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Math 703 HW: Complex Analysis 7

The Summation by Parts Formula. Let {a,}"_, and {b,}._, be finite sequences of complex
numbers. Then for N > M > 1

N N-1 k
Z anb, = anBy — ayBy_1 — Z (aps1 — an) By, where By, = Zbl . (1)
n=M n=M =1

Hint for proof of summation by parts formula: substitute b, = B,, — B, _1 in the sum on the left.
You may use, without proving, the Summation by Parts Forumula.

X _n
z
Exercise. Prove the power series Z — converges for each z € C with |z| = 1 except z = 1.
n
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Hint. Use the above summation by parts. Note if z € C\ {1} with |z| = 1, then for each k € N
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Proof. The power series ) ", =~ diverges when 2 = 1 since the harmonic series )~ , - diverges.

Now, fix z € C with |z| = 1 but z # 1. Towards showing that the sequence {Zgil %} is a
-1
Cauchy sequence in C, let € > 0. Pick M € N such that
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- << (2)
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Fix N, M € N such that N > M > M.
The summation by parts formula (1) (with a, = 1 and b, = 2") gives
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Note that for each £k € N
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Thus the sequence {ZN :

[o.¢]
et ?}N:I is a Cauchy sequence in the complete metric space C and hence
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the sequence = converges. (But to say that a series converges is really just saying that the sequence
n=17n [ _, g g

. n
of partial sums of the series converges.) Thus the series Z;L.ozl % converges. U
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