You are strongly encouraged to work in groups, following the procedure as in homework MS09.

Exercise pGA 1. Express the given complex number in the form $a+i b$ with $a, b \in \mathbb{R}$.
ER 1.a. $(1+i)^{20}$. Hint. Express $(1+i)$ as $r e^{i \theta}$.
ER 1.b. $\frac{1-2 i}{2+i}$. Hint. Multiply the numerator and enumerator by the complex conjugate of $2+i$, which is $2-i$.
(a) Note $1+i=1+1 i$ so we view $1+i \in \mathbb{C}$ as the point $(1,1) \in \mathbb{R}^{2}$.

So

$$
1+i=\sqrt{2} e^{i \pi / 4} \stackrel{\text { note }}{=} \sqrt{2}[\cos (\pi / 4)+i \sin (\pi / 4)] .
$$

So

$$
(1+i)^{20}=\left(\sqrt{2} e^{i \pi / 4}\right)^{20}=(\sqrt{2})^{20} e^{i 5 \pi}=2^{10} e^{i \pi}=-2^{10} \stackrel{\text { or }}{=}-1024 .
$$

(b) Multiplying the numerator and denominator by $2-i$, the complex conjugate of $2+i$, we get

$$
\frac{1-2 i}{2+i} \cdot \frac{2-i}{2-i}=\frac{2-2+(-4-1) i}{2^{2}+1^{2}}=\frac{0-5 i}{5}=-i .
$$

