Defining the Exponential Function. Using the real exponential function $e^{(\cdot)}: \mathbb{R} \rightarrow \mathbb{R}$, the complex exponential function $\exp (\cdot): \mathbb{C} \rightarrow \mathbb{C}$ is defined by

$$
\begin{equation*}
\exp (x+i y):=e^{x} \cos y+i e^{x} \sin y \stackrel{\text { i.e. }}{=} e^{x}(\cos y+i \sin y) \quad, x, y \in \mathbb{R} . \tag{1}
\end{equation*}
$$

The complex exponential function restricted to \mathbb{R} agrees the the usual real exponential fnc. since

$$
\begin{equation*}
\exp (x)=\exp (x+i 0)=e^{x} \cos 0+i e^{x} \sin 0=e^{x} \quad, x \in \mathbb{R} \tag{2}
\end{equation*}
$$

Thus we often write $\exp (x+i y)$ by $e^{x+i y}$.
Defining Trigomonetric Functions. From (1) it follows that if $x \in \mathbb{R}$ then

$$
\begin{equation*}
e^{i x}+e^{-i x}=2 \cos x \quad \text { and } \quad e^{i x}-e^{-i x}=2 i \sin x \quad, z \in \mathbb{R} . \tag{3}
\end{equation*}
$$

Motivated by (3), the (complex) sine and cosine functions (from \mathbb{C} to \mathbb{C}) are defined by

$$
\begin{equation*}
\cos z:=\frac{e^{i z}+e^{-i z}}{2} \quad \text { and } \quad \sin z:=\frac{e^{i z}-e^{-i z}}{2 i} \quad, z \in \mathbb{C} . \tag{4}
\end{equation*}
$$

Defining Hyperbolic Functions. Motivated by their definition for a real number, the (complex) hyperbolic sine and cosine functions (from \mathbb{C} to \mathbb{C}) are defined by

$$
\begin{equation*}
\cosh z:=\frac{e^{z}+e^{-z}}{2} \quad \text { and } \quad \sinh z:=\frac{e^{z}-e^{-z}}{2} \quad, z \in \mathbb{C} . \tag{5}
\end{equation*}
$$

Good Reference. [BC] Brown and Churchill, Complex Variables and Applications. (any edition). From Chapter 3, read sections:
§23. The Exponential Function (p. 65-68)
§24. Trigonometric Functions (p. 69-72)
§25. Hyperolic Functions (p. 72-75).
Concentrate on the definitions and properities of these functions, ignoring for now the parts about derivatives/entire. The above reference shows that these functions are defined on the whole of \mathbb{C} in such a way that
(1) when a function's domain is restricted from \mathbb{C} to \mathbb{R}, the resulting function agrees with the function (of the same name) from \mathbb{R} to \mathbb{R} that we know from calculus
(2) many identities/properties which we know from the \mathbb{R}-version extend to the \mathbb{C}-version (e.g., $e^{z_{1}} e^{z_{2}}=e^{z_{1}+z_{2}}$ for each $z_{z}, z_{2} \in \mathbb{C}$).

You should have a working knowledge of the properties/identities of the complex exponential, sine, and cosine functions. One major difference between the complex and real exponential functions is that the complex exponential function is periodic with a pure imaginary period of $2 \pi i$ i.e.,

$$
\begin{equation*}
\exp (z+2 \pi i)=\exp (z), \quad, z \in \mathbb{C} \tag{6}
\end{equation*}
$$

Thus we will have to take care when defining a complex version of an "inverse" of the complex exponential (i.e., the complex log).

Exercise pCA 4. Find all the solutions of the equation $\sin z=3$, expressing your solution(s) in the form $a+i b$ with $a, b \in \mathbb{R}$.

Remark. The first solution uses trig. functions. The second solution uses hyperbolic trig. functions as well as the relations between complex trig and hyperbolic trig functions.
Recall. Fix $w \in \mathbb{C} \backslash\{0\}$. Recall from class that

$$
\left\{z \in \mathbb{C}: e^{z}=w\right\}=\{\ln |w|+i \theta: \theta \in \arg w\} .
$$

(important)
If $z \in \mathbb{C} \backslash\{z \in \mathbb{R}: z \leq 0\}$, then

$$
\left[e^{z}=w\right] \quad \Longleftrightarrow \quad[z=\ln |w|+i(\operatorname{Arg} w+2 \pi k) \quad, k \in \mathbb{Z}] .
$$

First Solution (using trig. functions). Let $z=x+i y$, with $x, y \in \mathbb{R}$. By definition,

$$
\sin z=\frac{e^{i z}-e^{-i z}}{2 i}
$$

Thus, the following are equivalent.

$$
\begin{gathered}
\sin (z)=3 \\
e^{i z}-e^{-i z}=6 i \\
e^{i z}-6 i-e^{-i z}=0 \\
\left(e^{i z}\right)^{2}-6 i\left(e^{i z}\right)-1=0
\end{gathered}
$$

