Exercise. Let $R>0$ and $z_{0} \in \mathbb{C}$.
(a) Let $f \in H\left(B_{R}\left(z_{0}\right)\right)$ have a zero of order m at z_{0}. Show $\frac{1}{f}$ has a pole of order m at z_{0}.
(b) Let $f \in H\left(B_{R}^{\prime}\left(z_{0}\right)\right)$ have a pole of order m at z_{0}. Show $\frac{1}{f}$ has a removable singularity at z_{0}, and furthermore, if we extend $\frac{1}{f}$ to $\frac{\tilde{1}}{f}$ by defining $\frac{\tilde{1}}{f}\left(z_{0}\right)=0$, then $\frac{\tilde{1}}{f}$ is holomorhic at z_{0} and has a zero of order m at z_{0}.
(c) What is the order of the pole of

$$
h(z):=\frac{1}{\left(2 \cos z-2+z^{2}\right)^{2}}
$$

at $z=0$? Explain your answer.
Remark. Loosely speaking, this exercise shows that, at $z=z_{0}$,
(a) f has zero of order $m \Rightarrow \frac{1}{f}$ has pole of order m
(b) f has pole of order $m \Rightarrow \frac{1}{f}$ has zero of order m.

