Thm. 2.14. Cauchy's Integral Formula for starlike sets. Let:

1. $\gamma^{*} \subset G \subset \mathbb{C}$
2. $f \in H(G)$
3. $a \in \mathbb{C} \backslash \gamma^{*}$
where γ is a closed contour and G is open and starlike. Then

$$
\begin{equation*}
[f(a)] \cdot\left[\operatorname{Ind}_{\gamma}(a)\right]=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} d z \tag{CIF}
\end{equation*}
$$

Exercise. Let $\alpha \in \mathbb{C} \backslash\{0\}$ with $|\alpha| \neq 1$. Let $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ be given by $\gamma(\theta):=e^{i \theta}$.
(a) Using Cauchy's Integral Formula (CIF) for starlike sets, calculate

$$
\int_{\gamma} \frac{d z}{(z-\alpha)\left(z-\frac{1}{\alpha}\right)}
$$

for the case that $|\alpha|<1$ as well as the case that $|\alpha|>1$.
When applying CIF for starlike sets, following the notation in the Script of this theorem [Thm. II.2.14, p. 21], clearly indicate what is your: open starlike set G, function $f: G \rightarrow \mathbb{C}$, and $z_{0} \in G \backslash \gamma^{*}$.
(b) Using part (a), calculate

$$
\int_{0}^{2 \pi} \frac{d \theta}{1-2 \alpha \cos \theta+\alpha^{2}}
$$

for the case that $|\alpha|<1$ as well as the case that $|\alpha|>1$. Hint. $e^{i \theta}+e^{-i \theta}=2 \cos \theta$.
Solution Box. Put your final solution in the boxes provided below and then show your justification your solutions below this Solution Box.
(a)

$$
\int_{\gamma} \frac{d z}{(z-\alpha)\left(z-\frac{1}{\alpha}\right)}= \begin{cases}\frac{2 \pi i}{\alpha-\frac{1}{\alpha}} \stackrel{\text { i.e. }}{=} 2 \pi i\left(\frac{\alpha}{\alpha^{2}-1}\right) & \text { if }|\alpha|<1 \\ \frac{2 \pi i}{\frac{1}{\alpha}-\alpha} \stackrel{\text { i.e. }}{=} 2 \pi i\left(\frac{\alpha}{1-\alpha^{2}}\right) & \text { if }|\alpha|>1 .\end{cases}
$$

(b)

$$
\int_{0}^{2 \pi} \frac{d \theta}{1-2 \alpha \cos \theta+\alpha^{2}}= \begin{cases}\left.\begin{array}{|c|}
\frac{2 \pi}{1-\alpha^{2}} \\
\\
\\
\\
\\
\\
\\
\text { if }|\alpha|<1 \\
\frac{2 \pi}{\alpha^{2}-1}
\end{array} \alpha \right\rvert\,>1 .\end{cases}
$$

Justification/Proof of the Solutions:

Solution to (a) $\angle T G B G$

Case $|k|<1$

- Pick R st $1<R<\frac{1}{|\alpha|}$

- Let $G=B_{R}(0)$ and conceder $f: G \rightarrow \mathbb{C}$ where $f(z)=\frac{1}{z-\frac{1}{\alpha}}$.
- So $f \in H(G)$ and $\alpha \varepsilon G \mid \gamma^{*}$
- Compute

$$
\begin{gathered}
\int_{\gamma} \frac{d z}{(z-\alpha)\left(z-\frac{1}{\alpha}\right)}=\int_{\gamma} \frac{f(z)}{z-\alpha} d z \stackrel{C I F}{=}\left(2 \pi_{i}\right)\left(I_{n} d_{y} \alpha\right)(f(\alpha)) \\
=\left(2 \pi_{i}\right)(1)\left(\frac{1}{\alpha-\frac{1}{\alpha}}\right)
\end{gathered}
$$

$$
\text { Case }|\alpha|>1
$$

- Pick R sit. $|<R<|\alpha|$.
- Let $G=B_{R}(0)$ and consider

$$
f: G \rightarrow \mathbb{C} \text { where } f(z)=\frac{1}{z-\alpha} .
$$

- So $f \varepsilon H(G)$ and $\frac{1}{\alpha} \varepsilon G \backslash \gamma^{*}$
- Compute

