Math 703

Due Date: Fri. 9/4 at 11:59pm. HW: MS1

For the first homework, we are asked to complete a partially given proof. You may work in groups. Metric Space Exercise 1.

Theorem 1. Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of continuous functions from the interval [a, b] into \mathbb{R} that convergences pointwise on [a, b] to the continuous function $f: [a, b] \to \mathbb{R}$. Also let $\{f_n\}_{n\in\mathbb{N}}$ be (pointwise) nonincreasing, i.e.,

$$f_n(x) \ge f_{n+1}(x)$$
, for each $x \in [a, b]$ and $n \in \mathbb{N}$. (D)

Show that $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f on [a,b] (by completing the below proof).

How does Dini's Theorem (stated below) follow from this exercise?

Theorem 2. (Dini's Thm.) If $\{f_n\}_{n\in\mathbb{N}}$ be a <u>montone</u> sequence of \mathbb{R} -valued continuous functions on [a, b] that convergences pointwise to the continuous function f on [a, b], then $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f on [a, b]. (Here, <u>montone</u> means that (D) holds or (1) holds, where (1) is:)

$$f_n(x) \le f_{n+1}(x)$$
, for each $x \in [a, b]$ and $n \in \mathbb{N}$. (I)

Proof. LTGBG. (First, reduce to easier problem. WLOG, $f = 01_{[a,b]}$ for if f is not identically zero on [a, b], then replace each f_n with $f_n - f$. In case you do do see this, the rest of this paragraph is the details. We will continue the proof using all the detail.) For each $n \in \mathbb{N}$, define $g_n: [a, b] \to \mathbb{R}$ pointwise by

$$g_n := f_n - f.$$

Since $f_n \to f$ pointwise on [a, b], we have that $g_n \to 01_{[a,b]}$ pointwise on [a, b]. Thus, by (D),

$$g_n(x) \ge g_{n+1}(x) \ge 0$$
, for each $x \in [a, b]$ and $n \in \mathbb{N}$. (D_g)

Note $f_n \rightrightarrows f$ on [a, b] is equivalent to $g_n \rightrightarrows 01_{[a,b]}$ on [a, b]. We shall show the later by contradiction.

For each $n \in \mathbb{N}$, the nonnegative <u>continuous</u> function g_n must obtain it's supremum on the <u>compact</u> set [a, b] and so there exists $x_n \in [a, b]$ such that

$$\sup_{x \in [a,b]} |g_n(x)| = \sup_{x \in [a,b]} g_n(x) = \max_{x \in [a,b]} g_n(x) = g_n(x_n).$$

The sequence $\{g_n(x_n)\}_{n\in\mathbb{N}}$ is a nonincreasing sequence from $[0,\infty)$ since

$$g_n(x_n) = \sup_{x \in [a,b]} g_n(x) \overset{\text{by}}{\geq} \sup_{x \in [a,b]} g_{n+1}(x) = g_{n+1}(x_{n+1}).$$

Towards a contradiction, assume that $\{g_n\}_{n\in\mathbb{N}}$ does not converge uniformly on [a, b] to $01_{[a,b]}$. Thus the sequence $\{g_n(x_n)\}_{n\in\mathbb{N}}$ from $[0,\infty)$ does not converge to 0. Since the sequence $\{g_n(x_n)\}_{n\in\mathbb{N}}$

Due Date: Fri. 9/4 at 11:59pm. HW: MS1

Math703

is nonincreasing, there is an $\varepsilon_0 > 0$ such that

$$g_n(x_n) > \varepsilon_0$$
, for each $n \in \mathbb{N}$. (1)

By the Bolzano-Weierstass Theorem, there is a subsequence $\{x_{n_k}\}_{k\in\mathbb{N}}$ and $x_0 \in [a, b]$ such that $x_{n_k} \longrightarrow x_0$ as $k \longrightarrow \infty$. $\mathcal{D}_{m_k} + \mathcal{D}_{m_k}$ green $\mathcal{N}_{\mathcal{D}_k} - i + \mathcal{D}_{\mathcal{D}_k}$ where $\mathcal{D}_{m_k} + \mathcal{D}_{m_k}$ are $\mathcal{D}_{m_k} + \mathcal{D}_{m_k}$ and $x_0 \in [a, b]$ such that $\mathcal{D}_{m_k} + \mathcal{D}_{m_k}$ and $x_0 \in [a, b]$ such that $\mathcal{D}_{m_k} + \mathcal{D}_{m_k}$ and $x_0 \in [a, b]$ such that $\mathcal{D}_{m_k} + \mathcal{D}_{m_k}$ and $x_0 \in [a, b]$ such that $\mathcal{D}_{m_k} + \mathcal{D}_{m_k}$ and $x_0 \in [a, b]$ such that $\mathcal{D}_{m_k} + \mathcal{D}_{m_k}$ and $\mathcal{D}_{m_k} + \mathcal{D}_{m_k}$ are defined as the matrix of the mat

Without loss of generality, let $j, k \in \mathbb{N}$ such that j < k. Then there exists $\varepsilon_{00} > 0$ such that for every $n_j, n_k \in \mathbb{N}$

Since $\lim_{j\to\infty} g_{n_j}(x_0) \geq \varepsilon_0$ we have that $g_{n_j} \not\to 01_{[a,b]}$ pointwise on [a,b], a contradiction. Therefore $\{g_n\}_{n\in\mathbb{N}}$ converges uniformly on [a,b] to $01_{[a,b]}$. Thus $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f on the interval [a,b]. We cover all [a,b].

How does Dini's Theorem follow from this exercise?

Let $\{h_n\}_{n\in\mathbb{N}}$ be a sequence of continuous functions that satisfy the properties of *Theorem* Define $f_n \coloneqq -h_n$ and $f \coloneqq -h$. We can see that f_n and f are functions that satisfy the LTGBG conditions of *Theorem* 2 (*Dini's Theorem*). Since $\{h_n\}_{n\in\mathbb{N}}$ converges uniformly to h on [a, b] we have that $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f on the interval [a, b].