Exercise.

Let $f \in H\left(B_{1}(0)\right)$ satisfy that
(i) $|f(z)| \leq 1$ for each $z \in B_{1}(0)$
(ii) $f(0)=0$.

Show that
(a) $|f(z)| \leq|z|$ for each $z \in B_{1}(0)$,
(b) $\left|f^{\prime}(0)\right| \leq 1$.

If, furthermore, $\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|$ for some $z_{0} \in B_{1}^{\prime}(0)$, show that
(c) there exists $c \in \mathbb{C}$ with $|c|=1$ such that $f(z)=c z$ for each $z \in B_{1}(0)$.

Recall: $B_{1}(0):=\{z \in \mathbb{C}:|z|<1\}$.
Remark: this exercise is known as Schwarz's Lemma.
Proof. Let $f \in H\left(B_{1}(0)\right)$ satisfy: \quad (i) $|f(z)| \leq 1$ for each $z \in B_{1}(0) \quad$ and (ii) $f(0)=0$.
Define $g: B_{1}(0) \rightarrow \mathbb{C}$ by

$$
g(z):= \begin{cases}\frac{f(z)}{z} & , \text { if } z \in B_{1}^{\prime}(0) \\ f^{\prime}(0) & , \text { if } z=0\end{cases}
$$

Note $g \in H\left(B_{1}^{\prime}(0)\right)$ since $f \in H\left(B_{1}^{\prime}(0)\right)$. Also $g \in C\left(B_{1}(0)\right)$ since $f \in H\left(B_{1}(0)\right)$ and

$$
\lim _{z \rightarrow 0} g(z) \stackrel{\text { by def of } g}{=} \lim _{z \rightarrow 0} \frac{f(z)}{z} \stackrel{\text { by (ii) }}{=} \lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z-0} \underset{f \in H\left(B_{1}(0)\right)}{\text { since }} f^{\prime}(0) .
$$

Thus $g \in H\left(B_{1}(0)\right)$ since $g \in H\left(B_{1}^{\prime}(0)\right) \cap C\left(B_{1}(0)\right)$ [cf., eg, Morea's Thm with Cauchy's Thm for triangles].
For $0<r<1$, applying the Max. Modulus Principle (Cor. III.1.6) to $g \in H\left(B_{r}(0)\right) \cap C\left(\overline{B_{r}(0)}\right)$,

$$
\begin{equation*}
\max _{z \in \overline{B_{r}(0)}}|g(z)| \underset{\text { Princ }}{\text { Max Mod }} \max _{z \in \partial B_{r}(0)}|g(z)|=\max _{z \in \partial B_{r}(0)}\left|\frac{f(z)}{z}\right|=\max _{z \in \partial B_{r}(0)} \frac{|f(z)|}{r} \underset{(\mathrm{i})}{\stackrel{\text { by }}{\leq}} \frac{1}{r} . \tag{1}
\end{equation*}
$$

Letting $r \nearrow 1$ in (1) gives

$$
\begin{equation*}
\max _{z \in B_{1}(0)}|g(z)| \leq 1 . \tag{2}
\end{equation*}
$$

(a) Note $|f(z)| \leq|z|$ for each $z \in B_{1}^{\prime}(0)$ by the definition of g and the inequality (2). Clearly $|f(z)| \leq|z|$ when $z=0$ since $f(0) \stackrel{\text { by }(\mathrm{ii)}}{=} 0$.
(b) Note (b) holds since $\left|f^{\prime}(0)\right| \stackrel{\operatorname{def} \text { of } g}{=}|g(0)| \stackrel{\text { by }(2)}{\leq} 1$.
(c) Now assume furthermore $z_{0} \in B_{1}^{\prime}(0)$ satisfies $\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|$. Then $\left|g\left(z_{0}\right)\right|=1 \underset{(2)}{\text { by }} \max _{z \in B_{1}(0)}|g(z)|$.

So the max of the modulus of $g \in H\left(B_{1}(0)\right)$ is attained at $z_{0} \in B_{1}(0)$. By the Max Modulus
Principle, g is constant on $B_{1}(0)$ so there is $c \in \mathbb{C}$ such that

$$
\begin{equation*}
g(z)=c \text { for each } z \in B_{1}(0) . \tag{3}
\end{equation*}
$$

Thus

$$
f(z)=c z
$$

for each $z \in B_{1}^{\prime}(0)$ by the definition of g as well as for $z=0$ since $f(0) \stackrel{\text { by (ii) }}{=} 0$.
Note $|c|=1$ since $\left|g\left(z_{0}\right)\right|=1$.

