Exercise. Define $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
u(x, y)=x^{2}-y^{2} .
$$

1. Show that u is harmonic on \mathbb{C}.
2. Find $f \in H(\mathbb{C})$ such that $u=\operatorname{Re} f$.

Def. A function $u: G \rightarrow \mathbb{R}$, where G is an open subset of \mathbb{R}^{2}, is harmonic on G provided:

1. the first and second partials derivatives of u exist and are continuous on G,
2. u satisfies the LaPlace equation $\Delta u=0$ on G, i.e., $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ on G.

Solution. Define $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
u(x, y)=x^{2}-y^{2} .
$$

1 . Since u is a polyomonial on \mathbb{R}^{2}, the first and second partials derivatives of u exist and are continuous on \mathbb{C}. Since $u_{x x}$ is the constant function 2 while $u_{y y}$ is the constant function -2 . the function u satisfies the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ on \mathbb{C}. Thus u is harmonic on \mathbb{C}.
2. We want to find a harmonic conjugate of u on \mathbb{C}, call it $v=v(x, y)$. Note if $f=u+i v$ is to be analytic, then f must satisfy the Cauchy-Riemann equations on \mathbb{C}, i.e.,

$$
\begin{equation*}
u_{x}=v_{y} \quad \text { and } \quad u_{y}=-v_{x} . \tag{CReq}
\end{equation*}
$$

Since

$$
\begin{align*}
v(x, y) & =\int\left[\frac{\partial v}{\partial y}\right] d y \\
& \stackrel{(\mathrm{CR})}{=} \int\left[\frac{\partial u}{\partial x}\right] d y \\
& =\int[2 x] d y \\
& =2 x y+h(x), \tag{1}
\end{align*}
$$

for some funtion $h: \mathbb{R} \rightarrow \mathbb{R}$, we have that

$$
\begin{equation*}
\frac{\partial v}{\partial x} \stackrel{\text { by }(1)}{=} \frac{\partial}{\partial x}[2 x y+h(x)]=2 y+h^{\prime}(x) \tag{2}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\frac{\partial v}{\partial x} \stackrel{\mathrm{CR}}{=} \frac{-\partial u}{\partial y}=\frac{-\partial}{\partial y}\left(x^{2}-y^{2}\right)=2 y . \tag{3}
\end{equation*}
$$

By (2) and (3), the function h^{\prime} is identically zero. So there is $c \in \mathbb{R}$ such that $h(x)=c$ and

$$
v(x, y)=2 x y+c,
$$

\triangleright Possibities for $f \in H(\mathbb{C})$ s.t. $u=\operatorname{Re} f$. Pick your favorite $c \in \mathbb{R}$ (I'll pick $c=17$). Then take

$$
f(x+i y)=\left[x^{2}-y^{2}\right]+i[2 x y+17],
$$

which can be expressed as the clearly analytic function

$$
f(z)=z^{2}+17 i .
$$

