Definition. Following convention, for $n \in \mathbb{N}$, we set

$$
\omega_{n}:=\exp \left(i \frac{2 \pi}{n}\right) \stackrel{\text { i.e. }}{=} e^{i \frac{2 \pi}{n}} .
$$

The n (distinct) $\underline{n}^{\text {th }}$ roots of unity (where ω_{n}^{k} denotes $\left(\omega_{n}\right)^{k}$) are

$$
\left\{\omega_{n}^{1}, \omega_{n}^{2}, \ldots, \omega_{n}^{n-1}, \omega_{n}^{n}(\stackrel{\text { i.e }}{=} 1)\right\} .
$$

Informative. Compute, and draw on the unit circle, the n (distinct) $n^{\text {th }}$ roots of unity for $n=1,2,3, \ldots$ (for enough n 's until you see the pattern \ldots. below $n=3,4,6$ are illustrated).

Note. Any $n^{\text {th }}$ root of unity is a solution to the equation $z^{n}=1$. Are there more? 〈NO, as next Thm. shows. \rangle Key Result. The next theorem gives that, for \langle fixed $\rangle r_{0}>0$ and $\theta_{0} \in \mathbb{R}$, the solution set to the equation

$$
z^{n}=r_{0} e^{i \theta_{0}}
$$

is the set (of n distinct elements)

$$
\left\{\sqrt[n]{r_{0}}\left(e^{i \theta_{0}}\right)^{1 / n}\left(e^{i 2 \pi k}\right)^{1 / n}: k=0,1,2, \ldots, n-1\right\}
$$

Theorem. Let $n \in \mathbb{N}$ and $z_{0}=r_{0} e^{i \theta_{0}} \in \mathbb{C} \backslash\{0\}$ with $r_{0}>0$ and $\theta \in \mathbb{R}$. $\left\langle\right.$ so θ_{0} is any element from $\left.\arg z_{0}\right\rangle$. Then the solution set of the equation

$$
z^{n}=z_{0}
$$

is the set (of n distinct elements)
$\left\{\sqrt[n]{r_{0}} \exp \left[\frac{i}{n}\left(\theta_{0}+2 \pi k\right)\right] \in \mathbb{C}: k=0,1,2, \ldots, n-1\right\} \stackrel{i . e .}{=}\left\{\sqrt[n]{\left|z_{0}\right|} e^{i \frac{\theta_{0}}{n}}\left(\omega_{n}\right)^{k} \in \mathbb{C}: k=0,1,2, \ldots, n-1\right\}$ where $w_{n}=e^{i \frac{2 \pi}{n}}$. Furthermore, if $c \in \mathbb{C}$ is any solution to $z^{n}=z_{0}$, then

$$
\left\{c, c \omega_{n}^{1}, c \omega_{n}^{2}, c \omega_{n}^{3}, \ldots, c \omega_{n}^{n-1}\right\}
$$

is a solution set to $z^{n}=z_{0} .\left\langle c=c \omega_{n}^{0}\right\rangle$. If $-\pi<\theta_{0} \leq \pi\left\langle i . e ., \theta_{0}\right.$ is the principal value of the argument of $\left.r_{0} e^{i \theta_{0}}\right\rangle$, then $\sqrt[n]{r_{0}} e^{i \frac{\theta_{0}}{n}}$ is called the principal $n^{\text {th }}$ root of z_{0}.
Proof's key calculation. LTGBG. Then $\sqrt[n]{r_{0}} \in \mathbb{R}^{>0}$ since $r_{0} \in \mathbb{R}^{>0}$. Then TFAE.

$$
\begin{gather*}
z_{0}=z^{n} \\
r_{0} e^{i \theta_{0}}=\left(r e^{i \theta}\right)^{n} \\
r=\sqrt[n]{r_{0}} \quad \text { and } \quad \theta=\frac{\theta_{0}}{n}+\frac{2 \pi k}{n} \quad \text { for any } k \in \mathbb{Z} \\
z=\sqrt[n]{r_{0}} \exp \left[i\left(\frac{\theta_{0}}{n}+\frac{2 \pi k}{n}\right)\right] \quad \text { for any } k \in \mathbb{Z} \\
z \in\left\{\sqrt[n]{r_{0}} \exp \left[i\left(\frac{\theta_{0}}{n}+\frac{2 \pi k}{n}\right)\right] \in \mathbb{C}: k=0,1,2, \ldots, n-1\right\}
\end{gather*}
$$

Lesson. Need to take care in taking $n^{\text {th }}$ roots of complex numbers. The $n^{\text {th }}$ roots of a (nonzero) complex number is a set with n distinct elements.
Reference. Complex Variables and Appl. by Brown and Churchill (Ch.1's §: Roots of Complex Numbers).

