Exercise. Define $f: \mathbb{C} \rightarrow \mathbb{C}$ and $u, v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
f(z) & :=\sqrt{|x y|} \quad \text { where } x:=\operatorname{Re} z \quad \text { and } \quad y:=\operatorname{Im} z \\
u(x, y) & =\operatorname{Re} f(x+i y) \\
v(x, y) & =\operatorname{Im} f(x+i y) .
\end{aligned}
$$

Show that

1. $\quad u$ and v satisfies the Cauchy Riemann equations at $(x, y)=(0,0)$
2. f is not differentiable at $z=0$.

Recall that (complex) differentiable means differentiable as defined in Class Script, p. 4, Def. I.3.1. Remark. As usual in such a setting, we write $z=x+i y$ with $x, y \in \mathbb{R}$ and let $u(x, y)=\operatorname{Re}(f(x, y))$ and $v(x, y)=\operatorname{Im}(f(x, y))$. Thus $f(x+i y)=u(x, y)+i v(x, y)$.

Recall. The Cauchy-Riemann Equations (CReq) for f are

$$
\begin{equation*}
u_{x}=v_{y} \quad \text { and } \quad u_{y}=-v_{x} . \tag{CReq}
\end{equation*}
$$

Recall some Big Theorems

Let $f: G \rightarrow \mathbb{C}$ where G is an open subset of \mathbb{C}. Fix $z_{0} \in G$.
$\triangleright \underline{\mathrm{Diff}} \Rightarrow \mathrm{CR}$. Let f is differentiable at z_{0}. Then the CR equations for f are satisfied at z_{0}.
 the first partial derivatives u_{x}, v_{y}, u_{y}, and v_{x} :

1. exist in some neighborhood $N_{\varepsilon}\left(z_{0}\right)$ of z_{0}

2 . be continuous at z_{0}.
Then f is differentiable at z_{0}.
\triangleright If f is differentiable at $z_{0}=x_{0}+i y_{0}$, then $f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)-i u_{y}\left(x_{0}, y_{0}\right)$.

