Exercise. Define $f: \mathbb{C} \rightarrow \mathbb{C}$ and $u, v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
f(z) & :=\sqrt{|x y|} \quad \text { where } x:=\operatorname{Re} z \text { and } y:=\operatorname{Im} z \\
u(x, y) & =\operatorname{Re} f(x+i y) \\
v(x, y) & =\operatorname{Im} f(x+i y) .
\end{aligned}
$$

Show that

1. $\quad u$ and v satisfies the Cauchy Riemann equations at $(x, y)=(0,0)$
2. f is not differentiable at $z=0$.

Recall that (complex) differentiable means differentiable as defined in Class Script, p. 4, Def. I.3.1. Remark. As usual in such a setting, we write $z=x+i y$ with $x, y \in \mathbb{R}$ and let $u(x, y)=\operatorname{Re}(f(x, y))$ and $v(x, y)=\operatorname{Im}(f(x, y))$. Thus $f(x+i y)=u(x, y)+i v(x, y)$.

Recall. The Cauchy-Riemann Equations (CReq) for f are

$$
\begin{equation*}
u_{x}=v_{y} \quad \text { and } \quad u_{y}=-v_{x} . \tag{CReq}
\end{equation*}
$$

Recall some Big Theorems

Let $f: G \rightarrow \mathbb{C}$ where G is an open subset of \mathbb{C}. Fix $z_{0} \in G$.
$\triangleright \underline{\text { Diff }} \Rightarrow \mathrm{CR}$. Let f is differentiable at z_{0}. Then the CR equations for f are satisfied at z_{0}.
 the first partial derivatives u_{x}, v_{y}, u_{y}, and v_{x} :

1. exist in some neighborhood $N_{\varepsilon}\left(z_{0}\right)$ of z_{0}

2 . be continuous at z_{0}.
Then f is differentiable at z_{0}.
\triangleright If f is differentiable at $z_{0}=x_{0}+i y_{0}$, then $f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)-i u_{y}\left(x_{0}, y_{0}\right)$.

Solution. As usual in such a setting, we write $z=x+i y$ with $x, y \in \mathbb{R}$ and let $u(x, y)=\operatorname{Re}(f(x, y))$ and $v(x, y)=\operatorname{Im}(f(x, y))$. Thus $f(x+i y)=u(x, y)+i v(x, y)$. Note that in this problem, for each $(x, y) \in \mathbb{R}^{2}$.

$$
u(x, y)=\sqrt{|x y|} \quad \text { and } \quad v(x, y)=0 \quad \text { and } \quad \frac{\partial v}{\partial x}(x, y)=0=\frac{\partial v}{\partial y}(x, y) .
$$

To find $\frac{\partial u}{\partial x}(0,0)$, we use the definiton:

$$
\frac{\partial u}{\partial x}(0,0)=\lim _{\substack{h \rightarrow 0 \\ h \in \mathbb{R}}} \frac{u(h, 0)-u(0,0)}{h}=\lim _{\substack{h \rightarrow 0 \\ h \in \mathbb{R}}} \frac{0-0}{h}=\lim _{\substack{h \rightarrow 0 \\ h \in \mathbb{R}}} 0=0 .
$$

Similarly, $\frac{\partial u}{\partial y}(0,0)=0$. Thus

$$
\frac{\partial u}{\partial x}(0,0)=0=\frac{\partial v}{\partial y}(0,0) \quad \text { and } \quad \frac{\partial u}{\partial y}(0,0)=0=\frac{-\partial v}{\partial x}(0,0)
$$

and so the Cauchy-Riemann equations hold at $z=0$. However

$$
\frac{f(0+(h+i h))-f(0)}{h+i h}=\frac{\sqrt{|h \cdot h|}}{h(1+i)}=\frac{|h|}{h} \cdot \frac{1}{1+i}=\frac{|h|}{h}\left(\frac{1}{2}+i \frac{1}{2}\right)
$$

and so

$$
\lim _{\substack{h \rightarrow 0^{+} \\ h \in \mathbb{R}}} \frac{f(0+(h+i h))-f(0)}{h+i h}=\left(\frac{1}{2}+i \frac{1}{2}\right)
$$

while

$$
\lim _{\substack{h \rightarrow 00^{-} \\ h \in \mathbb{R}}} \frac{f(0+(h+i h))-f(0)}{h+i h}=-\left(\frac{1}{2}+i \frac{1}{2}\right) .
$$

Thus

$$
\lim _{\substack{h \rightarrow 0 \\ h \in \mathbb{C}}} \frac{f(0+h)-f(0)}{h}
$$

does not exist. So f is not differentiable at $z=0$.

