Exercise. Let $f \in H(B_1(0))$ satisfy that (i) $|f(z)| \leq 1$ for each $z \in B_1(0)$ (ii) f(0) = 0. Show that (a) $|f(z)| \leq |z|$ for each $z \in B_1(0)$, (b) $|f'(0)| \leq 1$. If, furthermore, $|f(z_0)| = |z_0|$ for some $z_0 \in B'_1(0)$, show that (c) there exists $c \in \mathbb{C}$ with |c| = 1 such that f(z) = cz for each $z \in B_1(0)$. Recall: $B_1(0) := \{z \in \mathbb{C} : |z| < 1\}$. Remark: this exercise is known as Schwarz's Lemma. *Proof.* Let $f \in H(B_1(0))$ satisfy: (i) $|f(z)| \leq 1$ for each $z \in B_1(0)$ and (ii) f(0) = 0.

Define $g: B_1(0) \to \mathbb{C}$ by

$$g(z) := \begin{cases} \frac{f(z)}{z} & \text{, if } z \in B'_1(0) \\ f'(0) & \text{, if } z = 0. \end{cases}$$

Note $g \in H(B'_1(0))$ since $f \in H(B'_1(0))$. Also $g \in C(B_1(0))$ since $f \in H(B_1(0))$ and

$$\lim_{z \to 0} g(z) \stackrel{\text{by def of } g}{=} \lim_{z \to 0} \frac{f(z)}{z} \stackrel{\text{by (ii)}}{=} \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} \stackrel{\text{since}}{=} f'(0)$$

Thus $g \in H(B_1(0))$ since $g \in H(B'_1(0)) \cap C(B_1(0))$ [cf., eg, Morea's Thm with Cauchy's Thm for triangles].

For 0 < r < 1, applying the Max. Modulus Principle (Cor. III.1.6) to $g \in H(B_r(0)) \cap C(\overline{B_r(0)})$,

$$\max_{z \in \overline{B_r(0)}} |g(z)| \stackrel{\text{Max Mod}}{=} \max_{z \in \partial B_r(0)} |g(z)| = \max_{z \in \partial B_r(0)} \left| \frac{f(z)}{z} \right| = \max_{z \in \partial B_r(0)} \frac{|f(z)|}{r} \stackrel{\text{by}}{\leq} \frac{1}{r}.$$
 (1)

Letting $r \nearrow 1$ in (1) gives

$$\max_{z \in B_1(0)} |g(z)| \le 1.$$
 (2)

(a) Note $|f(z)| \leq |z|$ for each $z \in B'_1(0)$ by the definition of g and the inequality (2). Clearly $|f(z)| \leq |z|$ when z = 0 since $f(0) \stackrel{\text{by (ii)}}{=} 0$.

(b) Note (b) holds since $|f'(0)| \stackrel{\text{def of } g}{=} |g(0)| \stackrel{\text{by (2)}}{\leq} 1.$

(c) Now assume furthermore $z_0 \in B'_1(0)$ satisfies $|f(z_0)| = |z_0|$. Then $|g(z_0)| = 1 \stackrel{\text{by}}{=} \max_{z \in B_1(0)} |g(z)|$.

So the max of the modulus of $g \in H(B_1(0))$ is attained at $z_0 \in B_1(0)$. By the Max Modulus Principle, g is constant on $B_1(0)$ so there is $c \in \mathbb{C}$ such that

$$g(z) = c \text{ for each } z \in B_1(0).$$
(3)

Thus

$$f\left(z\right) = cz$$

for each $z \in B'_1(0)$ by the definition of g as well as for z = 0 since $f(0) \stackrel{\text{by (ii)}}{=} 0$.

Note |c| = 1 since $|g(z_0)| = 1$.