You learn a lot talking math with others. Thus you are strongly encouraged to work in groups (up to size 17) on homework. A group is to come to an agreement of the finished paper. Over Blackboard, ONE group member (e.g., Bella) should submit the finished paper while each of the other group members (as so that I can return a commented graded paper to you) should just pull up the assignment on Blackboard and write a note in the white Comment box that, e.g., Bella submitted my paper.

Throughout this Exercise, I is a nonempty closed bounded interval of \mathbb{R}.
Since I is a closed bounded interval, $C(I, \mathbb{R})=\mathscr{C}(I, \mathbb{R}) \subset \mathscr{R}(I, \mathbb{R})$ where:

$$
\begin{aligned}
& C(I, \mathbb{R}):=\{f: I \rightarrow \mathbb{R} \mid f \text { is continuous on } I\} . \\
& \mathscr{C}(I, \mathbb{R}):=\{f: I \rightarrow \mathbb{R} \mid f \text { is bounded and continuous on } I\} \\
& \mathscr{R}(I, \mathbb{R}):=\{f: I \rightarrow \mathbb{R} \mid f \text { is Riemann integrable over } I\} .
\end{aligned}
$$

Note that $C(I, \mathbb{R})($ resp. $\mathscr{C}(I, \mathbb{R}), \mathscr{R}(I, \mathbb{R}))$ is a vector space over the field \mathbb{R}.
Now let $1 \leq p<\infty$. If $h \in C(I, \mathbb{R})$ then $|h|^{p} \in C(I, \mathbb{R}) \subset \mathscr{R}(I, \mathbb{R})$. Thus we can define the function $\|\cdot\|_{p}: C(I, \mathbb{R}) \rightarrow \mathbb{R}$ by

$$
\|f\|_{p}:=\left[\int_{I}|f(t)|^{p}\right]^{1 / p} \quad, \text { for } f \in C(I, \mathbb{R})
$$

and corresponding function $d_{p}: C(I, \mathbb{R}) \times C(I, \mathbb{R}) \rightarrow \mathbb{R}$ by

$$
d_{p}(f, g):=\left[\int_{I}|f(t)-g(t)|^{p}\right]^{1 / p} \quad, \text { for } f, g \in C(I, \mathbb{R})
$$

Note $d_{p}(f, g)=\|f-g\|_{p}$.
Recall that $\|\cdot\|: X \rightarrow \mathbb{R}$ is a norm on a vector space X (over the field \mathbb{K} of \mathbb{R} or \mathbb{C}) provided
(N1) $\|x\|=0$ if and only if $x=0$,
(N2) $\|\alpha x\|=|\alpha|\|x\|$,
(N3) $\|x+y\| \leq\|x\|+\|y\|$
for each $x, y \in X$ and $\alpha \in \mathbb{K}$.

Metric Space Exercise 4. Variant of 2.1.45.2 (p. 90).
This is the function version of the sequence Exercise 2.1.45.1 (hwMS2). You may use, without (re)proving, anything from hwMS2.
Metric Space Exercise 4a. Let $\|\cdot\|: X \rightarrow \mathbb{R}$ is a norm on a vector space X (over \mathbb{R} or \mathbb{C}).
Let $f \in C(I, \mathbb{R})$ and $\alpha \in \mathbb{R}$. Let $1 \leq p<\infty$.
Show that $\|x\| \geq 0$ for all $x \in X$ by using properties (N1), (N2), and (N3).
Show that $\|f\|_{p}=0$ if and only if $f=01_{I}$ 〈i.e., if and only if $f(t)=0$ for all $\left.t \in I\right\rangle$.
Show that $\|\alpha f\|_{p}=|\alpha|\|f\|_{p}$.

