Exercise.
Let $f, g \in H(G)$, with G is open and connected, satisfy

$$
f(z) g(z)=0 \quad \text { for each } \quad z \in G .
$$

Show that $f(z)=0$ for each $z \in G$ or $g(z)=0$ for each $z \in G$.

Proof. Let $f, g \in H(G)$, with G is open and connected, satisfy

$$
\begin{equation*}
f(z) g(z)=0 \quad \text { for each } \quad z \in G . \tag{1}
\end{equation*}
$$

Denote the zero set of f (resp. g) by Z_{f} (resp. Z_{g}), i.e.,

$$
\begin{aligned}
& Z_{f}:=\{z \in G: f(z)=0\} \\
& Z_{g}:=\{z \in G: g(z)=0\} .
\end{aligned}
$$

We want to show that $Z_{f}=G$ or $Z_{g}=G$. 〈The theorem on zeros of holomorphic functions (Thm III.1.1) tells us either $Z_{f}=G$ or $Z_{f}=I_{Z_{f}}$, where I_{A} denotes the isolated point of a set $A \subset \mathbb{C}$. Similarly for g.)

Way 1. Assume that $Z_{g} \neq G$. Then there exists $z_{0} \in G$ such that $g\left(z_{0}\right) \neq 0$, and so, by the continuity of g, there also exists $\delta>0$ such that $g(z) \neq 0$ for each $z \in B_{\delta}\left(z_{0}\right)$. By (1), $f(z)=0$ for each $z \in B_{r}\left(z_{0}\right)$. Thus z_{0} is a non-isolated zero of f, and so, by the theorem on zeros of holomorphic functions (Thm III.1.1), $Z_{f}=G$.

Way 2. Assume that $Z_{f} \neq G$ and $Z_{g} \neq G$. Then by the theorem on zeros of holomorphic functions (Thm III.1.1), Z_{f} and Z_{g} are each (at most) countable. Note that $Z_{f g}=Z_{f} \cup Z_{g}$ and that (1) gives $Z_{f g}=G$. Thus G is (at most) countable. A contradiction. Thus $Z_{f}=G$ or $Z_{g}=G$.

