Exercise. Define $u \colon \mathbb{R}^2 \to \mathbb{R}$ by

$$u\left(x,y\right) = x^2 - y^2.$$

- 1. Show that u is harmonic on \mathbb{C} .
- 2. Find $f \in H(\mathbb{C})$ such that $u = \operatorname{Re} f$.

<u>Def.</u> A function $u: G \to \mathbb{R}$, where G is an open subset of \mathbb{R}^2 , is <u>harmonic on G</u> provided:

1. the first and second partials derivatives of u exist and are continuous on G,

2. u satisfies the LaPlace equation $\Delta u = 0$ on G, i.e., $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ on G. Solution. Define $u \colon \mathbb{R}^2 \to \mathbb{R}$ by

$$u\left(x,y\right) = x^2 - y^2.$$

1. Since u is a polynomial on \mathbb{R}^2 , the first and second partials derivatives of u exist and are continuous on \mathbb{C} . Since u_{xx} is the constant function 2 while u_{yy} is the constant function -2. the function u satisfies the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ on \mathbb{C} . Thus u is harmonic on \mathbb{C} . 2. We want to find a harmonic conjugate of u on \mathbb{C} , call it v = v(x, y). Note if f = u + iv is to

be analytic, then f must satisfy the Cauchy-Riemann equations on \mathbb{C} , i.e.,

$$u_x = v_y$$
 and $u_y = -v_x$. (CReq)

Since

$$v(x,y) = \int \left[\frac{\partial v}{\partial y}\right] dy$$

$$\stackrel{(CR)}{=} \int \left[\frac{\partial u}{\partial x}\right] dy$$

$$= \int [2x] dy$$

$$= 2xy + h(x), \qquad (1)$$

for some function $h \colon \mathbb{R} \to \mathbb{R}$, we have that

$$\frac{\partial v}{\partial x} \stackrel{\text{by (1)}}{=} \frac{\partial}{\partial x} \left[2xy + h(x) \right] = 2y + h'(x) . \tag{2}$$

On the other hand

$$\frac{\partial v}{\partial x} \stackrel{\text{CR}}{=} \frac{-\partial u}{\partial y} = \frac{-\partial}{\partial y} \left(x^2 - y^2 \right) = 2y. \tag{3}$$

By (2) and (3), the function h' is identically zero. So there is $c \in \mathbb{R}$ such that h(x) = c and

$$v\left(x,y\right) = 2xy + c,$$

▷ Possibilities for $f \in H(\mathbb{C})$ s.t. $u = \operatorname{Re} f$. Pick your favorite $c \in \mathbb{R}$ (I'll pick c = 17). Then take

$$f(x+iy) = [x^2 - y^2] + i[2xy + 17],$$

which can be expressed as the clearly analytic function

$$f\left(z\right) = z^2 + 17i.$$