You are strongly encouraged to work in groups, following the procedure as in homework MS09.
Exercise pCA 2. Solve $z^{2}-4 z+(4+2 i)=0$. Express your solution(s) in the form $a+i b$ with $a, b \in \mathbb{R}$. First Solution. Note that TFAE.

$$
\begin{gathered}
z^{2}-4 z+(4+2 i)=0 \\
(z-2)^{2}+2 i=0 \\
(z-2)^{2}=-2 i \\
(z-2)^{2}=2 e^{\left(i\left(\frac{-\pi}{2}+2 \pi k\right)\right)}, \quad \text { for any } k \in \mathbb{Z} \\
z-2=\sqrt{2} e^{\left(i\left(\frac{-\pi}{4}+\pi k\right)\right)} \quad, \quad \text { for any } k \in \mathbb{Z} \\
z=2+\sqrt{2} e^{\left(i\left(\frac{-\pi}{4}+\pi k\right)\right)} \quad, \quad k=0 \text { or } k=1 .
\end{gathered}
$$

Note

$$
2+\sqrt{2} e^{\left(i\left(\frac{-\pi}{4}+\pi k\right)\right)}= \begin{cases}z=2+\sqrt{2} e^{\left(i\left(\frac{-\pi}{4}\right)\right)}=2+\sqrt{2}\left(\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)=3-i & \text { if } k=0 \\ z=2+\sqrt{2} e^{\left(i\left(\frac{3 \pi}{4}\right)\right)}=2+\sqrt{2}\left(\frac{-1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=1+i & \text { if } k=1\end{cases}
$$

Thus the solutions to $z^{2}-4 z+(4+2 i)=0$ are $3-i$ and $1+i$.
Second Solution. Consider the equation

$$
\begin{equation*}
a z^{2}+b z+c=0 \tag{2.1}
\end{equation*}
$$

where $a, b, c \in \mathbb{C}$ and $a \neq 0$. Simple algebra \langle just as you did in grammer school to solve the quadratic equation with real coefficients, next complete the square) gives that (2.1) holds if and only if

$$
\begin{equation*}
\left(z+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} \tag{2.2}
\end{equation*}
$$

Case 1: $b^{2}-4 a c=0$. By (2.2), it is clear that (2.1) has one solution $z=\frac{-b}{2 a} \stackrel{\text { note }}{=} \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
Case 2: $b^{2}-4 a c \neq 0$. Let $d \in \mathbb{C}$ be any (complex) square root of $b^{2}-4 a c\left\langle\right.$ so $\left.d^{2}=b^{2}-4 a c\right\rangle$. The Theorem on Roots of Complex Numbers gives that the solution set to the equation $z^{2}=b^{2}-4 a c$ is $\left\{d, d \omega_{2}\right\}=\left\{d, d e^{\frac{i 2 \pi}{2}}\right\}=\{d,-d\}$. So by (2.2), the solution set to (2.1) is the 2 point set $\left\{\frac{-b \pm d}{2 a}\right\}$. Summarizing: The solution set to $a z^{2}+b z+c=0$, where $a, b, c \in \mathbb{C}$ with $a \neq 0$, is

$$
\begin{equation*}
z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{2.3}
\end{equation*}
$$

WHERE the $\sqrt{b^{2}-4 a c}$ in (2.3) denotes any (complex) square root of $b^{2}-4 a c$.
Now consider the problem at hand $z^{2}-4 z+(4+2 i)=0$. Here,

$$
\begin{equation*}
b^{2}-4 a c=(-4)^{2}-4(1)(4+2 i)=-8 i=8 e^{i\left(\frac{-\pi}{2}\right)} \stackrel{\forall k \in \mathbb{Z}}{=} 8 e^{i\left(\frac{-\pi}{2}+2 \pi k\right)} . \tag{2.5}
\end{equation*}
$$

A complex square root (take $k=0$ in (2.5)) of $-8 i$ is

$$
\sqrt{8} e^{\frac{-i \pi}{4}}=2 \sqrt{2}\left(\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)=2(1-i) .
$$

Note

$$
\frac{4 \pm 2(1-i)}{2}=2 \pm(1-i)= \begin{cases}3-i & \text { for the plus } \\ 1+i & \text { for the minus }\end{cases}
$$

Thus the solutions to $z^{2}-4 z+(4+2 i)=0$ are $3-i$ and $1+i$.

