Math 703

$$\exp(x+iy) := e^x \cos y + ie^x \sin y \stackrel{\text{i.e.}}{=} e^x (\cos y + i \sin y) \quad , \ x, y \in \mathbb{R}.$$
(1)

The complex exponential function restricted to \mathbb{R} agrees the the usual real exponential fnc. since

$$\exp(x) = \exp(x+i0) = e^x \cos 0 + ie^x \sin 0 = e^x , x \in \mathbb{R}.$$
 (2)

Thus we often write exp (x + iy) by e^{x+iy} .

Defining Trigomonetric Functions. From (1) it follows that if $x \in \mathbb{R}$ then

$$e^{ix} + e^{-ix} = 2\cos x$$
 and $e^{ix} - e^{-ix} = 2i\sin x$, $z \in \mathbb{R}$. (3)

Motivated by (3), the (complex) sine and cosine functions (from \mathbb{C} to \mathbb{C}) are defined by

$$\cos z := \frac{e^{iz} + e^{-iz}}{2} \qquad \text{and} \qquad \sin z := \frac{e^{iz} - e^{-iz}}{2i} \qquad , \ z \in \mathbb{C}.$$
(4)

Defining Hyperbolic Functions. Motivated by their definition for a real number, the (complex) hyperbolic sine and cosine functions (from \mathbb{C} to \mathbb{C}) are defined by

$$\cosh z := \frac{e^z + e^{-z}}{2}$$
 and $\sinh z := \frac{e^z - e^{-z}}{2}$, $z \in \mathbb{C}$. (5)

Good Reference. [BC] Brown and Churchill, *Complex Variables and Applications*. (any edition). From Chapter 3, read sections:

- §23. The Exponential Function (p. 65-68)
- §24. Trigonometric Functions (p. 69-72)
- §25. Hyperolic Functions (p. 72-75).

Concentrate on the <u>definitions</u> and <u>properities</u> of these functions, ignoring for now the parts about derivatives/entire. The above reference shows that these functions are defined on the whole of \mathbb{C} in such a way that

- (1) when a function's domain is restricted from \mathbb{C} to \mathbb{R} , the resulting function agrees with the function (of the same name) from \mathbb{R} to \mathbb{R} that we know from calculus
- (2) many identities/properties which we know from the \mathbb{R} -version extend to the \mathbb{C} -version (e.g., $e^{z_1}e^{z_2} = e^{z_1+z_2}$ for each $z_z, z_2 \in \mathbb{C}$).

You should have a working knowledge of the properties/identities of the complex exponential, sine, and cosine functions. One major difference between the complex and real exponential functions is that the complex exponential function is periodic with a pure imaginary period of $2\pi i$, i.e.,

$$\exp(z + 2\pi i) = \exp(z), \qquad , z \in \mathbb{C}.$$
(6)

Thus we will have to take care when defining a complex version of an "inverse" of the complex exponential (i.e., the complex log).

You are strongly encouraged to work in groups, following the procedure as in homework MS09.

Exercise pCA 4. Find all the solutions of the equation $\sin z = 3$, expressing your solution(s) in the form a + ib with $a, b \in \mathbb{R}$.