Hint. These Exercises use heavily the following properties of outer measure $|\cdot|: \mathcal{P}(\mathbb{R}) \rightarrow[0, \infty]$.
2.5. Outer measure preserves order (i.e., if $A \subset B \subset \mathbb{R}$ then $|A| \leq|B|$).
2.8. Outer measure is countably subadditive (i.e., if $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of subsets of \mathbb{R}, then

$$
\left.\left|\bigcup_{k=1}^{\infty} A_{k}\right| \leq \sum_{k=1}^{\infty}\left|A_{k}\right|\right)
$$

Exercise 2A1. Prove that if A and B are subsets of \mathbb{R} and $|B|=0$, then $|A \cup B|=|A|$.

Proof. please put your proof of 2A1 here

Exercise 2A6. Prove that if $a, b \in \mathbb{R}$ and $a<b$, then

$$
|(a, b)|=|[a, b)|=|(a, b]|=b-a
$$

Proof. please put your proof of 2A6 here

Exercise 2A10. Prove that $|[0,1] \backslash \mathbb{Q}|=1$.

Proof. please put your proof of 2A10 here

