Hint. These Exercises use heavily the following properties of outer measure $|\cdot| : \mathcal{P}(\mathbb{R}) \to [0, \infty]$.

- 2.5. Outer measure preserves order (i.e., if $A \subset B \subset \mathbb{R}$ then $|A| \leq |B|$).
- 2.8. Outer measure is countably subadditive (i.e., if $\{A_n\}_{n \in \mathbb{N}}$ is a sequence of subsets of \mathbb{R} , then $\left| \bigcup_{k=1}^{\infty} A_k \right| \leq \sum_{k=1}^{\infty} |A_k|$

Exercise 2A1. Prove that if A and B are subsets of \mathbb{R} and |B| = 0, then $|A \cup B| = |A|$.

Proof. please put your proof of 2A1 here

Exercise 2A6. Prove that if $a, b \in \mathbb{R}$ and a < b, then

$$|(a,b)| = |[a,b)| = |(a,b]| = b - a.$$

Proof. please put your proof of 2A6 here

Exercise 2A10. Prove that $|[0,1] \setminus \mathbb{Q}| = 1$.

Proof. please put your proof of 2A10 here