Observation 1. Let $z \in \mathbb{C}$. TFAE, as easily seen by writing $z = x + iy \in \mathbb{C}$ where $x = \operatorname{Re} z \in \mathbb{R}$ and $y = \operatorname{Im} z \in \mathbb{R}$.

(1.1) $z \ge 0$ (a convenient way to indicate that z is real and nonnegative, i.e. $z = \operatorname{Re} z \ge 0$) (1.2) z = |z|

(1.3) $\operatorname{Re} z = |z|$

Observation 2. Let $z_1, z_2 \in \mathbb{C}$. TFAE. (think what this is saying geometrically)

 $\begin{array}{ll} (2.1) & z_1\overline{z_2} \ge 0 \\ (2.2) & z_1\overline{z_2} = |z_1| \, |z_2| \\ (2.3) & \operatorname{Re} z_1\overline{z_2} = |z_1\overline{z_2}| \end{array}$ $\begin{array}{ll} (2.4) & [z_2 = 0] \text{ or } \left[\begin{array}{c} \underline{z_1} \ge 0 \end{array} \right] \\ (2.5) & [z_2 = 0] \text{ or } \left[\begin{array}{c} z_1 = \lambda z_2 \text{ for some } \lambda \in [0, \infty) \end{array} \right] \end{array}$

Theorem 1. [Triangle Inequality (with equality)] Let $n \in \mathbb{N}$ and z_1, \ldots, z_n from \mathbb{C} . Then

$$|z_1 + \ldots + z_n| \leq |z_1| + \ldots + |z_n|$$
 (1)

and equality holds in (1) if and only if

 $z_j \overline{z_k} = |z_j| |z_k|$ for each $j, k \in \mathbb{N}^{\leq n}$ with $j \neq k$. (2)

An equivalent formution of (2) is

$$z_j \overline{z_k} = |z_j| |z_k| \quad \text{for each} \quad j,k \in \mathbb{N}^{\leq n}.$$

$$(2')$$

Proof. Let $n \in \mathbb{N}$. The equivalence of (2) and (2') follows from $z\overline{z} = |z|^2$ for any $z \in \mathbb{C}$. Theorem 1 clearly holds when n = 1 for any $z_1 \in \mathbb{C}$. Thus we assume $n \ge 1$.

First we show inequality (1) by induction. Let n = 2. Fix any $z_1, z_2 \in \mathbb{C}$. Then (1) holds aince

$$|z_{1} + z_{2}|^{2} = (z_{1} + z_{2}) \overline{(z_{1} + z_{2})}$$

$$= (z_{1} + z_{2}) (\overline{z_{1}} + \overline{z_{2}})$$

$$= z_{1} \overline{z_{1}} + z_{2} \overline{z_{2}} + z_{1} \overline{z_{2}} + \overline{z_{1}} z_{2}$$

$$= |z_{1}|^{2} + |z_{2}|^{2} + z_{1} \overline{z_{2}} + \overline{z_{1}} \overline{z_{2}}$$

$$= |z_{1}|^{2} + |z_{2}|^{2} + 2 \operatorname{Re} (z_{1} \overline{z_{2}})$$

$$\stackrel{(*)}{\leq} |z_{1}|^{2} + |z_{2}|^{2} + 2 |z_{1} \overline{z_{2}}|$$

$$= |z_{1}|^{2} + |z_{2}|^{2} + 2 |z_{1}| |z_{2}|$$

$$= (|z_{1}| + |z_{2}|)^{2}.$$
(3)

Now fix $n \in \mathbb{N}^{\geq 2}$. Assume that Theorem 1 holds for any collection of $m \in \mathbb{N}$ complex numbers where $m \leq n$. Fix z_1, \ldots, z_{n+1} from \mathbb{C} . Then

$$\left|\sum_{j=1}^{n+1} z_j\right| = \left|\left(\sum_{j=1}^n z_j\right) + z_{n+1}\right| \le \left|\sum_{j=1}^n z_j\right| + |z_{n+1}| \le \left(\sum_{j=1}^n |z_j|\right) + |z_{n+1}| = \sum_{j=1}^{n-1} |z_n|.$$

Thus (1) holds.

