Exercise.

Let $f \in H\left(B_{1}(0)\right)$ satisfy that
(i) $|f(z)| \leq 1$ for each $z \in B_{1}(0)$
(ii) $f(0)=0$.

Show that
(a) $|f(z)| \leq|z|$ for each $z \in B_{1}(0)$,
(b) $\left|f^{\prime}(0)\right| \leq 1$.

If, furthermore, $\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|$ for some $z_{0} \in B_{1}^{\prime}(0)$, show that
(c) there exists $c \in \mathbb{C}$ with $|c|=1$ such that $f(z)=c z$ for each $z \in B_{1}(0)$.

Recall: $B_{1}(0):=\{z \in \mathbb{C}:|z|<1\}$.
Remark: this exercise is known as Schwarz's Lemma.

