Exercise. Define $f: \mathbb{C} \to \mathbb{C}$ and $u, v: \mathbb{R}^2 \to \mathbb{R}$ by $f(z) := \sqrt{|xy|}$ where $x := \operatorname{Re} z$ and $y := \operatorname{Im} z$ $u(x, y) = \operatorname{Re} f(x + iy)$ $v(x, y) = \operatorname{Im} f(x + iy)$. Show that

- 1. u and v satisfies the Cauchy Riemann equations at (x, y) = (0, 0)
- 2. f is not differentiable at z = 0.

<u>Recall</u> that (complex) differentiable means differentiable as defined in Class Script, p. 4, Def. I.3.1. <u>Remark</u>. As usual in such a setting, we write z = x + iy with $x, y \in \mathbb{R}$ and let u(x, y) = Re(f(x, y))and v(x, y) = Im(f(x, y)). Thus f(x + iy) = u(x, y) + iv(x, y).

<u>Recall</u>. The Cauchy-Riemann Equations (CReq) for f are

$$u_x = v_y$$
 and $u_y = -v_x$. (CReq)

Recall some Big Theorems

Let $f: G \to \mathbb{C}$ where G is an open subset of \mathbb{C} . Fix $z_0 \in G$.

- \triangleright <u>Diff</u> \Rightarrow CR. Let f is differentiable at z_0 . Then the CR equations for f are satisfied at z_0 .
- \triangleright <u>CR+more</u> \Rightarrow <u>Diff</u>. Let the CR equations for f be satisfied at z_0 and, furthermore,

the first partial derivatives u_x , v_y , u_y , and v_x :

- 1. exist in some neighborhood $N_{\varepsilon}(z_0)$ of z_0
- 2. be continuous at z_0 .

Then f is differentiable at z_0 .

 $\triangleright \text{ If } f \text{ is differentiable at } z_0 = x_0 + iy_0, \text{ then } f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0) = v_y(x_0, y_0) - iu_y(x_0, y_0).$