Exercise. Problem Source: Quals 1995.
Let $f \in H(\mathbb{C})$ satifsy, for some constants $A, B \in \mathbb{R}$ and $k \in \mathbb{N}$,

$$
\begin{equation*}
|f(z)| \leq A|z|^{k}+B \tag{1}
\end{equation*}
$$

for each $z \in \mathbb{C}$. Prove that f is a polynomial.
Hint: use the CIF (see Cor. II.2.24a from class).

Proof. LTGBG. Since f is entire

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n}
$$

for all $z \in \mathbb{C}$.

Fix $n \in \mathbb{N}$ such that $n>k$ Let $R>0$ and define $\gamma_{R}:[0,2 \pi] \rightarrow \mathbb{C}$ by $\gamma(t)=R e^{i t}$. From Cauchy
integral formula (Cor. II.2.24)

$$
f^{(n)}(0)=\frac{n!}{2 \pi i} \int_{\gamma_{R}} \frac{f(z)}{z^{n+1}} d z .
$$

Thus

$$
\begin{aligned}
\left|f^{(n)}(0)\right| & =\frac{n!}{2 \pi}\left|\int_{\gamma_{R}} \frac{f(z)}{z^{n+1}} d z\right| \\
& \stackrel{\text { ML) }}{\leq} \frac{n!}{2 \pi}\left[\sup _{z \in \gamma_{R}^{*}}\left|\frac{f(z)}{z^{n+1}}\right|\right] l\left(\gamma_{R}^{*}\right) \\
& \text { by (1) } \frac{n!}{2 \pi}\left[\frac{A R^{k}+B}{R^{n+1}}\right](2 \pi R) \\
& =n!\left[\frac{A}{R^{n-k}}+\frac{B}{R^{n}}\right] \xrightarrow{R \rightarrow \infty, \text { since } n>k} 0 .
\end{aligned}
$$

Thus, if $n>k$, then $f^{(n)}(0)=0$ and so

$$
f(z)=\sum_{n=0}^{k} \frac{f^{(n)}(0)}{n!} z^{n}
$$

for all $z \in \mathbb{C}$.

