Exercise. Let R > 0 and $z_0 \in \mathbb{C}$. (a) Let $f \in H(B_R(z_0))$ have a zero of order m at z_0 . Show $\frac{1}{f}$ has a pole of order m at z_0 . (b) Let $f \in H(B'_R(z_0))$ have a pole of order m at z_0 . Show $\frac{1}{f}$ has a removable singularity at z_0 , and furthermore, if we extend $\frac{1}{f}$ to $\frac{\tilde{1}}{f}$ by defining $\frac{\tilde{1}}{f}(z_0) = 0$, then $\frac{\tilde{1}}{\tilde{f}}$ is holomorphic at z_0 and has a zero of order m at z_0 . (c) What is the order of the pole of $h(z) := \frac{1}{\left(2\cos z - 2 + z^2\right)^2}$ at z = 0? Explain your answer.

Remark. Loosely speaking, this exercise shows that, at $z = z_0$,

(a) f has zero of order $m \Rightarrow \frac{1}{f}$ has pole of order m

(b) f has pole of order $m \Rightarrow \frac{1}{f}$ has zero of order m.

(a) Their Thm 16 = our script's Ch 3's Thm 1.1 (p 27). Their Lemma 7 is our Singularities of Holomorphic Fuctions's TFAE (2b).

Suppose that f has a zero of order m at z_0 . Then by Theorem 16 there is a function g(z) analytic at z_0 with $g(z_0) \neq 0$ and $f(z) = (z-z_0)^m g(z)$. Consequently $\frac{1}{f(z)} = \frac{1/g(z)}{(z-z_0)^m}$ and 1/f has a pole of order m at z_0 by Lemma 7.

(b) Their Lemma 7 is our *Singularities of Holomorphic Fuctions*'s TFAE (2b).

Conversely, if f has a pole of order m at z_0 it follows from the properties of g given in Lemma 7 that $\frac{1}{f(z)} = \frac{(z-z_0)^m}{g(z)}$ has a removable singularity at z_0 . Defining $1/f(z_0) = 0$ results in 1/f having a zero of order m at z_0 .

(c)

8 (since
$$1/f(z)$$
 has a zero of order 8 at $z = 0$)