Proof. Let $\|\cdot\|: X \rightarrow \mathbb{R}$ is a norm on a vector space X (over \mathbb{R} or \mathbb{C}). Let $f \in C(I, \mathbb{R})$ and $\alpha \in \mathbb{R}$.
Let $1 \leq p<\infty$.
$\sqrt{4 a}(i)$
Suppose $x \in X$. We observe that,

$$
\begin{array}{rlrl}
& & \|x+(-x)\| & \leq\|x\|+\|-x\| \\
\Leftrightarrow & & \|0\| & \leq\|x\|+\|(-1) x\| \\
\Leftrightarrow & 0 & \leq\|x\|+|-1| \cdot\|x\| \tag{N1}\\
\Leftrightarrow & 0 & \leq 2\|x\| \\
\Leftrightarrow & & 0 & \leq\|x\| .
\end{array}
$$

Therefore, we conclude that $\|x\| \geq 0$ for all $x \in X$.

4a(ii)
Suppose $\|f\|_{p}=0$. We observe that,

$$
\begin{aligned}
\|f\|_{p} & =0 \\
\Leftrightarrow \quad\left(\int_{I}|f(t)|^{p}\right)^{\frac{1}{p}} & =0 \\
\Leftrightarrow \quad \int_{I}|f(t)|^{p} & =0 .
\end{aligned}
$$

Since $|f(t)| \geq 0$ for all $t \in I$, it follows that, $\sin c e f$ is contsunors,

$$
\begin{array}{rlrl}
|f(t)|^{P} & =0 & & \forall t \in I \\
\Leftrightarrow & f(t) & =0 . & \\
\quad & \forall t \varepsilon I
\end{array}
$$

Now, suppose that $f=01_{I}$. Clearly,

$$
\begin{array}{rlrl}
f(t) & =0 & \forall t \varepsilon \mp \\
\Rightarrow \quad\left(\int_{I}|f(t)|^{p}\right)^{\frac{1}{p}} & =0 \\
\Leftrightarrow \quad\|f\|_{p} & =0 .
\end{array}
$$

Hence, we conclude that $\|f\|_{p}=0$ if and only if $f=01_{I}$.

We observe that,

$$
\begin{aligned}
\|\alpha f\|_{p} & =\left(\int_{I}|\alpha f(t)|^{p}\right)^{\frac{1}{p}} \\
& =\left(\int_{I}|\alpha|^{p}|f(t)|^{p}\right)^{\frac{1}{p}} \\
& =|\alpha|\left(\int_{I}|f(t)|^{p}\right)^{\frac{1}{p}} \\
& =|\alpha|\|f\|_{p} .
\end{aligned}
$$

Thus, we conclude that $\|\alpha f\|_{p}=|\alpha|\|f\|_{p}$.

Metric Space Exercise Mb. (Hölder's Inequality for Continuous Functions). Let $1<p<\infty$. Let $f, g \in C(I, \mathbb{R})$ and $p^{\prime} \in(1, \infty)$ be the conjugate exponent of p (thus $\frac{1}{p}+\frac{1}{p^{\prime}}=1$). Show

$$
\begin{equation*}
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{p^{\prime}} \tag{H}
\end{equation*}
$$

that is

$$
\int_{I}|f(t) g(t)| d t \leq\left[\int_{I}|f(t)|^{p} d t\right]^{1 / p}\left[\int_{I}|g(t)|^{p^{\prime}} d t\right]^{1 / p^{\prime}}
$$

Proof. Let $1<p<\infty$. Suppose that $f(t) \neq 01_{I}$ and $g(t) \neq 01_{I}$ for Otherwise, Hölder's Inequality is trivially true Utilizing. Young's inequality worn wise trivially true. Utilizing Young's inequality, we observe that,

