Recall

Cauchy-Riemann Equations for $f=u+i v$ are: $\quad u_{x}=v_{y} \quad$ and $\quad u_{y}=-v_{x}$.
Prop. 4.10. If $f \in H(G)$ and $f^{\prime}(z)=0$ for each z in the nonempty open connected subset G of \mathbb{C}, then f is constant on G.
Exercise. Let $f \in H(G)$ where G is a nonempty open connected subset of \mathbb{C}. Prove the following.

1. If $\operatorname{Re} f$ is constant on G, then f is constant on G.
2. If $\operatorname{Im} f$ is constant on G, then f is constant on G.
3. If $|f|$ is constant on G, then f is constant on G.

Do so without using facts not covered thus far in class. So you may use ideas from the Class Script's Section 1.1-1.3 as well as Prop. 4.10.

Proof's Idea. Let $f \in H(G)$ where G is a nonempty open connected subset of \mathbb{C}. As usual, write $f=u+i v$ where $u:=\operatorname{Re} f$ and $v:=\operatorname{Im} f$. Since $f \in H(G)$, on G : the first order partial derivatives of u and v exist, they satisfy the CR equations

$$
\begin{equation*}
u_{x}=v_{y} \quad \text { and } \quad u_{y}=-v_{x}, \tag{CReq}
\end{equation*}
$$

and $f^{\prime}=u_{x}+i v_{x}=v_{y}-i u_{y}$.

1. Let u be constant on G. Then on G the partials $u_{x}=0$ and $u_{y}=0$. So $f^{\prime}=0$ on G since

$$
f^{\prime}=u_{x}+i v_{x}=u_{x}-i u_{y} .
$$

So 〈by Prop. 4.10〉 f is constant on G.
2. Similar to part 1 but using $f^{\prime}=u_{x}+i v_{x}=v_{y}+i v_{x}$.

Can also do by applying part 1 to $-i f=v-i u \in H(G)$ since $\operatorname{Re}(-i f)=\operatorname{Im} f$.
3. Let $c \in \mathbb{C}$. Let $|f(z)|=c$ for each $z \in G$. If $c=0$, then we are done. So assume $c \neq 0$. Then

$$
g(x+i y):=|f(x+i y)|^{2}=[u(x, y)]^{2}+[v(x, y)]^{2}=c^{2} \neq 0
$$

Taking the partial derivatives of g w.r.t. x and y we get (on G)

$$
\begin{align*}
& 2 u \frac{\partial u}{\partial x}+2 v \frac{\partial v}{\partial x}=0 \tag{1}\\
& 2 u \frac{\partial u}{\partial y}+2 v \frac{\partial v}{\partial y}=0 \tag{2}
\end{align*}
$$

Using the CR equations we rewrite (2) as

$$
\begin{equation*}
-2 u \frac{\partial v}{\partial x}+2 v \frac{\partial u}{\partial x}=0 \tag{3}
\end{equation*}
$$

Muliplying (1) by u gives

$$
\begin{equation*}
2 u^{2} \frac{\partial u}{\partial x}+2 u v \frac{\partial v}{\partial x}=0 \tag{4}
\end{equation*}
$$

Muliplying (3) by v gives

$$
\begin{equation*}
-2 u v \frac{\partial v}{\partial x}+2 v^{2} \frac{\partial u}{\partial x}=0 \tag{5}
\end{equation*}
$$

Adding (4) and (5) gives that on G

$$
\begin{equation*}
2\left(u^{2}+v^{2}\right) \frac{\partial u}{\partial x}=0 \tag{6}
\end{equation*}
$$

But $u^{2}+v^{2} \neq 0$ on G so (6) gives $\frac{\partial u}{\partial x}=0$ on G. Similarly $\frac{\partial v}{\partial x}=0$ on G. So $f^{\prime}=u_{x}+i v_{x}=0$ on G. Since f is holomorohic on the nonempty open connected set G and $f^{\prime}=0$ on G, f is constant on G (cf. Prop. 4.10).

