The Summation by Parts Formula．Let $\left\{a_{n}\right\}_{n=1}^{N}$ and $\left\{b_{n}\right\}_{n=1}^{N}$ be finite sequences of complex numbers．Then for $N>M>1$

$$
\begin{equation*}
\sum_{n=M}^{N} a_{n} b_{n}=a_{N} B_{N}-a_{M} B_{M-1}-\sum_{n=M}^{N-1}\left(a_{n+1}-a_{n}\right) B_{n} \quad \text { where } \quad B_{k}=\sum_{l=1}^{k} b_{l} \tag{1}
\end{equation*}
$$

Hint for proof of summation by parts formula：substitute $b_{n}=B_{n}-B_{n-1}$ in the sum on the left． You may use，without proving，the Summation by Parts Forumula．

Exercise．Prove the power series $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$ converges for each $z \in \mathbb{C}$ with $|z|=1$ except $z=1$ ．
Hint．Use the above summation by parts．Note if $z \in \mathbb{C} \backslash\{1\}$ with $|z|=1$ ，then for each $k \in \mathbb{N}$

$$
\left|\sum_{n=1}^{k} z^{n}\right|=\left|\frac{z-z^{k+1}}{1-z}\right| \leq \frac{|z|+\left|z^{k+1}\right|}{|1-z|}=\frac{2}{|1-z|}
$$

Proof．The power series $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$ diverges when $z=1$ since the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges．
Now，fix $z \in \mathbb{C}$ with $|z|=1$ but $z \neq 1$ ．Towards showing that the sequence $\left\{\sum_{n=1}^{N} \frac{z^{n}}{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{C} ，let $\varepsilon>0$ ．Pick $M_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\frac{1}{M_{0}} \cdot \frac{2}{|1-z|} \leq \frac{\varepsilon}{3} . \tag{2}
\end{equation*}
$$

Fix $N, M \in \mathbb{N}$ such that $N>M \geq M_{0}$ ．
The summation by parts formula（1）〈with $a_{n}=\frac{1}{n}$ and $\left.b_{n}=z^{n}\right\rangle$ gives

$$
\begin{equation*}
\sum_{n=M}^{N} \frac{z^{n}}{n}=\frac{1}{N} \sum_{n=1}^{N} z^{n}-\frac{1}{M} \sum_{n=1}^{M-1} z^{n}-\sum_{n=M}^{N-1}\left(\frac{1}{n+1}-\frac{1}{n}\right) \cdot\left(\sum_{k=1}^{n} z^{k}\right) \tag{3}
\end{equation*}
$$

Note that for each $k \in \mathbb{N}$

$$
\begin{equation*}
\left|\sum_{n=1}^{k} z^{n}\right|=\left|\frac{z-z^{k+1}}{1-z}\right| \leq \frac{|z|+\left|z^{k+1}\right|}{|1-z|}=\frac{2}{|1-z|} \tag{4}
\end{equation*}
$$

Thus

$$
\begin{aligned}
&\left|\sum_{n=M}^{N} \frac{z^{n}}{n}\right| \stackrel{\text { by (3) }}{\leq} \frac{1}{N}\left|\sum_{n=1}^{N} z^{n}\right|+\frac{1}{M}\left|\sum_{n=1}^{M-1} z^{n}\right|+\sum_{n=M}^{N-1}\left|\frac{1}{n+1}-\frac{1}{n}\right| \cdot\left|\sum_{k=1}^{n} z^{k}\right| \\
& \quad \text { by (4) } \frac{1}{N} \cdot \frac{2}{|1-z|}+\frac{1}{M} \cdot \frac{2}{|1-z|}+\frac{2}{|1-z|} \cdot \sum_{n=M}^{N-1}\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& \quad \stackrel{\text { by CH }}{=} \frac{1}{N} \cdot \frac{2}{|1-z|}+\frac{1}{M} \cdot \frac{2}{|1-z|}+\frac{2}{|1-z|} \cdot\left(\frac{1}{M}-\frac{1}{N}\right) \\
& \quad \leq \frac{1}{N} \cdot \frac{2}{|1-z|}+\frac{1}{M} \cdot \frac{2}{|1-z|}+\frac{1}{M} \cdot \frac{2}{|1-z|} \\
& \quad \text { by (2) } \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

Thus the sequence $\left\{\sum_{n=1}^{N} \frac{z^{n}}{n}\right\}_{N=1}^{\infty}$ is a Cauchy sequence in the complete metric space \mathbb{C} and hence the sequence $\left\{\sum_{n=1}^{N} \frac{z^{n}}{n}\right\}_{N=1}^{\infty}$ converges．〈But to say that a series converges is really just saying that the sequence of partial sums of the series converges．〉 Thus the series $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$ converges．

