Exercise pCA 3. Describe (in words or/and a picture) the sets whose points satisfy the following relations. Which of these sets are regions? By definition, a region is an open connected set; you can argue openness and connectedness intuitively (so no ε 's needed).

ER 3.a. $|z + i| \le 1$. ER 3.b. $\left| \frac{z - 1}{z + 1} \right| = 1$. ER 3.c. |z - 3| > |z - 2|. ER 3.d. $\frac{1}{z} = \overline{z}$.

 $\triangleright \text{ Throughtout, let } z = x + iy \text{ or } z = re^{i\theta} \text{ where } x, y, r, \theta \in \mathbb{R} \text{ with } r > 0.$

(a). This set is the set of points $z \in \mathbb{C}$ such that the distance between z and -i is ≤ 1 . So this is the closed (boundary and interior points included) ball with radius 1 and center -i. This set is connected but is not open; thus, this set is not a region. Geometrically:

$$z \in F$$
 satisfying $|z+i| \leq |$ is equivalent to all the
x,y $\in \mathbb{R}$ satisfying $x^2 + (y+1)^2 \leq |$, which is a closed
disk in the plane with radius | and center at $(0,-1)$.

(b). This set is the set of points $z \in \mathbb{C} \setminus \{-1\}$ such that the distance between z and 1 is equal to the distance between z and -1. Thus this set is the imaginary axis

$$\{z \in \mathbb{C} : \operatorname{Re} z = 0\}$$
.

Indeed, if z = x + iy with $x, y \in \mathbb{R}$, then the following are equivalent.

$$|z - 1| = |z + 1|$$
$$|z - 1|^{2} = |z + 1|^{2}$$
$$(x - 1)^{2} + y^{2} = (x + 1)^{2} + y^{2}$$
$$(x - 1)^{2} = (x + 1)^{2}$$
$$x^{2} - 2x + 1 = x^{2} + 2x + 1$$
$$x = 0.$$

This set is connected but is not open; thus, this set is not a region. Geometrically:

$$\frac{ze\ell}{|z+1|} = | \quad \text{must satisfy} \quad |z-1| = |z+1|,$$

i.e. $(x-1)^2 = (x+1)^2$. Thus, if $x=0$ and $y \in |R|$, then
 $z \neq |||$ satisfy $|\frac{z-1}{|z+1|} = |$; which describes a line in the plane,
notably the imaginary axis.
$$\int_{Rez}^{T_{n,z}} e^{x+1} e^{x+$$

(c). This set is the set of points $z \in \mathbb{C}$ such that the distance between z and 3 is strictly larger than the distance between z and 2. Consider z = x + iy with $x, y \in \mathbb{R}$, then the following are equivalent.

$$|z-3| > |z-2|$$

 $(x-3)^2 + y^2 > (x-2)^2 + y^2$
 $\frac{5}{2} > x$.

Thus this set is $\{z \in \mathbb{C} : \operatorname{Re} z < \frac{5}{2}\}$. Such a set is commonly called a half-plane. This set is a region. Geometrically:

$$z \in \{f \text{ satisfying } | z-3 | > | z-2 | \text{ must satisfy } (x-3)^2 > (x-2)^2$$
,
which reduces to $x < 5/2$ using the properties of $[R]$. So
if $x \in (-\infty, \frac{5}{2})$ and $y \in [R]$, then z satisfies $|z-3| > |z-2|$.
This describes a partition of the plane.
This is open and connected.
Hence it is a region.
 $15/2$ Rez

(d). This set is the set of points $z \in \mathbb{C}$ such that $z \neq 0$ and $z \overline{z} = 1$. Note that, for z = x + iy with $x, y \in \mathbb{R}$,

$$z \overline{z} = (x + iy) (x - iy) = x^2 + y^2 = |z|^2$$
.

Another approach would be to write $z = re^{i\theta}$ with $r, \theta \in \mathbb{R}$ and r > 0 and then compute

$$z\,\overline{z} = \left(re^{i\theta}\right)\,\left(\overline{re^{i\theta}}\right) = \left(re^{i\theta}\right)\,\left(\overline{r}\,\overline{e^{i\theta}}\right) = \left(re^{i\theta}\right)\,\left(re^{-i\theta}\right) = r^2e^{i(\theta-\theta)} = r^2e^0 = r^2 = |z|^2 \ .$$

Thus this set

$$\{z\in\mathbb{C}\colon |z|=1\} \ ,$$

that is, this set is the unit circle in the complex plane that is centered at the origin. This set is connected but is not open; thus, this set is not a region. Geometrically:

