Exercise．

－Review Logarithm Functions handout，which is posted on the course homepage but also linked for your convenience．
－Let the path γ be join of the three line segments：$[1-i, 1+i]$ and $[1+i,-1+i]$ and $[-1+i,-1-i]$ ， as indicated below in Figure 1．Evaluate

$$
\int_{\gamma} \frac{d z}{z}
$$

by using an appropriate branch of $\log z$ ．
Be sure to specify the branch（or equiv．，branch cut）you use．

Figure 1．γ^{*}

Figure 2．branch cut
LTGBG．For the branch cut B of the logarithm function take

$$
B:=\left\{r e^{i \frac{3 \pi}{2}} \in \mathbb{C}: r \geq 0\right\} \stackrel{\text { i.e. }}{=}\{z \in \mathbb{C}: \operatorname{Re} z=0 \text { and } \operatorname{Im} z \leq 0\}
$$

and consider

$$
G:=\mathbb{C} \backslash B \stackrel{\text { note }}{=}\left\{r e^{i \theta} \in \mathbb{C}: r>0, \frac{-\pi}{2}<\theta<\frac{3 \pi}{2}\right\} .
$$

Thus G is an open connected set containing γ^{*} ．Let $f: G \backslash B \rightarrow \mathbb{C}$ be the branch of the \log on G given by，for $z \in \mathbb{C} \backslash B$ ，〈here $\ln :(0, \infty) \rightarrow \mathbb{R}$ is the（real－variables）natural log function \rangle

$$
f(z)=\ln |z|+i \arg z \quad \text { where } \quad \frac{-\pi}{2}<\arg z<\frac{3 \pi}{2} .
$$

By Cor I．3．16 \langle p． 8$\rangle, f \in H(G)$ and，

$$
\text { for each } z \in G, \quad f^{\prime}(z)=\frac{1}{z} .
$$

By the FTC for path integrals 〈Thm II．2．8，p17〉，since f is holomorphic on（an open set containing）γ^{*} and f^{\prime} is continuous on γ^{*} ，

$$
\begin{aligned}
\int_{\gamma} \frac{d z}{z} & =\int_{\gamma} f^{\prime}(z) d z \stackrel{\mathrm{FTC}}{=} f(-1-i)-f(1-i)=f\left(\sqrt{2} e^{i \frac{5 \pi}{4}}\right)-f\left(\sqrt{2} e^{i-\frac{\pi}{4}}\right) \\
& =\left[\ln \sqrt{2}+i \frac{5 \pi}{4}\right]-\left[\ln \sqrt{2}+i \frac{-\pi}{4}\right]=i \frac{6 \pi}{4}=\frac{3 \pi i}{2}
\end{aligned}
$$

