2k) k > 2n� :

Perhaps a short word on the connection between the Rademacher functions frng

and Rademacher trees is in order. In light of our discussion in Chapter 1, there

is a one-to-one correspondence between all bounded trees in X and all bounded

linear operators from L1 into X. If fxnkg is a bounded tree in X with associated

operator T , then it is easy to verify that fxnkg is a �-Rademacher tree precisely

when k T (rn) k > � for all positive integers n.

Fact that (4) implies (1) in Theorem 4.1 [RU].

Let ffng be the (dyadic) martingale associated with a �-Rademacher tree fxnkg. If

x� is in X� and Ink is the dyadic interval [ (k � 1)=2n ; k=2n ) then

Z



j x� (fn � fn�1) j d� =

2n�1X
k=1

Z
I
n�1

k

j x� (fn � fn�1) j d�

=

2n�1X
k=1

" Z
In
2k�1

j x� (xn2k�1 � xn�1k ) j d� +

Z
In
2k

j x� (xn2k � xn�1k ) j d�

#

=
1

2n

2n�1X
k=1

h
j x� (xn2k�1 � xn�1k ) j + j x� (xn2k � xn�1k ) j

i
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=
1

2n

2n�1X
k=1

j x� (xn2k�1 � xn2k) j by (iii')

�
1

2n
j x�

� 2n�1X
k=1

(xn2k�1 � xn2k)
�
j :

From this we see that ffng is not Cauchy in the Pettis norm since

k fn � fn�1 kPettis = sup
x�2B(X�)

Z



j x� (fn � fn�1) j d�

� sup
x�2B(X�)

1

2n
j x�

� 2n�1X
k=1

(xn2k�1 � xn2k)
�
j

=
1

2n
k

2n�1X
k=1

(xn2k�1 � xn2k) k

>
1

2n
2n � = � :

Thus if a bounded �-Rademacher tree grows in a subset D of X, then there is a

bounded D-valued martingale that in not Pettis-Cauchy and so X fails the CCP

(Fact 1.3). �

Observation that (2) implies (4) in Theorem 4.1.

A separated �-tree can easily be reshu�ed so that it is a �-Rademacher tree. For

if fxnkg is a separated �-tree then we may assume, by switching xn2k�1 and x
n
2k when

necessary, that there is a sequence fx�ng in S(X�) satisfying

x�n(x
n
2k�1 � xn2k) > 2 � :

With this modi�cation fxnkg is a �-Rademacher tree since

k

2n�1X
k=1

(xn2k�1 � xn2k) k � j

2n�1X
k=1

x�n (xn2k�1 � xn2k) j =

2n�1X
k=1

x�n (xn2k�1 � xn2k)

>

2n�1X
k=1

2 � = 2n � : �
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To complete the proof of Theorem 4.1, we need only to show that (1) implies

(2). Towards this end, let X fail the CCP. An appeal to Theorem 3.8 gives that

there is a bounded non-midpoint-Bocce-dentable subset of X. In such a set, we

can construct a separated �-tree. This construction is made precise in the following

theorem.

Theorem 4.2. A separated �-tree grows in a non-midpoint-Bocce-dentable set.

Proof. Let D be a subset of X that is not midpoint Bocce dentable. Accordingly,

there is a � > 0 satisfying:

for each �nite subset F of D there is x�F 2 S(X�) such that

each x in F has the form x =
x1 + x2

2
with jx�F (x1 � x2)j > �

for a suitable choice of x1 and x2 in D .

(�)

We shall use the property (�) to construct a tree fxnk : n = 0; 1; : : : ; k = 1; : : : ; 2ng

in D that is separated by a sequence fx�ngn=1 of norm one linear functionals.