Thus, for any $n \in \mathbb{N}$ and z_1, \ldots, z_n from \mathbb{C} , inequality (1) holds.

The remaninder of the proof is the next Exercise.

Outline of rest of proof ...

What remains to be shown is, $\forall n \in \mathbb{N}$, $\begin{vmatrix} n \\ z \\ i = 1 \end{vmatrix} = \begin{vmatrix} n \\ i = 1 \end{vmatrix} \iff (2)$ holds. (WTS)

If n=1, then (WTS) clearly holds for any Z, EC.
Act n=2. Note

|2|+2|=|2|+|2|

is equin. to, by the calculation in (3) < namely the $(\stackrel{*}{=})$ Re $(\overline{z}, \overline{z}_2) = |\overline{z}, \overline{z}_2|$

which is equir to, by Observation 2,

 $Z_1 Z_2 = [Z_1] [Z_2].$

So (WTS) holds for n = 2 for any $Z_1, Z_2 \in \mathcal{C}$. • [WTS =) for $n \ge 3$ [Fix $n \in \mathbb{N}^{\ge 3}$. Let

 $|\underbrace{\hat{z}}_{i=1}^{2} z_{i}| = \underbrace{\hat{z}}_{i}| z_{i}| \qquad (4)$ (4) (4) (4) (4) $Fix \ i \neq i \text{ bold}$ $Fix \ i \neq i \text{ bold}$ $Fix \ i \neq i \text{ bold}$ $Fix \ i \neq i \text{ bold}$ (4) $Fix \ i \neq i \text{ bold}$ (5) (4) $Fix \ i \neq i \text{ bold}$ (4) (4

So $\begin{aligned} |z_{j}| + |z_{k}| + \sum_{i \in \Gamma} |z_{i}| &= \sum_{i=1}^{n} |z_{i}| & - \prod_{i \in \Gamma} using our \\ & by(\mathcal{H}) & \sum_{i=1}^{n} |z_{i}| & - \prod_{i \in \Gamma} using our \\ & by(\mathcal{H}) & \sum_{i=1}^{n} |z_{i}| & - \prod_{i \in \Gamma} using our \\ & i = 1 & - \prod_{i=1}^{n} |z_{i}| & - \prod$ $= \left| \left(2_{j} + 2_{k} \right) + \frac{2}{i\epsilon} \right|^{2}$ $\leq |z_j + Z_k| + \leq |z_i|$ So $l \ge j + l \ge l \ge j + 2 l |$. Now apply n = 2 case of (WTS) to get (2) holds for $j \ge k$ (which were arbitrary so done). WISE for n=3 Fix nEN=3. Let $z_j z_k = |z_j| |z_k|, \forall j, k \in \mathbb{N}^{\leq n}$. (2') We need to show $\left| \frac{n}{2} + \frac{2}{2} \right| = \frac{1}{2} |z_i|$ (5) <u>Case 1</u> 2; = 0 + j = M = n. Clearly (5) holds. $\frac{Cose 2}{\left|\sum_{i=1}^{n} z_i\right|} = \left|\frac{1}{2k}\sum_{i=1}^{n} \left(z_i \overline{z_k}\right)\right| \left|\frac{z_i}{q}\right| \left|\frac{z_i}{z_k}\right| \left|\frac{z_i}{q}\right|$ $= \sum_{i=1}^{n} |z_i|.$ SO (5) holds. Page 3 of 3 Þ

You are strongly encouraged to work in groups, following the procedure as in homework MS09.

Exercise pCA 5. Variant of 3.1.24.3 (p. 173).

Read section 3.1. Then finish the proof of Theorem 1 from the previous page.