Math 704 Your Last Names
HW: Complex Analysis 15

Exercise. Let R > 0 and $z_0 \in \mathbb{C}$.

(a) Let $f \in H(B_R(z_0))$ have a zero of order m at z_0 . Show $\frac{1}{f}$ has a pole of order m at z_0 .

- (b) Let $f \in H(B'_R(z_0))$ have a pole of order m at z_0 . Show $\frac{1}{f}$ has a removable singularity at z_0 , and furthermore, if we extend $\frac{1}{f}$ to $\frac{\tilde{1}}{f}$ by defining $\frac{\tilde{1}}{f}(z_0) = 0$, then $\frac{\tilde{1}}{f}$ is holomorphic at z_0 and has a zero of order m at z_0 .
- (c) What is the order of the pole of

$$h(z) := \frac{1}{\left(2\cos z - 2 + z^2\right)^2}$$

at z = 0? Explain your answer.

Remark. Loosely speaking, this exercise shows that, at $z = z_0$,

- (a) f has zero of order $m \Rightarrow \frac{1}{f}$ has pole of order m
- (b) f has pole of order $m \Rightarrow \frac{1}{f}$ has zero of order m.