Towards this construction, let x01 be any element of D. Apply (�) with F = fx01g

and �nd x�F = x�1. Property (�) provides x11 and x12 in D satisfying

x01 =
x11 + x12

2
and jx�1(x

1
1 � x12)j > � :

Next apply (�) with F = fx11; x
1
2g and �nd x�F = x�2. For k = 1 and 2, property

(�) provides x22k�1 and x22k in D satisfying

x1k =
x22k�1 + x22k

2
and jx�2(x

2
2k�1 � x22k)j > � :

Instead of giving a formal inductive proof we shall be satis�ed by �nding x�3 along

with x31; x
3
2; : : : ; x

3
8 in D . Apply (�) with F = fx21; x

2
2; x

2
3; x

2
4g and �nd x�F = x�3.

For k = 1; 2; 3 and 4, property (�) provides x32k�1 and x32k in D satisfying

x2k =
1
2
(x32k�1 + x32k) and jx�3(x

3
2k�1 � x32k)j > � :
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It is now clear that a separated �-tree grows in such a set D. �

Remark 4.3. Theorem 3.8 presents several dentability characterizations of the CCP.

Our proof that (1) implies (2) in Theorem 4.1 uses part of one of these character-

izations; namely, if X fails the CCP then there is a bounded non-midpoint-Bocce-

dentable subset of X. If X fails the CCP, then there is also a bounded non-weak-

norm-one-dentable subset of X (Theorem 3.8). In the closed convex hull of such a

set we can construct a martingale that is not Pettis-Cauchy [Fact 3.14]; further-

more, the bush associated with this martingale is a separated �-bush. However, it

is unclear whether this martingale is a dyadic thus the separated �-bush may not

be a tree. If X fails the CCP, then there is also a bounded non-Bocce-dentable

subset of X (Theorem 3.8). In such a set we can construct a martingale that is not

Pettis-Cauchy (Theorem 3.9), but it is unclear whether the bush associated with

this martingale is a separated �-bush.

Remark 4.4. The Rademacher functions frng may be viewed as a test sequence for

the CCP. For if X has the CCP and T is a bounded linear operator from L1 into X,

then fT (rn)g converges to 0 in norm. If X fails the CCP, then there is a bounded

linear operator T from L1 into X such that infn k T (rn) k > � some � > 0 .

Remark 4.5. Recall that a separated �-tree is also a �-tree and, after a reshu�ing,

a �-Rademacher tree. However, a bounded ~�-Rademacher tree need neither be a �-

tree nor a separated �-tree. For example, consider the c0-valued dyadic martingale

ffn � (s0; : : : ; sn; 0; 0; : : : )g where the function sn from [0; 1] into [�1; 1] is de�ned

by

sn =

�
(�1)k 2�n if ! 2 Ink with k � 2 ;

(�1)k if ! 2 Ink with k > 2 :

The tree associated with ffng is a bounded 1
4
-Rademacher tree but is neither a

�-tree nor a separated �-tree for any positive �. Thus, since a �-tree grows in a
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space failing the CCP, the notion of a separated �-tree is preferred to that of a

�-Rademacher tree for characterizing the CCP.

Remark 4.6. The �-tree that Bourgain [B2] constructed in a space failing the CCP

is neither a separated �-tree nor a �-Rademacher tree since the operator associated

with his tree is Dunford-Pettis. Modifying Bourgain's construction, we can produce

a bounded �-Rademacher tree; however, it is not clear that this tree is a �-tree. We

now present this construction.

A direct proof that a bounded �-Rademacher tree grows in a space failing the CCP.

Let X be a Banach space failing the CCP. Fix a non-Dunford-Pettis operator T

from L1 into X. By a lemma of Bourgain [B2], there exists A 2 �+, � > 0, and a

sequence fgrg of simple functions in L1 such that

(i) k gr kL
1

� 1

(ii) fgrg is weakly null in L1

(iii) lim k T ( f gr ) k � 3� k f kL
1

if f 2 F(A)

where F(A) � fh 2 L1 : k h kL
1

=k h�A kL
1

; h � 0 a.e. g .

