For the first homework，we are asked to complete a partially given proof．You may work in groups．

Metric Space Exercise 1.

Theorem 1．Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of continuous functions from the interval $[a, b]$ into \mathbb{R} that convergences pointwise on $[a, b]$ to the continuous function $f:[a, b] \rightarrow \mathbb{R}$ ．Also let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be （pointwise）nonincreasing，i．e．，

$$
\begin{equation*}
f_{n}(x) \geq f_{n+1}(x), \text { for each } x \in[a, b] \text { and } n \in \mathbb{N} . \tag{D}
\end{equation*}
$$

Show that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly to f on $[a, b]$（by completing the below proof）．

How does Dini＇s Theorem（stated below）follow from this exercise？

Theorem 2．（Dini＇s Thm．）If $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a montone sequence of \mathbb{R}－valued continuous functions on $[a, b]$ that convergences pointwise to the continuous function f on $[a, b]$ ，then $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly to f on $[a, b]$ ．〈Here，montone means that（D）holds or（I）holds，where（I）is：〉

$$
\begin{equation*}
f_{n}(x) \leq f_{n+1}(x), \text { for each } x \in[a, b] \text { and } n \in \mathbb{N} . \tag{I}
\end{equation*}
$$

Proof．LTGBG．〈First，reduce to easier problem．WLOG，$f=01_{[a, b]}$ for if f is not identically zero on $[a, b]$ ，then replace each f_{n} with $f_{n}-f$ ．In case you do do see this，the rest of this paragraph is the details．We will continue the proof using all the detail．\rangle For each $n \in \mathbb{N}$ ，define $g_{n}:[a, b] \rightarrow \mathbb{R}$ pointwise by

$$
g_{n}:=f_{n}-f
$$

Since $f_{n} \rightarrow f$ pointwise on $[a, b]$ ，we have that $g_{n} \rightarrow 01_{[a, b]}$ pointwise on $[a, b]$ ．Thus，by（D），

$$
\begin{equation*}
g_{n}(x) \geq g_{n+1}(x) \geq 0, \text { for each } x \in[a, b] \text { and } n \in \mathbb{N} . \tag{g}
\end{equation*}
$$

Note $f_{n} \rightrightarrows f$ on $[a, b]$ is equivalent to $g_{n} \rightrightarrows 01_{[a, b]}$ on $[a, b]$ ．We shall show the later by contradiction．
For each $n \in \mathbb{N}$ ，the nonnegative continuous function g_{n} must obtain it＇s supremum on the compact set $[a, b]$ and so there exists $x_{n} \in[a, b]$ such that

$$
\sup _{x \in[a, b]}\left|g_{n}(x)\right|=\sup _{x \in[a, b]} g_{n}(x)=\max _{x \in[a, b]} g_{n}(x)=g_{n}\left(x_{n}\right) .
$$

The sequence $\left\{g_{n}\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$ is a nonincreasing sequence from $[0, \infty)$ since

Towards a contradiction，assume that $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ does not converge uniformly on $[a, b]$ to $01_{[a, b]}$ ． Thus the sequence $\left\{g_{n}\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$ from $[0, \infty)$ does not converge to 0 ．Since the sequence $\left\{g_{n}\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$
is nonincreasing, there is an $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
g_{n}\left(x_{n}\right)>\varepsilon_{0}, \text { for each } n \in \mathbb{N} . \tag{1}
\end{equation*}
$$

By the Bolzano-Weierstass Theorem, there is a subsequence $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ and $x_{0} \in[a, b]$ such that $x_{n_{k}} \longrightarrow x_{0}$ as $k \longrightarrow \infty$. Emit this green hox-it was nevor used \& the

Without loss of generality, let $j, k \in \mathbb{N}$ such that $j<k$. Then there exists $\varepsilon_{00}>0$ such that for every $n_{j}, n_{k} \in \mathbb{N}$

$$
\begin{aligned}
& g_{n_{j}}\left(x_{n_{k}}\right) \stackrel{\text { by }}{\stackrel{(D g}{\geq}} g_{n_{k}}\left(x_{n_{k}}\right) \stackrel{\text { by (1) }}{>} \stackrel{\varepsilon_{0}}{ } \text { here the } \varepsilon_{0} \text { \& not some } \\
& \Rightarrow \quad g_{n_{j}}\left(x_{n_{k}}\right)>\varepsilon_{0} \quad \varepsilon_{00} \text { that depends on the } j \\
& \Rightarrow \quad \lim _{k \rightarrow \infty} g_{n_{j}}\left(x_{n_{k}}\right) \geq \varepsilon_{0} \text { recall, "Cans lose" strict) } \\
& \Rightarrow \quad g_{n_{j}}\left(x_{0}\right) \geq \varepsilon_{0} \text {. inequality in a linüt }
\end{aligned}
$$

Since $\lim _{j \rightarrow \infty} g_{n_{j}}\left(x_{0}\right) \geq \Sigma_{\varepsilon_{0}}$ we have that $g_{n_{j}} \nrightarrow 01_{[a, b]}$ pointwise on $[a, b]$, a contradiction. Therefore $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly on $[a, b]$ to $01_{[a, b]}$. Thus $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly to f on the interval $[a, b]$. nice overall!

How does Dini's Theorem follow from this exercise?

Let $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of continuous functions that satisfy the properties of Theorem 1 . Define $f_{n}:=-h_{n}$ and $f:=-h$. We can see that f_{n} and f are functions that satisfy the LTGBG conditions of Theorem 2 (Dini's Theorem). Since $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly to h on $[a, b]$ we have that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly to f on the interval $[a, b]$.

