Exercise. Prove the following functions are nowhere (complex) differentiable on \mathbb{C}.
Recall that (complex) differentiable means differentiable as defined in Class Script, p. 4, Def. I.3.1.
(a) $f(z)=\operatorname{Re} z$.
(b) $f(z)=|z|$.

Recall that (complex) differentiable means differentiable as defined in Class Script, p. 4, Def. I.3.1. Def. A function $f: G \rightarrow \mathbb{C}$, where G is an open subset of \mathbb{C}, is nowhere differentiable on G provided f is not differentiable at z for each $z \in G$.
Remark. As usual in such a setting, we write $z=x+i y$ with $x, y \in \mathbb{R}$ and let $u(x, y)=\operatorname{Re}(f(x, y))$ and $v(x, y)=\operatorname{Im}(f(x, y))$. Thus $f(x+i y)=u(x, y)+i v(x, y)$.

Recall. The Cauchy-Riemann Equations (CReq) for f are

$$
\begin{equation*}
u_{x}=v_{y} \quad \text { and } \quad u_{y}=-v_{x} . \tag{CReq}
\end{equation*}
$$

Recall some Big Theorems

Let $f: G \rightarrow \mathbb{C}$ where G is an open subset of \mathbb{C}. Fix $z_{0} \in G$.
\triangleright Diff $\Rightarrow \mathrm{CR}$. Let f is differentiable at z_{0}. Then the CR equations for f are satisfied at z_{0}.

the first partial derivatives u_{x}, v_{y}, u_{y}, and v_{x} :

1. exist in some neighborhood $N_{\varepsilon}\left(z_{0}\right)$ of z_{0}

2 . be continuous at z_{0}.
Then f is differentiable at z_{0}.
\triangleright If f is differentiable at $z_{0}=x_{0}+i y_{0}$, then $f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)-i u_{y}\left(x_{0}, y_{0}\right)$.

Proof of (a). Note $u(x, y)=x$ and $v(x, y)=0$. Clearly $u_{x}(x, y)=1$ and $v_{y}(x, y)=0$ for each $z=x+i y \in \mathbb{C}$. So the CR equations hold nowhere. So f is nowhere differentiable.

Proof of (b). Note $u(x, y)=\sqrt{x^{2}+y^{2}}$ and $v(x, y)=0$.
Case $x+i y \neq 0$. Thus $x^{2}+y^{2} \neq 0$ and so

$$
u_{x}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}, \quad u_{y}(x, y)=\frac{y}{\sqrt{x^{2}+y^{2}}}, \quad v_{x}(x, y)=0, \text { and } v_{y}(x, y)=0 .
$$

For f to satisfy the CR equations at $x+i y$, we must have $u_{x}(x, y)=0$ and $u_{y}(x, y)=0$, which would give that $x=0=y$. This cannot be since $x+i y \neq 0$. So if $z \in \mathbb{C} \backslash\{0\}$, then f is not differentiable at z.
$\underline{\text { Case } x+i y=0}$. To see that u_{x} does not even exist at $(x, y)=(0,0)$, note that, for $h \in \mathbb{R} \backslash\{0\}$,

$$
\frac{u(0+h, 0)-u(0,0)}{h}=\frac{|h|}{h} \longrightarrow \begin{cases}1 & \text { as } h \rightarrow 0^{+} \\ -1 & \text { as } h \rightarrow 0^{-}\end{cases}
$$

Since u_{x} does not even exist at $(x, y)=(0,0)$, the function f is not differentiable at $z=0$.
We conclude that (complex) differentiability of f fails everywhere.