Note that

$$
\begin{equation*}
(-6 i)^{2}-4(1)(-1)=-32 \stackrel{k \in \mathbb{Z}}{=} 4^{2} 2 e^{i(\pi+2 \pi k)}, \tag{4.3}
\end{equation*}
$$

and taking $k=0$ in (4.3) gives a complex square root of -32 is

$$
4 \sqrt{2} e^{i\left(\frac{\pi}{2}\right) \stackrel{\text { i.e. }}{=}} 4 \sqrt{2} i .
$$

Note that

$$
\frac{6 i \pm 4 \sqrt{2} i}{2}=(3 \pm 2 \sqrt{2}) i
$$

Thus

$$
\sin z=3 \quad \text { if only only if } \quad e^{i z}=(3 \pm 2 \sqrt{2}) i
$$

So by (important), TFAE.

$$
\begin{gathered}
e^{i z}=(3 \pm 2 \sqrt{2}) i \\
i z=\ln |(3 \pm 2 \sqrt{2}) i|+i(\operatorname{Arg}((3 \pm 2 \sqrt{2}) i)+2 \pi k) \quad, k \in \mathbb{Z} \\
i z=\ln (3 \pm 2 \sqrt{2})+i\left(\frac{\pi}{2}+2 \pi k\right) \quad, k \in \mathbb{Z} \\
z=-i \ln (3 \pm 2 \sqrt{2})+\left(\frac{\pi}{2}+2 \pi k\right) \quad, k \in \mathbb{Z}
\end{gathered}
$$

So

$$
\left\{\left(\frac{\pi}{2}+2 \pi k\right)-i \ln (3 \pm 2 \sqrt{2}): k \in \mathbb{Z}\right\}
$$

is the solution set of the equation $\sin z=3$.

Second Solution (using hyperbolic trig. functions). Let $z=x+i y$, with $x, y \in \mathbb{R}$. Consider the equation

$$
\begin{equation*}
\sin (z)=3 . \tag{4.0}
\end{equation*}
$$

Since $\sin (x+i y)=\sin (x) \cosh (y)+i \cos (x) \sinh (y)$, equation (4.0) is equivalent to the following 2 equations both holding.

$$
\begin{align*}
& \sin (x) \cosh (y)=3 \tag{4.1}\\
& \cos (x) \sinh (y)=0 . \tag{4.2}
\end{align*}
$$

To see that $\sinh y$ cannot equal 0 , assume $\sinh y=0$. Then $y=0$ and so $\cosh y=\cosh 0=1$. So (4.1) implies that $\sin x=3$. But $x \in \mathbb{R}$, a \sharp. So $\sinh y \neq 0$. So z satisfies (4.2) if and only if $\cos x=0$, equivalently,

$$
x \in\left\{\frac{(2 k+1) \pi}{2}: k \in \mathbb{Z}\right\} \stackrel{\text { i.e. }}{=}\left\{\frac{\pi}{2}+k \pi: k \in \mathbb{Z}\right\} .
$$

Now we need to also satisfy (4.1). Consider $x=\frac{\pi}{2}+k \pi$ where $k \in \mathbb{Z}$. Note that that

$$
\sin (x)=\left\{\begin{aligned}
1 & \text { when } k \text { is even } \\
-1 & \text { when } k \text { is odd }
\end{aligned}\right.
$$

To see that k cannot be odd, suppose that k is odd. Then (4.1) would imply that $\cosh y=-3$. But $\cosh \theta \geq 1$ for any $\theta \in \mathbb{R}$. A \sharp. So k must be even. So (4.1) is satisfies if and only if $\cosh (y)=3$. Note that the following are equivalent.

$$
\begin{gathered}
\cosh (y)=3 \\
\frac{e^{y}+e^{-y}}{2}=3 \\
e^{y}-6+e^{-y}=0 \\
\left(e^{y}\right)^{2}-6 e^{y}+1=0 \\
e^{y}=\frac{6 \pm \sqrt{36-4}}{2} \\
y=\ln (3 \pm 2 \sqrt{2})
\end{gathered}
$$

Thus

$$
\left\{\left(\frac{\pi}{2}+k \pi\right)+i \ln (3 \pm 2 \sqrt{2}): k \in 2 \mathbb{Z}\right\} \quad \stackrel{\text { i.e }}{=}\left\{\left(\frac{(4 k+1) \pi}{2}\right) \pm i \operatorname{arccosh} 3: k \in \mathbb{Z}\right\}
$$

is the solution set of (4.0).
Remark. Note that the First Solution and Second Solution are indeed the same since

$$
-\ln (3-2 \sqrt{2})=\ln (3-2 \sqrt{2})^{-1}=\ln (3+2 \sqrt{2}) .
$$