$$
\begin{aligned}
\frac{\int_{I}|f(t) g(t)| d t}{\left[\int_{I}|f(t)|^{p} d t\right]^{\frac{1}{p}}\left[\int_{I}|g(t)|^{p^{\prime}} d t\right]^{\frac{1}{p^{\prime}}}} & =\int_{I} \frac{|f(t)|}{\left[\int_{I}|f(t)|^{p} d t\right]^{\frac{1}{p}}} \cdot \frac{|g(t)|}{\left[\int_{I}|g(t)|^{p^{\prime}} d t\right]^{\frac{1}{p^{\prime}}}} d t \text { do you see } \\
& \leq \int_{I} \frac{|f(t)|^{p}}{p \int_{I}|f(t)|^{p}}+\frac{|g(t)|^{p^{\prime}}}{p^{\prime} \int_{I}|g(t)|^{p^{\prime}}} d t \quad \text { you are } \\
& =\frac{1}{p} \cdot \frac{\int_{I}|f(t)|^{p} d t}{\int_{I}|f(t)|^{p} d t}+\frac{1}{p^{\prime}} \cdot \frac{\int_{I}|g(t)|^{p^{\prime}} d t}{\int_{I}|g(t)|^{p^{\prime}} d t} \quad \text { using } \\
& =\frac{1}{p}+\frac{1}{p^{\prime}}=1 .
\end{aligned} \quad \text { young Ines. } \quad \text { pointwisehere? }
$$

Hence,

$$
\int_{I}|f(t) g(t) d t| \leq\left[\int_{I}|f(t)|^{p} d t\right]^{1 / p} \cdot\left[\int_{I}|g(t)|^{p^{\prime}} d t\right]^{1 / p^{\prime}}
$$

Thus,

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{p^{\prime}}
$$

Metric Space Exercise Mc. (Minkowski's Inequality for Cant. Functions). Let $1<p<\infty$.
Let $f, g \in C(I, \mathbb{R})$. Show

$$
\begin{equation*}
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p} \tag{M}
\end{equation*}
$$

that is

$$
\left[\int_{I}|f(t)+g(t)|^{p} d t\right]^{1 / p} \leq\left[\int_{I}|f(t)|^{p} d t\right]^{1 / p}+\left[\int_{I}|g(t)|^{p} d t\right]^{1 / p} .
$$

Does Minkowski's Inequality hold when $p=1$?
Hint for $1<p<\infty$. If $a, b \in \mathbb{R}$ and $1<p<\infty$, then $0 \neq p-1 〈$ so $|0+0|^{p-1}$ makes sense 〉 and so

$$
\begin{aligned}
|a+b|^{p} & =|a+b|^{1}|a+b|^{p-1} \\
& \leq[|a|+|b|]|a+b|^{p-1} \\
& =|a||a+b|^{p-1}+|b||a+b|^{p-1} .
\end{aligned}
$$

Proof. Let $1 \leq p<\infty$. Suppose $f(t) \neq 01_{I}$ and $g(t) \neq 01_{I}$. Otherwise', Minkowski's Inequality is trivially true. If $p=1$, Minkowski's Inequality holds by the Triangle Inequality (So now let $<p<\infty$,

$$
\begin{aligned}
\int_{I}|f(t)+g(t)|^{p} d t & =\int_{I}|f(t)+g(t)||f(t)+g(t)|^{p-1} d t \quad \text { good } \\
& \leq \int_{I}(|f(t)|+|g(t)|)|f(t)+g(t)|^{p-1} d t \\
& =\int_{I}|f(t)||f(t)+g(t)|^{p-1} d t+\int_{I}|g(t)||f(t)+g(t)|^{p-1} d t \\
& =\int_{I}\left|[f(t)][f(t)+g(t)]^{p-1}\right| d t+\int_{I}\left|[g(t)][f(t)+g(t)]^{p-1}\right| d t
\end{aligned}
$$

