Exercise.
a) Find the partial fraction decomposition (PFD) over \mathbb{C} of $\frac{1}{1+z^{2}}$.

Hint: $\frac{1}{1+z^{2}}=\frac{1}{(z-i)(z+i)} \stackrel{\text { PFD }}{=} \frac{A}{z-i}+\frac{B}{z+i}$ for some $A, B \in \mathbb{C}$. Find A and B.
b) Evaluate (without parametrizing the curve γ, but rather by using Cauchy's Integral Formula and the above PFD)

$$
\int_{\gamma} \frac{d z}{1+z^{2}}
$$

for the following $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$.

1. $\gamma(t):=1+e^{i t}$
2. $\gamma(t):=-i+e^{i t}$
3. $\gamma(t):=2 e^{i t}$
4. $\gamma(t):=3 i+3 e^{i t}$

Useful Ideas

Thm. 2.14. Cauchy's Integral Formula for starlike sets. Let:

1. $\gamma^{*} \subset G \subset \mathbb{C}$
2. $f \in H(G)$
3. $a \in \mathbb{C} \backslash \gamma^{*}$
where γ is a closed contour and G is open and starlike. Then

$$
\begin{equation*}
[f(a)] \cdot\left[\operatorname{Ind}_{\gamma}(a)\right]=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} d z \tag{CIF}
\end{equation*}
$$

where the index of γ w.r.t. a (also called the winding number of γ around a) is defined by

$$
\begin{equation*}
\operatorname{Ind}_{\gamma}(a):=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-a} . \tag{Def.2.13}
\end{equation*}
$$

Example \odot. Let $\gamma:[0,2 \pi n] \rightarrow \mathbb{C}$ be given by $\gamma(t)=a+r e^{i c t}$ where:
$n \in \mathbb{N}, a \in \mathbb{C}, r>0$, and $c \in\{ \pm 1\}$. Then $\operatorname{Ind}_{\gamma}(a)=c n$.
Rmk. 2.19. $\mathbb{C} \backslash$ (a closed contour) ${ }^{*}$ has exactly one unbounded (connected) component.
Thm. 2.20. Let γ be a closed contour. Then

1. $\operatorname{Ind}_{\gamma}: \mathbb{C} \backslash \gamma * \rightarrow \mathbb{Z}$ is constant on each (connenected) component of $\mathbb{C} \backslash \gamma *$
2. $\operatorname{Ind}_{\gamma}(a)=0$ for each a in the unbounded of (connenected) component $\mathbb{C} \backslash \gamma *$.
