For the first homework, we are asked to complete a partially given proof. You may work in groups.

Metric Space Exercise 1.

Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of continuous functions from the interval $[a, b]$ into \mathbb{R} that convergences pointwise on $[a, b]$ to the continuous function $f:[a, b] \rightarrow \mathbb{R}$. Also let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be (pointwise) nonincreasing, i.e.,

$$
\begin{equation*}
f_{n}(x) \geq f_{n+1}(x), \text { for each } x \in[a, b] \text { and } n \in \mathbb{N} \text {. } \tag{D}
\end{equation*}
$$

Show that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly to f on $[a, b]$ (by completing the below proof).
How does Dini's Theorem (stated below) follow from this exercise?
Dini's Thm. If $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a montone sequence of \mathbb{R}-valued continuous functions on $[a, b]$ that convergences pointwise to the continuous function f on $[a, b]$, then $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly to f on $[a, b]$. 〈Here, montone means that (D) holds or (I) holds, where (I) is:

$$
\begin{equation*}
f_{n}(x) \leq f_{n+1}(x), \text { for each } x \in[a, b] \text { and } n \in \mathbb{N} \text {. } \tag{I}
\end{equation*}
$$

Proof. LTGBG. 〈First, reduce to easier problem. WLOG, $f=01_{[a, b]}$ for if f is not identically zero on $[a, b]$, then replace each f_{n} with $f_{n}-f$. In case you do do see this, the rest of this paragraph is the details. We will continue the proof using all the detail.) For each $n \in \mathbb{N}$, define $g_{n}:[a, b] \rightarrow \mathbb{R}$ pointwise by

$$
g_{n}:=f_{n}-f .
$$

Since $f_{n} \rightarrow f$ pointwise on $[a, b]$, we have that $g_{n} \rightarrow 01_{[a, b]}$ pointwise on $[a, b]$. Thus, by (D),

$$
\begin{equation*}
g_{n}(x) \geq g_{n+1}(x) \geq 0, \text { for each } x \in[a, b] \text { and } n \in \mathbb{N} . \tag{g}
\end{equation*}
$$

Note $f_{n} \rightrightarrows f$ on $[a, b]$ is equivalent to $g_{n} \rightrightarrows 01_{[a, b]}$ on $[a, b]$. We shall show the later by contradiction.
For each $n \in \mathbb{N}$, the nonnegative continuous function g_{n} must obtain it's supremum on the compact set $[a, b]$ and so there exists $x_{n} \in[a, b]$ such that

$$
\sup _{x \in[a, b]}\left|g_{n}(x)\right|=\sup _{x \in[a, b]} g_{n}(x)=\max _{x \in[a, b]} g_{n}(x)=g_{n}\left(x_{n}\right) .
$$

The sequence $\left\{g_{n}\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$ is a nonincreasing sequence from $[0, \infty)$ since

$$
g_{n}\left(x_{n}\right)=\sup _{x \in[a, b]} g_{n}(x) \stackrel{\text { by }}{\stackrel{\boxed{D} g}{\geq}} \sup _{x \in[a, b]} g_{n+1}(x)=g_{n+1}\left(x_{n+1}\right) .
$$

Towards a contradiction, assume that $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ does not converge uniformly on $[a, b]$ to $01_{[a, b]}$. Thus the sequence $\left\{g_{n}\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$ from $[0, \infty)$ does not converge to 0 . Since the sequence $\left\{g_{n}\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$ is nonincreasing, there is an $\varepsilon>0$ such that

$$
\begin{equation*}
g_{n}\left(x_{n}\right)>\varepsilon \text {, for each } n \in \mathbb{N} \text {. } \tag{1}
\end{equation*}
$$

By the Bolzano-Weierstass Theorem, there is a subsequence $\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}$ and $x_{0} \in[a, b]$ such that ... NOW YOU FINISH FROM HERE