We apply Hölder's inequality and since $p^{\prime}=\frac{p}{p-1}$ we see that,

$$
\begin{aligned}
\int_{I}|f(t)+g(t)|^{p} d t & \leq \int_{I}\left|[f(t)][f(t)+g(t)]^{p-1}\right| d t+\int_{I}\left|[g(t)][f(t)+g(t)]^{p-1}\right| d t . \\
& \leq\left[\int_{I}|f(t)|^{p} d t\right]^{\frac{1}{p}}\left[\int_{I}|f(t)+g(t)|^{(p-1) p^{\prime}} d t\right]^{\frac{1}{p^{\prime}}}+\left[\int_{I}|g(t)|^{p} d t\right]^{\frac{1}{p}}\left[\int_{I}|f(t)+g(t)|^{(p-1) p^{\prime}} d t\right]^{\frac{1}{p^{\prime}}} \\
& =\left[\int_{I}|f(t)|^{p} d t\right]^{\frac{1}{p}}\left[\int_{I}|f(t)+g(t)|^{p} d t\right]^{\frac{p-1}{p}}+\left[\int_{I}|g(t)|^{p} d t\right]^{\frac{1}{p}}\left[\int_{I}|f(t)+g(t)|^{p} d t\right]^{\frac{p-1}{p}} \\
& =\left(\left[\int_{I}|f(t)|^{p} d t\right]^{\frac{1}{p}}+\left[\int_{I}|g(t)|^{p} d t\right]^{\frac{1}{p}}\right)\left[\int_{I}|f(t)+g(t)|^{p} d t\right]^{\frac{p-1}{p}} .
\end{aligned}
$$

Hence,

$$
\left[\int_{I}|f(t)+g(t)|^{p} d t\right]^{\frac{1}{p}} \leq\left[\int_{I}|f(t)|^{p} d t\right]^{\frac{1}{p}}+\left[\int_{I}|g(t)|^{p} d t\right]^{\frac{1}{p}}
$$

Thus,

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p} .
$$

Metric Space Exercise 4d. Let $1 \leq p \leq \infty$.
Conclude that $\left(C(I, \mathbb{R}),\|\cdot\|_{p}\right)$ is a normed vector space.
Conclude that $\left(C(I, \mathbb{R}), d_{p}\right)$ is a metric space.
Proof. Let $1 \leq p \leq \infty$. In order for $\left(C(I, \mathbb{R}),\|\cdot\|_{p}\right)$ to be a normed vector space, it must satisfy the following properties:
(N1) $\|x\|=0$ if and only if $x=0$
For $1 \leq p<\infty$ we refer to Metric Space Exercise 4a.
\checkmark For $p=\infty$, we observe that,

$$
\|f\|_{\infty}=\sup _{t \in I}|f(t)|=0 \Leftrightarrow|f(t)|=0 \Leftrightarrow f(t)=0 \text { for every } t \in I
$$

(N2) $\|\alpha x\|=|\alpha|\|x\|$
For $1 \leq p<\infty$ we refer to Metric Space Exercise 4a.
\checkmark For $p=\infty$, we observe that,

$$
\|\alpha f\|_{\infty}=\sup _{t \in I}|\alpha f(t)|=\sup _{t \in I}|\alpha||f(t)|=|\alpha| \sup _{t \in I}|f(t)|=|\alpha|\|f\|_{\infty}
$$

(N3) $\|x+y\| \leq\|x\|+\|y\|$
For $1 \leq p<\infty$, we see that Minkowski's Inequality satisfies this property.
For $p=\infty$, we observe that,

$$
\|f+g\|_{\infty}=\sup _{t \in I}|f(t)+g(t)| \leq \sup _{t \in I}|f(t)|+\sup _{t \in I}|g(t)|=\|f\|_{\infty}+\|g\|_{\infty}
$$

Since $\left(C(I, \mathbb{R}),\|\cdot\|_{p}\right)$ is a normed vector space, we define $d_{p}(f, g):=\|f-g\|_{p}$. Thus, d_{p} satisfies the required properties and we conclude that $\left(C(I, \mathbb{R}), d_{p}\right)$ is a metric space.