$$
\begin{gathered}
\int_{\gamma} \frac{d z}{(z-\alpha)\left(z-\frac{1}{\alpha}\right)}=\int_{\gamma} \frac{f(z)}{z-\frac{1}{\alpha}} d z \stackrel{C I F}{=} 2 \pi i\left(\operatorname{Ind}{ }_{\gamma}\left(\frac{1}{\alpha}\right)\right)\left(f\left(\frac{1}{\alpha}\right)\right) \\
\quad=(2 \pi i)(1)\left(\frac{1}{\frac{1}{\alpha}-\alpha}\right)
\end{gathered}
$$

Solution to (b)

Remark You can do (a) without the CIF at follows.
(1) Do a PFD (= partial fraction decomposition), over \mathbb{C} (not \mathbb{R})

$$
\frac{1}{(z-\alpha)\left(z-\frac{1}{\alpha}\right)}=\frac{A}{z-\alpha}+\frac{B}{z-\frac{1}{\alpha}} \quad \text { Work } A\left[\frac{1}{z-\alpha}+\frac{-1}{z-\frac{1}{\alpha}}\right]
$$

$$
\text { where } A=\frac{\alpha}{\alpha^{2}-1} \text {. }
$$

(2) $\int_{\gamma} \frac{d z}{(z-\alpha)\left(z-\frac{1}{\alpha}\right)} \stackrel{(1)}{=} A\left[\int_{\gamma} \frac{d z}{z-\alpha}-\int_{\gamma} \frac{d z}{z-\frac{1}{\alpha}}\right]$ def f
winding numb o $\frac{y}{=}\left[2 \pi i\right.$ Ind $_{\gamma}(\alpha)-2 \pi i$ Ind $\left.\gamma \frac{1}{\alpha}\right]$

$$
=\left\{\begin{array}{lll}
(2 \pi i) A & {[1-0]} & \text { if }|\alpha|<1 \\
(2 \pi i) A & {[0-1]} & \text { if }|\alpha|>1 .
\end{array}\right.
$$

$$
\begin{aligned}
& \int_{0}^{2 \pi} \frac{d \theta}{1-2 \alpha \cos \theta+\alpha^{2}}=\int_{0}^{2 \pi} \frac{d \theta}{1-2 \alpha\left(\frac{\left(e^{i \theta+e^{-i \theta}}\right.}{2}\right)+\alpha^{2}}=\int_{0}^{2 \pi} \frac{d \theta}{1-\alpha\left(e^{i \theta}+e^{-i \theta}\right)+\alpha^{2}} \\
& =-i \int_{0}^{2 \pi} \frac{i e^{i \theta} d \theta}{e^{i \theta}-\alpha\left(e^{i 2 \theta}+1\right)+\alpha^{2} e^{i \theta}} \\
& =-i \int_{\gamma}^{0} \frac{d z}{z-\alpha\left(z^{2}+1\right)+\alpha^{2} z}=+\frac{i}{\alpha} \int_{0}^{2 \pi} \frac{d z}{-\frac{z}{\alpha}+z^{2}+1-\alpha z} \\
& =\frac{i}{\alpha} \int_{\gamma} \frac{d z}{z^{2}-\left(\alpha+\frac{1}{\alpha}\right) z+1}=\frac{i}{\alpha} \int_{\gamma} \frac{d z}{(z-\alpha)\left(z-\frac{1}{\alpha}\right)} \text {, } \\
& =\frac{-1}{i \alpha} \int_{\gamma} \frac{d z}{(z-\alpha)\left(z-\frac{1}{\alpha}\right)} \\
& =\left\{\begin{array}{ll}
-\frac{1}{i \alpha} \cdot \frac{2 \pi i \alpha}{\alpha^{2}-1}=\frac{2 \pi}{1-\alpha^{2}} & \text { if }|\alpha|<1 \\
-\frac{1}{i \alpha} & \frac{2 \pi i \alpha}{1-\alpha^{2}}=\frac{2 \pi}{\alpha^{2}-1}
\end{array} \quad \text { if }|\alpha|>1\right.
\end{aligned}
$$

