For the first homework, we are asked to complete a partially given proof. You may work in groups.

Metric Space Exercise 1.

Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of continuous functions from the interval [a, b] into \mathbb{R} that convergences pointwise on [a, b] to the continuous function $f: [a, b] \to \mathbb{R}$. Also let $\{f_n\}_{n\in\mathbb{N}}$ be (pointwise) nonincreasing, i.e.,

$$f_n(x) \ge f_{n+1}(x)$$
, for each $x \in [a, b]$ and $n \in \mathbb{N}$. (D)

Show that $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f on [a, b] (by completing the below proof).

How does Dini's Theorem (stated below) follow from this exercise?

Dini's Thm. If $\{f_n\}_{n\in\mathbb{N}}$ be a montone sequence of \mathbb{R} -valued continuous functions on [a, b] that convergences pointwise to the continuous function f on [a, b], then $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f on [a, b]. (Here, montone means that (D) holds or (I) holds, where (I) is:)

$$f_n(x) \le f_{n+1}(x)$$
, for each $x \in [a, b]$ and $n \in \mathbb{N}$. (I)

Proof. LTGBG. (First, reduce to easier problem. WLOG, $f = 01_{[a,b]}$ for if f is not identically zero on [a,b], then replace each f_n with $f_n - f$. In case you do do see this, the rest of this paragraph is the details. We will continue the proof using all the detail.) For each $n \in \mathbb{N}$, define $g_n: [a,b] \to \mathbb{R}$ pointwise by

$$g_n := f_n - f.$$

Since $f_n \to f$ pointwise on [a, b], we have that $g_n \to 01_{[a,b]}$ pointwise on [a, b]. Thus, by (D),

$$g_n(x) \ge g_{n+1}(x) \ge 0$$
, for each $x \in [a, b]$ and $n \in \mathbb{N}$. (D_g)

Note $f_n \rightrightarrows f$ on [a, b] is equivalent to $g_n \rightrightarrows 01_{[a,b]}$ on [a, b]. We shall show the later by contradiction.

For each $n \in \mathbb{N}$, the nonnegative <u>continuous</u> function g_n must obtain it's supremum on the <u>compact</u> set [a, b] and so there exists $x_n \in [a, b]$ such that

$$\sup_{x \in [a,b]} |g_n(x)| = \sup_{x \in [a,b]} g_n(x) = \max_{x \in [a,b]} g_n(x) = g_n(x_n).$$

The sequence $\{g_n(x_n)\}_{n\in\mathbb{N}}$ is a nonincreasing sequence from $[0,\infty)$ since

$$g_n(x_n) = \sup_{x \in [a,b]} g_n(x) \overset{\text{by }(D_g)}{\geq} \sup_{x \in [a,b]} g_{n+1}(x) = g_{n+1}(x_{n+1}).$$

Towards a contradiction, assume that $\{g_n\}_{n\in\mathbb{N}}$ does not converge uniformly on [a, b] to $01_{[a,b]}$. Thus the sequence $\{g_n(x_n)\}_{n\in\mathbb{N}}$ from $[0,\infty)$ does not converge to 0. Since the sequence $\{g_n(x_n)\}_{n\in\mathbb{N}}$ is nonincreasing, there is an $\varepsilon > 0$ such that

$$g_n(x_n) > \varepsilon$$
, for each $n \in \mathbb{N}$. (1)