The Summation by Parts Formula. Let $\left\{a_{n}\right\}_{n=1}^{N}$ and $\left\{b_{n}\right\}_{n=1}^{N}$ be finite sequences of complex numbers. Then for $N>M>1$

$$
\begin{equation*}
\sum_{n=M}^{N} a_{n} b_{n}=a_{N} B_{N}-a_{M} B_{M-1}-\sum_{n=M}^{N-1}\left(a_{n+1}-a_{n}\right) B_{n} \quad \text { where } \quad B_{k}=\sum_{l=1}^{k} b_{l} \tag{1}
\end{equation*}
$$

Hint for proof of summation by parts formula: substitute $b_{n}=B_{n}-B_{n-1}$ in the sum on the left. You may use, without proving, the Summation by Parts Forumula.

Exercise. Prove the power series $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$ converges for each $z \in \mathbb{C}$ with $|z|=1$ except $z=1$.
Hint. Use the above summation by parts. Note if $z \in \mathbb{C} \backslash\{1\}$ with $|z|=1$, then for each $k \in \mathbb{N}$

$$
\left|\sum_{n=1}^{k} z^{n}\right|=\left|\frac{z-z^{k+1}}{1-z}\right| \leq \frac{|z|+\left|z^{k+1}\right|}{|1-z|}=\frac{2}{|1-z|}
$$