We shall construct, by induction on n, a system

ffnk : n = 0; 1; : : : and k = 1; : : : ; 2ng

of L1-functions satisfying for each admissible n and k

(1) fnk is a simple function in F(A)

(2) k fnk kL1= 1

(3) 2 fnk = fn+12k�1 + fn+12k

(4) k
P2n

k=1 (Tf
n+1
2k�1 � Tfn+12k ) k > �2n+1 :

It is easy to see that fTfnk g will be a bounded �-Rademacher tree in X (in fact the

tree is in the image of the probability densities of L1 with support in A).
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Set f01 = �A
�(A)

. Clearly, f01 satis�es conditions (1) and (2).

Fix n � 0. Assume that we have constructed a system ffnk : k = 1; : : : ; 2ng that

satis�es conditions (1) and (2). We shall now construct ffn+1k : k = 1; : : : ; 2n+1g

such that the system ffmk : m = n; n + 1 and k = 1; : : : ; 2mg satis�es conditions

(1) through (4).

Set fn = 2�n
P2n

k=1 f
n
k . Note that fn 2 F(A) and k fn kL

1

= 1. Apply-

ing Bourgain's lemma, we may assume (just pass to a subsequence) that for each

positive integer r, k T ( fn gr ) k � 3� :

Let An be the (�nite) algebra generated by ffnk : k = 1; : : : ; 2ng and En(�) be

the conditional expectation with respect to An. Set

g0r = gr �En(gr) :

Since fgrg tends weakly to 0, k En(gr) kL
1

tends to 0. Thus, we may choose a

positive integer Rn � R such that

k g0R kL1 � 2 and k En(gR) kL
1

<
�

k T k
:

Note that for k = 1; : : : ; 2n, since each fnk is An- measurable,
R


fnk g

0
R d� = 0 .

Set, for k = 1; : : : ; 2n,

fn+12k�1 = fnk + 1
2
fnk g

0
R � fnk (1 + 1

2
g0R)

and

fn+12k = fnk �
1
2
fnk g

0
R � fnk (1� 1

2
g0R) :

Clearly, ffmk : m = n; n + 1 and k = 1; : : : ; 2mg satis�es conditions (1), (2), and
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(3). As for condition (4),

k

2nX
k=1

(Tfn+12k�1 � Tfn+12k ) k = k

2nX
k=1

T (fnk g
0
R) k

= k T (2nfng
0
R) k

� k T (2nfngR) k � k T (2nfnEn(gR)) k

� 3�2n � 2n k T k k fn kL
1

k En(gR) kL
1

> 3�2n � 2n �

= � 2n+1 :

Thus, condition (4) is also satis�ed. �
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CHAPTER 5

LOCALIZATION

We now localize the results thus far. We de�ne the CCP for bounded subsets

of X by examining the behavior of certain bounded linear operators from L1 into X.

Before determining precisely which operators let us set some notation and consider

an example.

Let F (L1) denote the positive face of the unit ball of L1, i.e.

F (L1) = ff 2 L1 : f � 0 a.e. and k f k= 1g ;

and � denote the subset of F (L1) given by

� =
� �E

�(E)
: E 2 �+

	
:

Note that the L1-norm closed convex hull of � is F (L1).

Some care is needed in localizing the CCP. The example below (due to Stegall)

illustrates the trouble one can encounter in localizing the RNP.

Example 5.1. We would like to de�ne the RNP for sets in such a way that if a subset

D has the RNP then the co D also has the RNP. For now, let us agree that a subset

D of X has the RNP if all bounded linear operators from L1 into X with T (�) � D

are representable. Let X be any separable Banach space without the RNP (e.g.

L1). Renorm X to be a strictly convex Banach space. Let D be the unit sphere of

X and T : L1 ! X satisfy T (�) � D. Since X is strictly convex, it is easy to verify

that T (�) is a singleton in X. Thus T is representable and so D has the RNP. If

this is to imply that co D also has the RNP, then the unit ball of X would have the

RNP. But if the unit ball of X has the RNP then X has the RNP; but, X fails the
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RNP. The same problem arises if we replace T (�) � D by either T (F (L1)) � D

or T (B(L1)) � D.

