Exercise pGA 3. Describe (in words or/and a picture) the sets whose points satisfy the following relations. Which of these sets are regions? By definition, a region is an open connected set; you can argue openness and connectedness intuitively (so no ε 's needed).

ER 3.a. $|z+i| \leq 1$.
ER 3.b. $\left|\frac{z-1}{z+1}\right|=1$.
ER 3.c. $|z-3|>|z-2|$.
ER 3.d. $\frac{1}{z}=\bar{z}$.
\triangleright Throughtout, let $z=x+i y$ or $z=r e^{i \theta}$ where $x, y, r, \theta \in \mathbb{R}$ with $r>0$.
(a). This set is the set of points $z \in \mathbb{C}$ such that the distance between z and $-i$ is ≤ 1. So this is the closed (boundary and interior points included) ball with radius 1 and center $-i$. This set is connected but is not open; thus, this set is not a region. Geometrically:
$z \in \mathbb{A}$ satisfying $|z+i| \leq 1$ is equivalent to all the
$x, y \in \mathbb{R}$ satisfying $\quad x^{2}+(y+1)^{2} \leq 1$, which is a closed
disk in the plane with radius 1 and center at $(0,-1)$.

(b). This set is the set of points $z \in \mathbb{C} \backslash\{-1\}$ such that the distance between z and 1 is equal to the distance between z and -1 . Thus this set is the imaginary axis

$$
\{z \in \mathbb{C}: \operatorname{Re} z=0\}
$$

Indeed, if $z=x+i y$ with $x, y \in \mathbb{R}$, then the following are equivalent.

$$
\begin{aligned}
|z-1| & =|z+1| \\
|z-1|^{2} & =|z+1|^{2} \\
(x-1)^{2}+y^{2} & =(x+1)^{2}+y^{2} \\
(x-1)^{2} & =(x+1)^{2} \\
x^{2}-2 x+1 & =x^{2}+2 x+1 \\
x & =0 .
\end{aligned}
$$

This set is connected but is not open; thus, this set is not a region. Geometrically:

(c). This set is the set of points $z \in \mathbb{C}$ such that the distance between z and 3 is strictly larger than the distance between z and 2 . Consider $z=x+i y$ with $x, y \in \mathbb{R}$, then the following are equivalent.

$$
\begin{gathered}
|z-3|>|z-2| \\
(x-3)^{2}+y^{2}>(x-2)^{2}+y^{2} \\
\frac{5}{2}>x .
\end{gathered}
$$

Thus this set is $\left\{z \in \mathbb{C}: \operatorname{Re} z<\frac{5}{2}\right\}$. Such a set is commonly called a half-plane. This set is a region. Geometrically: which reduces to $x<5 / 2$ using the properties of \mathbb{R}. So if $x \in(-\infty, 5 / 2)$ and $y \in \mathbb{R}$, then z satisfies $|z-3|>|z-2|$. This describes a partition of the plane.

$$
\begin{aligned}
& \text { This is open and connected. } \\
& \text { Hence it is a region. }
\end{aligned}
$$

(d). This set is the set of points $z \in \mathbb{C}$ such that $z \neq 0$ and $z \bar{z}=1$. Note that, for $z=x+i y$ with $x, y \in \mathbb{R}$,

$$
z \bar{z}=(x+i y)(x-i y)=x^{2}+y^{2}=|z|^{2} .
$$

Another approach would be to write $z=r e^{i \theta}$ with $r, \theta \in \mathbb{R}$ and $r>0$ and then compute

$$
z \bar{z}=\left(r e^{i \theta}\right)\left(\overline{r e^{i \theta}}\right)=\left(r e^{i \theta}\right)\left(\bar{r} \overline{e^{i \theta}}\right)=\left(r e^{i \theta}\right)\left(r e^{-i \theta}\right)=r^{2} e^{i(\theta-\theta)}=r^{2} e^{0}=r^{2}=|z|^{2} .
$$

Thus this set

$$
\{z \in \mathbb{C}:|z|=1\},
$$

that is, this set is the unit circle in the complex plane that is centered at the origin. This set is connected but is not open; thus, this set is not a region. Geometrically:
$\begin{array}{llll}z \in \mathbb{Z} \backslash\{(0,0)\} & \text { satisfying } & \frac{1}{z}=\bar{z} & \text { must satisfy } r^{-1}=r, \\ \text { i.e. } \quad r^{2}=1 . & \text { So } r=1 & \text { (since } r>0 \text { by convention in polar form) }\end{array}$
and $g \in \mathbb{R}$ satisfies $z^{-1}=\bar{z}$. This describes the unit circle.

