Def. 2.1.1. Let X be a non-empty set and $d: X \times X \to \mathbb{R}$ be s.t. $\forall x, y, z \in X$:

 $\begin{array}{ll} (1a) \ d\left(x,y\right) \geq 0 \\ (1b) \ d\left(x,y\right) = 0 & \Leftrightarrow \ x = y \\ (2) \ d\left(x,y\right) = d\left(y,x\right) \quad (\text{i.e., } d \text{ is } symmetric) \\ (3) \ d\left(x,y\right) \leq d\left(x,z\right) + d\left(z,y\right) \quad (\text{i.e., } d \text{ satisfies the } triangle \ inequality). \end{array}$ Then

• d is called a *metric* (or *distance*) function on X

• (X, d) (or just X if d is understood) is called a *metric space*.

▶ Below is a collection of definitions from §2.1. Many of the below concepts have many equivalent formulations and often a book chooses one of equivalent formulations as the definition and then shows that the chosen definition is equivalent to the other formulations.

For the remainder of this handout, let: (X, d) be a metric space $, x \in X , S \subset X , \varepsilon > 0$.

Def. 2.1.3. The open ball in X with center x and radius ε is

$$\underbrace{B\left(x,\varepsilon\right)}_{\text{book}} \stackrel{\text{or}}{=} \underbrace{B_{\varepsilon}\left(x\right) \stackrel{\text{or}}{=} N_{\varepsilon}\left(x\right)}_{\text{prof. mg}} \stackrel{\text{def.}}{:=} \left\{y \in X \colon d\left(x,y\right) < \varepsilon\right\} \;.$$

Def. The <u>deleted</u> ε -open ball about x is $B'_{\varepsilon}(x) \stackrel{\text{or}}{=} N'_{\varepsilon}(x) \stackrel{\text{def.}}{:=} B_{\varepsilon}(x) \setminus \{x\} \stackrel{\text{note}}{=} \{y \in X : 0 < d(x, y) < \varepsilon\}$. **Def.** x is an *interior* point of $S \stackrel{\text{def.}}{\iff} (\exists \varepsilon_x > 0) [B_{\varepsilon_x}(x) \subset S].$

Notation. int S denotes the set of all interior points of S.

Def. 2.1.3. S is open in $X \iff (\forall x \in S) [x \in \text{int } S]. \iff (\forall x \in S) (\exists \varepsilon_x > 0) [B_{\varepsilon_x}(x) \subset S].$ **Def. 2.1.9.** S is closed in $X \iff X \setminus S$ is open in X.

Recall: $S^c \stackrel{\text{notation}}{=} X \setminus S \stackrel{\text{def.}}{:=} \{x \in X \colon x \notin S\} \stackrel{\text{book's}}{=} {}^cS.$

Def. 2.1.6. *interior of* $S \stackrel{\text{notation}}{=} S^{\circ} \stackrel{\text{def.}}{:=} \bigcup \{G : G \subset S \text{ and } G \text{ is open in } X\} \stackrel{\text{book's}}{=} \overset{\circ}{S}$.

Def. 2.1.12. closure of $S \stackrel{\text{notation}}{=} \overline{S} \stackrel{\text{def.}}{:=} \bigcap \{F \colon F \supset S \text{ and } F \text{ is closed in } X\}.$

Def. 2.1.17. $\partial S \stackrel{\text{or}}{=} \text{boundary of } S \stackrel{\text{def.}}{:=} \overline{S} \setminus S^{\circ}$

Def. 2.1.15. S is a neighborhood (NBHD) of x provided S is an open set that contains x^{1} .

Recall. The set of extended real numbers is $\widehat{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$. Also, for $R \subset \mathbb{R}$, $\sup \emptyset = \lim \emptyset = -\infty$ and $\sup R = -\infty \Leftrightarrow R = \emptyset$

$$\inf \emptyset = \operatorname{glb} \emptyset = +\infty$$
 and $\inf R = +\infty \Leftrightarrow R = \emptyset$.

Def. 2.1.22. bounded (abbreviated bnd)

o diam S ^{or} = diameter of S := sup {d (x, y) : x, y ∈ S} ∈ R.
o S is bounded (bnd) def. diam S < ∞.
anote (∃M ∈ R) (∀x, y ∈ S) [d (x, y) ≤ M). (terminology: S is bounded by M)

Def. 2.1.25. x is a limit (or accumulation) point of $S \quad \stackrel{\text{def.}}{\Leftrightarrow} \forall \text{ NBHD } V \text{ of } x \ , \ \exists s \in S \cap [V \setminus \{x\}]$ $\stackrel{\text{note}}{\Leftrightarrow} \forall \quad \varepsilon > 0 \qquad , \ \exists s \in S \cap [B_{\varepsilon}(x) \setminus \{x\}]$ $\stackrel{\text{note}}{\Leftrightarrow} \forall \quad \varepsilon > 0 \qquad , \ \exists s \in S \cap B_{\varepsilon}(x) \setminus \{x\}]$

Notation. S' denotes the set of all limit points of S.

¹think of $B_{\varepsilon}(x)$ as a *basic* NBHD of x

INTERIOR OF A SUBSET S of a metric space \boldsymbol{X} $\bigcup_{G \in \mathcal{G}_S} G \quad \text{where } \mathcal{G}_S = \{ G \in \mathcal{P}(X) : G \text{ is open and } G \subset S \}.$ $\stackrel{\text{notation}}{=}$ $\stackrel{\text{def}}{=}$ S^{o} (1i) interior of S(2i) S^o is open (3i) $S^o \subset S$ (4i) S^{o} is the largest open set contained in $S \quad \langle \text{vaguely, } S^{o} \text{ is the largest open set inside of } S \rangle$ in the sense that S^o is an open set contained in S and (now largest part) if H is an open set contained in S then $H \subset S^o$. (5i) $S^o = S \iff S$ is open (6i) $S^o = \text{int } S$ (i.e., the interior of S equals the set of interior points of S) (7i) $(S^o)^c = \overline{S^c}$ (8i) $x \in S^o \iff (\exists \varepsilon_x > 0) [B_{\varepsilon_x}(x) \subset S]$ CLOSURE OF A SUBSET S of a metric space X $\overline{S} \stackrel{\text{def}}{=} \bigcap_{F \in \mathcal{F}_S} F \text{ where } \mathcal{F}_S = \{F \in \mathcal{P}(X) : F \text{ is closed and } S \subset F\}.$ $\stackrel{\text{notation}}{=}$ (1c) closure of S(2c) \overline{S} is closed (3c) $S \subset \overline{S}$ (4c) \overline{S} is the smallest closed set that contains S (vaguely, \overline{S} is the smallest closed set that sits on top of S) in the sense that \overline{S} is a closed set that contains S and (now smallest part) if H is an closed set that contains S then $\overline{S} \subset H$. (5c) $S = \overline{S} \iff S$ is closed

(6c)
$$\overline{S} = S \cup S' = S \cup \partial S$$

(7c)
$$\left(\overline{S}\right)^c = \left(S^c\right)^o$$

 $(8c) \ x \in \overline{S} \ \Leftrightarrow \ (\forall \varepsilon > 0) \left[\ B_{\varepsilon} \left(x \right) \cap S \neq \emptyset \right]$