Because of such di�culties, we localize properties to nonconvex sets by consid-

ering their closed convex hull. We now make precise the localized de�nitions.

De�nition 5.2. If D is a closed bounded convex subset of X, then D has the

complete continuity property if all bounded linear operators T from L1 into X satis-

fying T (�) � D are Dunford-Pettis. If D is an arbitrary bounded subset of X, then

D has the complete continuity property if the co D has the complete continuity

property.

The RNP and strong regularity for subsets are de�ned similarly. We obtain equiv-

alent formulations of the above de�nitions by replacing T (�) with T (F (L1)). Be-

cause of the de�nitions we restrict our attention to closed bounded convex subsets

of X.

The oscillation results of Chapter 2 localize easily using Corollary 2.8.

Theorem 5.3. If K is a closed bounded convex subset of X, then the following

statements are equivalent.

(1) K has the CCP.

(2) For each bounded linear operator T : L1 ! X with T (�) � K, the subset

T �(B(X�)) of L1 is a set of small Bocce oscillation.

(3) For each bounded linear operator T : L1 ! X with T (�) � K, the subset

T �(B(X�)) of L1 satis�es the Bocce criterion.

We can localize the martingale characterization of the CCP. As in Chapter 1, �x

an increasing sequence f�ngn�0 of �nite positive interval partitions of 
 such that

_ �(�n) = � and �0 = f
g. Set Fn = �(�n). It is easy to see that a martingale
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ffn;Fng takes values in K precisely when the corresponding operator T satis�es

T (�) � K. In light of Fact 1.3, we now have the following fact.

Fact 5.4. IfK is a closed bounded convex subset of X, thenK has the CCP precisely

when all K-valued martingales are Cauchy in the Pettis norm.

Theorem 3.8 localizes to provide the following characterization.

Theorem 5.5. Let K be a closed bounded convex subset of X. The following

statements are equivalent.

(1) K has the CCP.

(2) All the subsets of K are weak-norm-one dentable.

(3) All the subsets of K are midpoint Bocce dentable.

(4) All the subsets of K are Bocce dentable.

Proof. It is clear from the de�nitions that (2) implies (3) and that (4) implies (3).

Theorem 3.9 and Fact 5.4 show that (1) implies (4) while Fact 3.14 and Fact 5.4

show that (1) implies (2). So we only need to show that (3) implies (1). For this,

slight modi�cations in the proof of Theorem 3.11 su�ce.

Let all subsets of K be midpoint Bocce dentable. Fix a bounded linear operator

T from L1 into X satisfying T (�) � K. We shall show that the subset T �(B(X�))

of L1 satis�es the Bocce criterion. Then an appeal to Theorem 5.3 gives that K has

the complete continuity property. To this end, �x � > 0 and B in �+. Let F denote

the vector measure from � into X given by F (E) = T (�E). Since T (�) � K, the

set fF (E)
�(E)

: E � B and E 2 �+g is a subset of K and thus is midpoint Bocce

dentable. The proof now proceeds as the proof of Theorem 3.11. �

Towards a localized tree characterization, let K be a closed bounded convex

subset of X. If K fails the CCP, then there is a subset of K that is not midpoint
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Bocce dentable (Theorem 5.5) and hence a separated �-tree grows in K (Theo-

rem 4.2). A separated �-tree is a separated �-bush and, with slight modi�cations, a

�-Rademacher tree. In light of our discussion in Chapter 4, if a separated �-bush or

a �-Rademacher tree grows in K, then the associated K-valued martingale is not

Pettis-Cauchy and so K fails the CCP (Fact 5.4). Thus Theorem 4.1 localizes to

provide the following characterization.

Theorem 5.6. Let K be a closed bounded convex subset of X. The following

statements are equivalent.

(1) K fails the CCP.

(2) A separated �-tree grows in K.

(3) A separated �-bush grows in K.

(4) A �-Rademacher tree grows in K.
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